Skip to main content
Erschienen in: Neurological Sciences 5/2021

Open Access 02.10.2020 | Original Article

Singular cases of Alzheimer’s disease disclose new and old genetic “acquaintances”

verfasst von: Cinzia Coppola, Dario Saracino, Mariano Oliva, Lorenzo Cipriano, Gianfranco Puoti, Sabina Pappatà, Giuseppe Di Fede, Marcella Catania, Martina Ricci, Sara Cimini, Giorgio Giaccone, Simona Bonavita, Giacomina Rossi

Erschienen in: Neurological Sciences | Ausgabe 5/2021

Abstract

Background

Alzheimer’s disease (AD) is the most common age-related dementia. Besides its typical presentation with amnestic syndrome at onset, atypical AD cases are being increasingly recognized, often in presenile age.

Objectives

To provide an extensive clinical and genetic characterization of six AD patients carrying one or more singular features, including age of onset, atypical phenotype and disease progression rate. By reviewing the pertinent literature and accessing publicly available databases, we aimed to assess the frequency and the significance of the identified genetic variants.

Methods

Biomarkers of amyloid-β deposition and neurodegeneration were used to establish the in vivo diagnosis of probable AD, in addition to neurological and neuropsychological evaluation, extensive laboratory assays and neuroradiological data. Considering the presenile onset of the majority of the cases, we hypothesized genetically determined AD and performed extensive genetic analyses by both Sanger sequencing and next generation sequencing (NGS).

Results

We disclosed two known missense variants, one in PSEN1 and the other in PSEN2, and a novel silent variant in PSEN2. Most notably, we identified several additional variants in other dementia-related genes by NGS. Some of them have never been reported in any control or disease databases, representing variants unique to our cases.

Conclusions

This work underlines the difficulties in reaching a confident in vivo diagnosis in cases of atypical dementia. Moreover, a wider genetic analysis by NGS approach may prove to be useful in specific cases, especially when the study of the so-far known AD causative genes produces negative or conflicting results.
Hinweise
We assure that the data contained in the manuscript being submitted have not been previously published, have not been submitted elsewhere and will not be submitted elsewhere while under consideration at Neurological Sciences.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Alzheimer’s disease (AD) is the most common age-related degenerative dementia. From a clinical perspective, AD typically displays an amnestic syndrome of the hippocampal type that can be associated with various cognitive or behavioural deficits during disease evolution [1]. Atypical forms of AD present with relative preservation of memory at onset and generally occur at an earlier age. They include posterior, logopenic and frontal variant of AD [1]. According to the revised international criteria, at least one biomarker of in vivo Alzheimer’s pathology must be positive: a cerebrospinal fluid (CSF) profile consisting of decreased amyloid-β 1–42 (Aβ42) together with increased total tau (T-tau) or 181-phopshorylated tau (P-tau) concentrations, or an increased retention on amyloid tracer PET (AMY-PET) [1]. In addition to the use of single CSF markers, the combination of multiple CSF markers in the form of ratios further increases the diagnostic accuracy [2]. AD is usually sporadic, with age of onset most often being > 65 years, thus qualifying for late onset AD (LOAD). In no more than 5% of all patients, a positive familial history for dementia or a clear-cut autosomal dominant pattern of inheritance can be found. These familial AD cases (FAD) arise before age 65 more frequently than sporadic cases, hence the definition of early onset AD (EOAD) [3]. Approximately 50% of FAD patients carry a mutation in presenilin 1 (PSEN1), presenilin 2 (PSEN2) or amyloid-β protein precursor (APP) genes, with more than 350 variants collectively identified so far [4, 5]. However, some of them are not pathogenic or their significance remains uncertain, as they may qualify as genetic risk factors or disease-modifying alterations.
Here, we describe a case series of cognitive disorders with in vivo biomarker positivity for Aβ deposition, showing various clinical atypical aspects together with peculiar genetic features. We disclosed two known missense variants, one in PSEN1 and the other in PSEN2, and a novel silent variant in PSEN2. Moreover, additional variants in dementia-related genes have been identified by next generation sequencing (NGS). Our results are intriguing as they raise the question of the role of genetic risk burden in AD.

Patients and methods

Subjects

We describe 6 unrelated cases affected by cognitive disorders who underwent a complete diagnostic protocol including neurological and neuropsychological evaluation, extensive laboratory assays, EEG, structural (CT or MR) and functional (18FDG-PET) neuroimaging. The research for AD pathophysiological biomarkers, either CSF Aβ42, T-tau and P-tau assay or amyloid tracer PET, was performed in all patients.

Case 1

This patient insidiously presented at age 55 with short-term memory impairment and apathy. Familial history and neurological examination were negative, except for Epstein sign; MMSE was 22/30. An extensive neuropsychological evaluation showed deficits of long- and short-term memory, language, abstract reasoning, executive functions and a marked anosognosia. Brain MRI disclosed diffuse cortical atrophy, while 18FDG-PET (Fig. 1) revealed bilateral hypometabolism in the frontal dorso-lateral, superior parietal, temporo-parietal cortices, with prevalent involvement of the left hemisphere, and posterior cingulate cortex (PCC). AMY-PET showed increased uptake mainly in the frontal and lateral temporal regions.

Case 2

In this patient, the onset of cognitive impairment was approximately at 75 years and characterized by short-term memory deficits, anomia, subtle behavioural changes (mild disinhibition) and in the following months psychomotor slowing. Familial history was negative. Neurological examination disclosed an asymmetric parkinsonian syndrome (R > L). MMSE was 22/30. Neuropsychological testing revealed deficits in verbal memory, attention, abstract reasoning and semantics. Brain MRI showed moderate atrophy in frontal, lateral temporal and temporo-mesial cortex prevailing on the left side. AMY-PET evidenced a massive and diffuse burden of amyloid-β. His extrapyramidal syndrome showed satisfying response to L-Dopa administration.

Case 3

This woman presented with apathy and short-term memory deficit at the age of about 62. Family history evidenced memory disturbances in her mother and grandmother. MMSE was 27/30. Neuropsychological assessment detected long-term verbal memory and attentional deficits. Brain CT revealed diffuse supratentorial white matter hypodensity, while 18FDG-PET (Fig. 1) showed mild hypometabolism mainly affecting the left hemisphere and involving the mesial and lateral temporal cortex, the dorsolateral/medial frontal cortex and to a lesser extent the PCC. AMY-PET evidenced a diffuse amyloid deposition.

Case 4

This patient, without family history of dementia, around the age of 59 developed apathy with a language disorder characterized by word-finding problems and slow, hesitating speech, followed by psychomotor agitation, delusional ideation, clumsiness of his upper left limb and generalized motor slowness. His language got significantly worse, with agrammatism and telegraphic sentences, but with only mild impairment in comprehension. Neurological examination at age 61 disclosed mixed pyramidal and extrapyramidal syndrome, prevailing on the left side, left cortical sensory loss and frontal release signs. His MMSE score was 7/30, being non-fluent aphasia with features of apraxia of speech and dressing apraxia among the most significant cognitive deficits. Brain MRI revealed discrete atrophy mainly in temporo-insular cortices bilaterally, whereas 18FDG-PET (Fig. 1) disclosed severe and diffuse cortical hypometabolism more marked in temporo-parietal cortices, precuneus and PCC bilaterally, with prevalent involvement of the right side and slight striatal metabolic asymmetry (R < L). AMY-PET detected diffuse burden of amyloid-β.

Case 5

This subject developed at age 45 a complex behavioural syndrome characterized by apathy, social withdrawal, and eating and sleep disorders. Familial history was negative. Over the next 5 years, there was a clinical worsening with word-finding difficulties, dyscalculia, memory deficits and motor clumsiness in both hands. At age 50, his MMSE score was 16/30 and he presented ideo-motor apraxia, anomia, verbal memory deficits and dysexecutive syndrome. EEG showed diffuse slowing of cerebral electric activity, while brain MRI detected atrophy in parietal regions with slight right prevalence. Subsequently, he also manifested limb myoclonus and psychomotor agitation with complex visual hallucinations. Seven years after the symptom onset, the patient came to our observation and underwent a more extensive diagnostic protocol. Neurological examination showed left pyramidal and bilateral asymmetric (L > R) extrapyramidal syndrome, action-induced limb myoclonus and Epstein sign. MMSE score was 8/30. Brain MRI evidenced marked and diffuse atrophy, with posterior predominance. 18FDG-PET (Fig. 1) demonstrated bilateral hypometabolism in the parietal, occipital and temporal lobes and in the PCC with relative sparing of frontal lobes and subcortical structures. The occipital hypometabolism mostly involved the associative visual regions with relative sparing of the primary visual cortex. CSF biomarkers assay revealed reduced Aβ42 (456 pg/mL; normal values – n.v. – > 500 pg/mL) [6] and a massive increase of both T-tau (3435 pg/mL; n.v. < 300 pg/mL) [6] and P-tau (470 pg/mL, n.v. < 61 pg/mL) [7]. T-tau/Aβ42 ratio was 7.533 (n.v. ≤ 0.52), whereas P-tau/Aβ42 was 1.031 (n.v. ≤ 0.08) [2].

Case 6

This case, without family history for cognitive disorders, insidiously presented at age 52 with a language disorder characterized by anomia and apraxia of speech which progressively worsened until mutism. Neurological examination showed a “worried” facial expression, asymmetric (R > L) mixed pyramidal and extrapyramidal syndrome, focal and segmental myoclonus, exaggerated startle reaction and frontal release signs. A neuropsychological examination showed severe non-fluent aphasia with almost complete mutism and slightly impaired comprehension, severe bucco-lingual and ideo-motor apraxia. EEG showed marked slowing in cerebral electric activity. Brain MRI revealed asymmetrical cortico-subcortical atrophy prevailing in left fronto-temporal areas. 18FDG-PET (Fig. 1) showed asymmetric cortical hypometabolism characterized by a prevalent involvement of the left temporo-parietal cortex and, to a lesser extent, of the left premotor-motor and sensorimotor regions. In addition, there was also a mild left striatal and thalamic hypometabolism. CSF Aβ42 was decreased (235 pg/ml; n.v. > 500 ng/mL), whereas T-tau and P-tau were normal; T-tau/Aβ42 and P-tau/Aβ42 ratios were 1.247 and 0.145 respectively. The research of 14.3.3 protein in CSF was negative.

Patient consents

Written informed consent was acquired from all patients for genetic analysis, processing data and permission to publish data in respect of privacy.

Biochemical analysis

CSF levels of T-tau, P-tau and Aβ42 were determined with human specific ELISA kits (Innogenetics). Plasma level of progranulin was measured using an ELISA kit (Human Progranulin ELISA kit, Adipogen Inc., Seoul, Korea).

Genetic analysis

Sanger Sequencing of APP, PSEN1 and PSEN2 genes [8, 9] and APOE genotyping [10] was performed in all cases. Additionally, a gene panel of 48 dementia-related genes was analysed by NGS techniques. Nextera Rapid Capture system for enrichment (Illumina) coupled with gene-specific probes (Integrated DNA Technologies) was used to sequence the following genes: APP, PSEN1, PSEN2, PRNP, GRN, MAPT, CHMP2B, FUS, TARDBP, VCP, TREM2, ABCA7, APOE, BIN1, CALHM1, CCL2, CCNF, CD33, CHCHD10, CLU, CSF1R, CST3, CTSF, DCTN1, FLNC, hnRNPA1, hnRNPA2B1, ITM2B, LRRK2, NCSTN, NOS3, NOTCH3, OPTN, PFN1, PLD3, PRKAR1B, SERPINI1, SIGMAR1, SNCA, SNCB, SORL1, SQSTM1, STH, TBK1, TMEM106B, TUBA4A, TYROBP, UBQLN2. Sequencing was performed on the Illumina MiSeq instrument using 2X150 bp paired-end read cycles. MiSeq Reporter software (Illumina) was used for alignment (reference human genome UCSC hg19) and variant calling. Variants were annotated using Variant Studio software (Illumina). Low-quality variants were filtered out using the Illumina Qscore threshold of 30; in addition, variants with a minor allele frequency higher than 2% in GnomAD (Genome Aggregation Database, http://​gnomad.​broadinstitute.​org/​) were filtered out. Variants of interest were confirmed using standard Sanger sequencing.
Sorting Intolerant From Tolerant (SIFT) and Polymorphism Phenotyping (PolyPhen) softwares were used to predict pathogenicity of missense mutations. Combined annotation-dependent depletion (CADD) score (https://​cadd.​gs.​washington.​edu/​) was used to predict the pathogenicity of a truncating variant (SORL1 Ser10STOP). NetGene2 (http://​www.​cbs.​dtu.​dk/​services/​NetGene2/​) and BDGP (http://​www.​fruitfly.​org/​seq_​tools/​splice.​html) splice site prediction tools were used to predict the effect on the splice site of the DCTN1 c.3529 + 5G > A variant.

Results

Clinical, instrumental and CSF findings

Our series consists of six cases whose clinical features are summarized in Table 1. Disease onset was in the presenile period in all patients (mean age of onset: 54.6 ± 6.6), except for case 2. Only case 3 showed family history for dementia. The onset was typical in two patients (cases 1 and 3) and atypical in the others. Moreover, an extrapyramidal syndrome complicated all these atypical cases. The clinical diagnosis was AD in cases 1, 2, 3 and 4. In case 5, there was an important discrepancy between clinical findings, suggestive of behavioural variant of frontotemporal dementia (bvFTD) with parkinsonism, and MRI and 18FDG-PET data, expression of atypical AD. In case 6, the clinical diagnosis was corticobasal syndrome (CBS). Given the peculiarity of disease onset, plasma progranulin dosage was performed in cases 4, 5 and 6, with normal values. In addition, all patients underwent an APOE genotyping, which only in cases 2 and 3 showed a ε3/ε4 heterozygosity. The diagnosis of probable AD was supported by at least one positive pathophysiological biomarker in all cases: AMY-PET in cases 1, 2, 3 and 4 and CSF biomarkers in cases 5 and 6. In case 6, although T-tau and P-tau values were not increased, T-tau/Aβ42 and P-tau/Aβ42 ratios both resulted well above the standardized cut-offs [2], thus strongly suggesting an underlying AD pathology.
Table 1
Clinical, instrumental and laboratory data of patients
Case
Age at onset (y)
Cognitive symptoms at onset
Motor syndrome
MRI/CT
18FDG-PET
Amyloid tracer PET
CSF biomarkers
Plasma progra-nulin
APOE
Diagnosis
42
T-tau
P-tau
T-tau/ Aβ42
P-tau/ Aβ42
1
55
Memory and attention disorders
Absent
Diffuse cortical atrophy
Bilateral temporo-parietal, precuneus, PCC and frontal dorso-lateral cortical hypometabolism (L < R)
Increased cortical uptake in the frontal and lateral temporal regions
n.a
n.a.
n.a.
n.a.
n.a.
n.a.
3/3
EOAD
2
75
Memory deficit and behavioural syndrome
Asymmetric parkinsonism (R > L) L-Dopa responsive
Asymmetric fronto-temporal atrophy with left prevalence
n.a.
Marked and diffuse uptake
n.a
n.a.
n.a.
n.a.
n.a.
n.a.
3/4
Atypical LOAD
3
62
Apathy and memory deficit
Absent
Diffuse supratentorial white matter hypodensity
Mild left mesial and lateral temporal and frontal cortices hypometabolism; very mild left PCC and putamen hypometabolism
Increased cortical uptake in the frontal, lateral temporal and parietal regions
n.a
n.a.
n.a.
n.a.
n.a.
n.a.
3/4
Familial EOAD
4
59
Apathy, apraxia, non-fluent aphasia
Mixed pyramidal and extrapyramidal syndrome (L > R)
Temporo-insular atrophy
Marked diffuse bilateral cortical hypometabolism more evident in the temporo-parietal cortex, precuneus and PCC (R < L); slight striatal hypometabolism (R < L)
Diffuse uptake
n.a.
n.a.
n.a.
n.a.
n.a.
148.9
3/3
Atypical EOAD
5
45
Behavioural syndrome, sleep disorder
Left pyramidal and asymmetric extrapyramidal syndrome (L > R); myoclonus
Bilateral posterior (mainly parietal) cortical atrophy
Marked bilateral temporal, parietal, associative occipital cortex and PCC hypometabolism.
n.a.
456
3435
470
7.533
1.031
135.6
3/3
Atypical EOAD
6
52
Speech disorders
Mixed pyramidal and extrapyramidal syndrome (R > L); myoclonus
Asymmetrical cortico-subcortical atrophy with left fronto-temporal prevalence
Cortical temporal, parietal and frontal premotor and sensorimotor hypometabolism (L < R); mild left striatal, thalamic and PCC hypometabolism
n.a.
235
293
34
1.247
0.145
100.3
3/3
Atypical EOAD presenting as CBS
EOAD, early-onset Alzheimer’s disease; LOAD, late-onset Alzheimer’s disease; n.a., not available; PCC, posterior cingulate cortex; y, years; CBS, cortico-basal syndrome

Genetic findings

Diagnostic genes (APP, PSEN1, PSEN2, PRNP, GRN, MAPT, CHMP2B, FUS, TARDBP, VCP, TREM2) were sequenced at 100% by NGS (read depth ≥ 20X) or, in some cases with incomplete coverage, by standard Sanger technique. Genetic results are described in Table 2 and Table 3. Population frequency, in silico pathogenicity prediction (SIFT and Polyphen) and classification in Human Gene Mutation Database (HGMD) are presented. Briefly, concerning AD-causative genes (Table 2), we identified two known missense variants, Glu318Gly in PSEN1 (patients 1 and 2) and Arg71Trp in PSEN2 (patient 3), and a novel silent variant, Ser236Ser in PSEN2 (patient 4). Moreover, thanks to NGS approach, we disclosed other variants in dementia-related genes, in particular FUS, ABCA7, CSF1R, DCTN1, SERPINI1 and SORL1 (Table 3).
Table 2
DNA variants found in genes causative for AD
Case
Gene
Coordinates
Transcript
DNA variant
Amino acid variant
Sift
PolyPhen
GnomAD Freq %
HGMD classification
1
PSEN1
73,673,178
NM_000021.3
gAa/gGa
Glu318Gly
tol
ben
1.485
Disease-associated polymorphism with supporting functional evidence
2
PSEN1
73,673,178
NM_000021.3
gAa/gGa
Glu318Gly
tol
ben
1.485
Disease-associated polymorphism with supporting functional evidence
3
PSEN2
227,071,475
NM_000447.2
Cgg/Tgg
Arg71Trp
del
ben
0.3836
Disease causing mutation?
4
PSEN2
227,076,671
NM_000447.2
agT/agC
Ser236Ser
-
-
1.331
No
Sift, Sorting Intolerant From Tolerant software; PolyPhen, Polymorphism Phenotyping software; GnomAD, Genome Aggregation Database; HGMD, Human Gene Mutation Database; ben, benign; del, deleterious; tol, tolerated
Table 3
DNA variants found in other dementia-related genes
Case
Gene
Coordinates
Transcript
DNA variant
Amino acid variant
Sift
PolyPhen
GnomAD Freq %
HGMD classification
1
ABCA7
1047345
NM_019112.3
Gac/Tac
Asp679Tyr
del
prob dam
0
No
SORL1
121425954
NM_003105.5
aCa/aTa
Thr833Ile
del
poss dam
0
No
2
FUS
31196452
NM_004960.3
tAt/tGt
Tyr239Cys
tol
prob dam
0.001698
No
5
DCTN1
74598723
NM_004082.4
Atc/Gtc
Ile196Val
tol
ben
0.4519
Functional polymorphism
SORL1
121323069
NM_003105.5
tCg/tAg
Ser10STOP*
-
-
0
No
6
CSF1R
149456911
NM_005211.3
Gcc/Acc
Ala273Thr
tol
prob dam
0
No
DCTN1
74590116
NM_004082.4
c.3529 + 5G > A
 
-
-
0.59160
No
SERPINI1
167512569
NM_001122752.1
Gca/Aca
Ala280Thr
tol
ben
1.125
No
Sift, Sorting Intolerant From Tolerant software; PolyPhen, Polymorphism Phenotyping software; GnomAD, Genome Aggregation Database; HGMD, Human Gene Mutation Database; ben, benign; del, deleterious; dam, damaging; poss, possibly; prob., probably; tol, tolerated
*Combined annotation dependent depletion (CADD) score (https://​cadd.​gs.​washington.​edu/​) was > 35
NetGene2 (http://​www.​cbs.​dtu.​dk/​services/​NetGene2/​) and BDGP (http://​www.​fruitfly.​org/​seq_​tools/​splice.​html) splice site prediction tools predicted loss of splice site
Some variants have never been reported in any control (GnomAD) or disease (HGMD) databases, representing variants unique to our cases. CADD analysis of the SORL1 Ser10STOP variant predicted pathogenicity, as well as NetGene2 and BDGP predictions of the DCTN1 c.3529 + 5G > A splice variant.

Discussion

Alzheimer’s disease is mainly distinguished in a typical presentation with hippocampal amnestic syndrome and atypical forms with different cognitive or behavioural deficits.
In this paper, we describe a series of 6 unrelated patients affected by dementing syndromes characterized by one or more “atypical” features including age at onset, clinical presentation and disease progression rate. Case 5 presented a complex syndrome indicative of bvFTD with parkinsonism and additional atypical features. The severity of clinical picture and the high levels of CSF tau might suggest the possibility of a prion disease. However, the long course, the MRI features, the neuroimaging findings (parieto-temporal atrophy and hypometabolism) and CSF Aβ42 reduction made presenile AD the most likely diagnosis. Case 6 was classified as possible CBS, a clinical syndrome with different underlying pathological substrates [11, 12]. In vivo AD pathophysiological biomarkers and 18FDG-PET hypometabolic pattern suggested an underlying AD pathology (CBS-AD), in agreement with the results of a recent combined 18FDG-PET/neuropathological study [13]. Notably, in all patients, the in vivo AD pathophysiological biomarkers supported the diagnosis of probable AD. Indeed, these biomarkers should always be looked for, together with the downstream degenerative topographical biomarkers (18FDG-PET, MRI), in atypical dementia cases.
The results of genetic analyses were, in our opinion, very interesting. The variant found in cases 1 and 2, PSEN1 Glu318Gly, was first identified in patients with EOAD [14]. Studies performed to define its effects on amyloid-β metabolism gave conflicting results [15, 16], and association studies were inconclusive [16, 17]. The variant disclosed in case 3, PSEN2 Arg71Trp, probably involved in protein stability and signalling pathways [18], has been found in patients with EOAD or LOAD, as well as in healthy subjects and Parkinson’s disease dementia [19, 20], and only in one large AD family it seemed to clearly segregate with the disease [21, 22]. It is possible that, by interacting with other factors, PSEN1 Glu318Gly and PSEN2 Arg71Trp increase disease risk and modulate clinical phenotype. PSEN2 Ser236Ser, present in case 4, is a silent variant whose pathogenicity is not predictable.
Among the relevant findings of NGS analysis, ABCA7 and SORL1 are well-known AD risk genes [23, 24]. The ABCA7 transporter is involved in Aβ clearance and its mutations accelerate amyloidosis in a mouse model of AD [25]. A strong association was demonstrated between ABCA7 variations and amyloidosis in AD patients [26]. A reduced expression of SORL1, promoter of the APP non-amyloidogenic pathway [27], has been demonstrated in human AD brains, and its genetic variants increase risk of both LOAD and EOAD [28]. In patient 1, we identified the ABCA7 Asp679Tyr and the SORL1 Thr833Ile variants. They had never been reported before but are predicted to be deleterious by in silico analyses, therefore possibly exerting a synergistic effect with the PSEN1 Glu318Gly variant in amyloidogenic process.
Patient 2, affected by LOAD with parkinsonism, harboured the Tyr239Cys variant in FUS, a gene implicated in ALS and FTD cases [29]. This variant is present in GnomAD with a very low frequency and is predicted to be deleterious by some in silico analyses.
In patient 5, we found the Iso196Val variant in DCTN1 gene. Several DCTN1 mutations have been described in association with ALS, degenerative parkinsonisms and Perry syndrome [30, 31]. Interestingly, our patient displayed some features of Perry syndrome at disease onset, such as personality change, and eating and sleep disturbances, while parkinsonism occurred thereafter. However, in vivo biomarkers more likely predicted amyloid-β rather than TDP-43 pathology, which is Perry syndrome’s substrate. Despite some evidence of pathogenicity from in vitro studies [32], DCTN1 Iso196Val variant has been reported both in patients and in several healthy controls, making it a possible risk factor rather than a causative mutation. This patient also presented the Ser10STOP variant in SORL1, which is a truncating variant absent in ExAc (Exome Aggregation Consortium, http://​exac.​broadinstitute.​org/​) and GnomAD databases, with a CADD score of 35: these types of variant are considered as definitely pathogenic and associated with a significant 12-fold increased AD risk, which is comparable with the APOE-ε4 homozygosity effect [33]. Rare pathogenic SORL1 mutations segregate with disease in LOAD families, and their pathological mechanism is likely to be haploinsufficiency [34].
In case 6, we found variants in other dementia-related genes. The novel Ala273Thr variant, predicted as damaging by in silico analysis, was identified in CSF1R. CSF1R mutations are causative of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia [35], and have recently been reported in pathologically confirmed AD subjects [36]. Noteworthy, one of these cases exhibited a clinical picture very similar to that of our case. We can therefore hypothesize that rare variants of CSF1R may influence the susceptibility to AD, as already shown for other adult-onset leukodystrophy causative genes, such as TREM2 and NOTCH3 [37, 38]. Mutations in SERPINI1 are responsible for familial encephalopathy with neuroserpin inclusion bodies [39]. Though rapidly progressive dementia and myoclonus belong to the clinical spectrum of SERPINI1 mutations [40], the Ala280Thr variant found in patient 6 is predicted as tolerated by in silico analyses. Finally, the splicing mutation c.3529 + 5G > A identified in DCTN1 gene is predicted as potentially capable of altering the splicing site by in silico analyses; therefore, a possible pathogenic effect cannot be excluded.
In conclusion, two relevant aspects emerge from the observations made on this case series. First, some of the patients here presented are paradigmatic of the difficulties in reaching a confident in vivo diagnosis due to the “atypical” clinical aspects, despite the application of very extensive diagnostic protocols. Therefore, post-mortem neuropathological examination remains the gold standard to definitely elucidate the nature of the neurodegenerative process in the single patient with atypical dementia.
Second, in this series of cases, it is also possible to highlight the very interesting aspects emerging from a wider than standard genetic analysis. We found the coexistence of more than one rare non-causative genetic variant in 4 out of 6 patients, suggesting an additive contribution of them to develop dementia, whereas each single variant may not be sufficient. This raises a crucial question: what is the role of these non-causative mutations that are increasingly found in different neurological disorders, particularly in dementias? One hypothesis is that they could act as risk or modifier factors to the disease. Further studies adding evidence from NGS data to the current knowledge will be necessary to support this hypothesis and to define the individual risk associated to each variant.

Acknowledgements

Open access funding provided by Università degli Studi della Campania Luigi Vanvitelli within the CRUI-CARE Agreement.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

No experimental procedure was performed. All the investigations carried out were part of the diagnostic protocol. Therefore, we had no need to submit this study to the approval of the Ethics Committee. Instead, written informed consent was acquired for the diagnostic procedures to reach the diagnosis and for the use of data for research purposes in respect of privacy.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.
We assure that the data contained in the manuscript being submitted have not been previously published, have not been submitted elsewhere and will not be submitted elsewhere while under consideration at Neurological Sciences.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, DeKosky ST, Gauthier S, Selkoe D, Bateman R, Cappa S, Crutch S, Engelborghs S, Frisoni GB, Fox NC, Galasko D, Habert M-O, Jicha GA, Nordberg A, Pasquier F, Rabinovici G, Robert P, Rowe C, Salloway S, Sarazin M, Epelbaum S, de Souza LC, Vellas B, Visser PJ, Schneider L, Stern Y, Scheltens P, Cummings JL (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629CrossRef Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, DeKosky ST, Gauthier S, Selkoe D, Bateman R, Cappa S, Crutch S, Engelborghs S, Frisoni GB, Fox NC, Galasko D, Habert M-O, Jicha GA, Nordberg A, Pasquier F, Rabinovici G, Robert P, Rowe C, Salloway S, Sarazin M, Epelbaum S, de Souza LC, Vellas B, Visser PJ, Schneider L, Stern Y, Scheltens P, Cummings JL (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629CrossRef
2.
Zurück zum Zitat Duits FH, Teunissen CE, Bouwman FH, Visser P-J, Mattsson N, Zetterberg H, Blennow K, Hansson O, Minthon L, Andreasen N, Marcusson J, Wallin A, Rikkert MO, Tsolaki M, Parnetti L, Herukka S-K, Hampel H, De Leon MJ, Schröder J, Aarsland D, Blankenstein MA, Scheltens P, van der Flier WM (2014) The cerebrospinal fluid “Alzheimer profile”: easily said, but what does it mean? Alzheimers Dement 10:713–723.e2CrossRef Duits FH, Teunissen CE, Bouwman FH, Visser P-J, Mattsson N, Zetterberg H, Blennow K, Hansson O, Minthon L, Andreasen N, Marcusson J, Wallin A, Rikkert MO, Tsolaki M, Parnetti L, Herukka S-K, Hampel H, De Leon MJ, Schröder J, Aarsland D, Blankenstein MA, Scheltens P, van der Flier WM (2014) The cerebrospinal fluid “Alzheimer profile”: easily said, but what does it mean? Alzheimers Dement 10:713–723.e2CrossRef
3.
Zurück zum Zitat Wu L, Rosa-Neto P, Hsiung G-YR, Sadovnick AD, Masellis M, Black SE, Jia J, Gauthier S (2012) Early-onset familial Alzheimer’s disease (EOFAD). Can J Neurol Sci 39:436–445CrossRef Wu L, Rosa-Neto P, Hsiung G-YR, Sadovnick AD, Masellis M, Black SE, Jia J, Gauthier S (2012) Early-onset familial Alzheimer’s disease (EOFAD). Can J Neurol Sci 39:436–445CrossRef
4.
Zurück zum Zitat Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39:17–23CrossRef Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39:17–23CrossRef
5.
Zurück zum Zitat Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, Hussain M, Phillips AD, Cooper DN (2017) The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 136:665–677CrossRef Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, Hussain M, Phillips AD, Cooper DN (2017) The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 136:665–677CrossRef
6.
Zurück zum Zitat Sjögren M, Vanderstichele H, Agren H, Zachrisson O, Edsbagge M, Wikkelsø C, Skoog I, Wallin A, Wahlund LO, Marcusson J, Nägga K, Andreasen N, Davidsson P, Vanmechelen E, Blennow K (2001) Tau and Abeta42 in cerebrospinal fluid from healthy adults 21-93 years of age: establishment of reference values. Clin Chem 47:1776–1781CrossRef Sjögren M, Vanderstichele H, Agren H, Zachrisson O, Edsbagge M, Wikkelsø C, Skoog I, Wallin A, Wahlund LO, Marcusson J, Nägga K, Andreasen N, Davidsson P, Vanmechelen E, Blennow K (2001) Tau and Abeta42 in cerebrospinal fluid from healthy adults 21-93 years of age: establishment of reference values. Clin Chem 47:1776–1781CrossRef
7.
Zurück zum Zitat Vanderstichele H, De Vreese K, Blennow K, Andreasen N, Sindic C, Ivanoiu A, Hampel H, Bürger K, Parnetti L, Lanari A, Padovani A, DiLuca M, Bläser M, Olsson AO, Pottel H, Hulstaert F, Vanmechelen E (2006) Analytical performance and clinical utility of the INNOTEST PHOSPHO-TAU(181P) assay for discrimination between Alzheimer’s disease and dementia with Lewy bodies. Clin Chem Lab Med 44:1472–1480CrossRef Vanderstichele H, De Vreese K, Blennow K, Andreasen N, Sindic C, Ivanoiu A, Hampel H, Bürger K, Parnetti L, Lanari A, Padovani A, DiLuca M, Bläser M, Olsson AO, Pottel H, Hulstaert F, Vanmechelen E (2006) Analytical performance and clinical utility of the INNOTEST PHOSPHO-TAU(181P) assay for discrimination between Alzheimer’s disease and dementia with Lewy bodies. Clin Chem Lab Med 44:1472–1480CrossRef
8.
Zurück zum Zitat Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L (1992) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet 1:345–347CrossRef Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L (1992) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet 1:345–347CrossRef
9.
Zurück zum Zitat Cruts M, van Duijn CM, Backhovens H, Van den Broeck M, Wehnert A, Serneels S, Sherrington R, Hutton M, Hardy J, St George-Hyslop PH, Hofman A, Van Broeckhoven C (1998) Estimation of the genetic contribution of presenilin-1 and -2 mutations in a population-based study of presenile Alzheimer disease. Hum Mol Genet 7:43–51CrossRef Cruts M, van Duijn CM, Backhovens H, Van den Broeck M, Wehnert A, Serneels S, Sherrington R, Hutton M, Hardy J, St George-Hyslop PH, Hofman A, Van Broeckhoven C (1998) Estimation of the genetic contribution of presenilin-1 and -2 mutations in a population-based study of presenile Alzheimer disease. Hum Mol Genet 7:43–51CrossRef
10.
Zurück zum Zitat Wenham PR, Price WH, Blandell G (1991) Apolipoprotein E genotyping by one-stage PCR. Lancet 337:1158–1159CrossRef Wenham PR, Price WH, Blandell G (1991) Apolipoprotein E genotyping by one-stage PCR. Lancet 337:1158–1159CrossRef
11.
Zurück zum Zitat Josephs KA, Hodges JR, Snowden JS, Mackenzie IR, Neumann M, Mann DM, Dickson DW (2011) Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol 122:137–153CrossRef Josephs KA, Hodges JR, Snowden JS, Mackenzie IR, Neumann M, Mann DM, Dickson DW (2011) Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol 122:137–153CrossRef
12.
Zurück zum Zitat Armstrong MJ, Litvan I, Lang AE, Bak TH, Bhatia KP, Borroni B, Boxer AL, Dickson DW, Grossman M, Hallett M, Josephs KA, Kertesz A, Lee SE, Miller BL, Reich SG, Riley DE, Tolosa E, Troster AI, Vidailhet M, Weiner WJ (2013) Criteria for the diagnosis of corticobasal degeneration. Neurology 80:496–503CrossRef Armstrong MJ, Litvan I, Lang AE, Bak TH, Bhatia KP, Borroni B, Boxer AL, Dickson DW, Grossman M, Hallett M, Josephs KA, Kertesz A, Lee SE, Miller BL, Reich SG, Riley DE, Tolosa E, Troster AI, Vidailhet M, Weiner WJ (2013) Criteria for the diagnosis of corticobasal degeneration. Neurology 80:496–503CrossRef
13.
Zurück zum Zitat Pardini M, Huey ED, Spina S, Kreisl WC, Morbelli S, Wassermann EM, Nobili F, Ghetti B, Grafman J (2019) FDG-PET patterns associated with underlying pathology in corticobasal syndrome. Neurology 92:e1121–e1135CrossRef Pardini M, Huey ED, Spina S, Kreisl WC, Morbelli S, Wassermann EM, Nobili F, Ghetti B, Grafman J (2019) FDG-PET patterns associated with underlying pathology in corticobasal syndrome. Neurology 92:e1121–e1135CrossRef
14.
Zurück zum Zitat Sandbrink R, Zhang D, Beyreuther K, Schaeffer S, Bauer J, Masters CL, Förstl H (1996) Missense mutations of the PS-1/S182 gene in German early-onset Alzheimer’s disease patients. Ann Neurol 40:265–266CrossRef Sandbrink R, Zhang D, Beyreuther K, Schaeffer S, Bauer J, Masters CL, Förstl H (1996) Missense mutations of the PS-1/S182 gene in German early-onset Alzheimer’s disease patients. Ann Neurol 40:265–266CrossRef
15.
Zurück zum Zitat Dermaut B, Cruts M, Slooter AJC, Van Gestel S, De Jonghe C, Vanderstichele H, Vanmechelen E, Breteler MM, Hofman A, van Duijn CM, Van Broeckhoven C (1999) The Glu318Gly substitution in presenilin 1 is not causally related to Alzheimer disease. Am J Hum Genet 64:290–292CrossRef Dermaut B, Cruts M, Slooter AJC, Van Gestel S, De Jonghe C, Vanderstichele H, Vanmechelen E, Breteler MM, Hofman A, van Duijn CM, Van Broeckhoven C (1999) The Glu318Gly substitution in presenilin 1 is not causally related to Alzheimer disease. Am J Hum Genet 64:290–292CrossRef
16.
Zurück zum Zitat Albani D, Roiter I, Artuso V, Batelli S, Prato F, Pesaresi M, Galimberti D, Scarpini E, Bruni A, Franceschi M, Piras MR, Confaloni A, Forloni G (2007) Presenilin-1 mutation E318G and familial Alzheimer’s disease in the Italian population. Neurobiol Aging 28:1682–1688CrossRef Albani D, Roiter I, Artuso V, Batelli S, Prato F, Pesaresi M, Galimberti D, Scarpini E, Bruni A, Franceschi M, Piras MR, Confaloni A, Forloni G (2007) Presenilin-1 mutation E318G and familial Alzheimer’s disease in the Italian population. Neurobiol Aging 28:1682–1688CrossRef
17.
Zurück zum Zitat Jin S, Pastor P, Cooper B, Cervantes S, Benitez BA, Razquin C, Goate A, Ibero-American Alzheimer Disease Genetics Group Researchers, Cruchaga C (2012) Pooled-DNA sequencing identifies novel causative variants in PSEN1, GRN and MAPT in a clinical early-onset and familial Alzheimer’s disease Ibero-American cohort. Alzheimers Res Ther 4:34CrossRef Jin S, Pastor P, Cooper B, Cervantes S, Benitez BA, Razquin C, Goate A, Ibero-American Alzheimer Disease Genetics Group Researchers, Cruchaga C (2012) Pooled-DNA sequencing identifies novel causative variants in PSEN1, GRN and MAPT in a clinical early-onset and familial Alzheimer’s disease Ibero-American cohort. Alzheimers Res Ther 4:34CrossRef
18.
Zurück zum Zitat To MD, Gokgoz N, Doyle TG, Donoviel DB, Knight JA, Hyslop PS, Bernstein A, Andrulis IL (2006) Functional characterization of novel presenilin-2 variants identified in human breast cancers. Oncogene 25:3557–3564CrossRef To MD, Gokgoz N, Doyle TG, Donoviel DB, Knight JA, Hyslop PS, Bernstein A, Andrulis IL (2006) Functional characterization of novel presenilin-2 variants identified in human breast cancers. Oncogene 25:3557–3564CrossRef
19.
Zurück zum Zitat Nicolas G, Wallon D, Charbonnier C, Quenez O, Rousseau S, Richard A-C, Rovelet-Lecrux A, Coutant S, Le Guennec K, Bacq D, Garnier J-G, Olaso R, Boland A, Meyer V, Deleuze J-F, Munter HM, Bourque G, Auld D, Montpetit A, Lathrop M, Guyant-Maréchal L, Martinaud O, Pariente J, Rollin-Sillaire A, Pasquier F, Le Ber I, Sarazin M, Croisile B, Boutoleau-Bretonnière C, Thomas-Antérion C, Paquet C, Sauvée M, Moreaud O, Gabelle A, Sellal F, Ceccaldi M, Chamard L, Blanc F, Frebourg T, Campion D, Hannequin D (2016) Screening of dementia genes by whole-exome sequencing in early-onset Alzheimer disease: input and lessons. Eur J Hum Genet 24:710–716CrossRef Nicolas G, Wallon D, Charbonnier C, Quenez O, Rousseau S, Richard A-C, Rovelet-Lecrux A, Coutant S, Le Guennec K, Bacq D, Garnier J-G, Olaso R, Boland A, Meyer V, Deleuze J-F, Munter HM, Bourque G, Auld D, Montpetit A, Lathrop M, Guyant-Maréchal L, Martinaud O, Pariente J, Rollin-Sillaire A, Pasquier F, Le Ber I, Sarazin M, Croisile B, Boutoleau-Bretonnière C, Thomas-Antérion C, Paquet C, Sauvée M, Moreaud O, Gabelle A, Sellal F, Ceccaldi M, Chamard L, Blanc F, Frebourg T, Campion D, Hannequin D (2016) Screening of dementia genes by whole-exome sequencing in early-onset Alzheimer disease: input and lessons. Eur J Hum Genet 24:710–716CrossRef
20.
Zurück zum Zitat Schulte EC, Fukumori A, Mollenhauer B, Hor H, Arzberger T, Perneczky R, Kurz A, Diehl-Schmid J, Hüll M, Lichtner P, Eckstein G, Zimprich A, Haubenberger D, Pirker W, Brücke T, Bereznai B, Molnar MJ, Lorenzo-Betancor O, Pastor P, Peters A, Gieger C, Estivill X, Meitinger T, Kretzschmar HA, Trenkwalder C, Haass C, Winkelmann J (2015) Rare variants in β-amyloid precursor protein (APP) and Parkinson’s disease. Eur J Hum Genet 23:1328–1333CrossRef Schulte EC, Fukumori A, Mollenhauer B, Hor H, Arzberger T, Perneczky R, Kurz A, Diehl-Schmid J, Hüll M, Lichtner P, Eckstein G, Zimprich A, Haubenberger D, Pirker W, Brücke T, Bereznai B, Molnar MJ, Lorenzo-Betancor O, Pastor P, Peters A, Gieger C, Estivill X, Meitinger T, Kretzschmar HA, Trenkwalder C, Haass C, Winkelmann J (2015) Rare variants in β-amyloid precursor protein (APP) and Parkinson’s disease. Eur J Hum Genet 23:1328–1333CrossRef
21.
Zurück zum Zitat Wallon D, Rousseau S, Rovelet-Lecrux A, Quillard-Muraine M, Guyant-Maréchal L, Martinaud O, Pariente J, Puel M, Rollin-Sillaire A, Pasquier F, Le Ber I, Sarazin M, Croisile B, Boutoleau-Bretonnière C, Thomas-Antérion C, Paquet C, Moreaud O, Gabelle A, Sellal F, Sauvée M, Laquerrière A, Duyckaerts C, Delisle M-B, Streichenberger N, Lannes B, Frebourg T, Hannequin D, Campion D (2012) The French series of autosomal dominant early onset Alzheimer’s disease cases: mutation Spectrum and cerebrospinal fluid biomarkers. J Alzheimers Dis 30:847–856CrossRef Wallon D, Rousseau S, Rovelet-Lecrux A, Quillard-Muraine M, Guyant-Maréchal L, Martinaud O, Pariente J, Puel M, Rollin-Sillaire A, Pasquier F, Le Ber I, Sarazin M, Croisile B, Boutoleau-Bretonnière C, Thomas-Antérion C, Paquet C, Moreaud O, Gabelle A, Sellal F, Sauvée M, Laquerrière A, Duyckaerts C, Delisle M-B, Streichenberger N, Lannes B, Frebourg T, Hannequin D, Campion D (2012) The French series of autosomal dominant early onset Alzheimer’s disease cases: mutation Spectrum and cerebrospinal fluid biomarkers. J Alzheimers Dis 30:847–856CrossRef
22.
Zurück zum Zitat Cruchaga C, Chakraverty S, Mayo K, FLM V, Mitra RD, Faber K, Williamson J, Bird T, Diaz-Arrastia R, Foroud TM, Boeve BF, Graff-Radford NR, St. Jean P, Lawson M, Ehm MG, Mayeux R, Goate AM, for the NIA-LOAD/NCRAD Family Study Consortium (2012) Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer’s disease families. PLoS One 7:e31039CrossRef Cruchaga C, Chakraverty S, Mayo K, FLM V, Mitra RD, Faber K, Williamson J, Bird T, Diaz-Arrastia R, Foroud TM, Boeve BF, Graff-Radford NR, St. Jean P, Lawson M, Ehm MG, Mayeux R, Goate AM, for the NIA-LOAD/NCRAD Family Study Consortium (2012) Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer’s disease families. PLoS One 7:e31039CrossRef
23.
Zurück zum Zitat Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608CrossRef Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608CrossRef
24.
Zurück zum Zitat Bellenguez C, Charbonnier C, Grenier-Boley B, Quenez O, Le Guennec K, Nicolas G, Chauhan G, Wallon D, Rousseau S, Richard AC, Boland A, Bourque G, Munter HM, Olaso R, Meyer V, Rollin-Sillaire A, Pasquier F, Letenneur L, Redon R, Dartigues J-F, Tzourio C, Frebourg T, Lathrop M, Deleuze J-F, Hannequin D, Genin E, Amouyel P, Debette S, Lambert J-C, Campion D, Hannequin D, Campion D, Wallon D, Martinaud O, Zarea A, Nicolas G, Rollin-Sillaire A, Bombois S, Mackowiak M-A, Deramecourt V, Pasquier F, Michon A, Le Ber I, Dubois B, Godefroy O, Etcharry-Bouyx F, Chauviré V, Chamard L, Berger E, Magnin E, Dartigues J-F, Auriacombe S, Tison F, de la Sayette V, Castan D, Dionet E, Sellal F, Rouaud O, Thauvin C, Moreaud O, Sauvée M, Formaglio M, Mollion H, Roullet-Solignac I, Vighetto A, Croisile B, Didic M, Félician O, Koric L, Ceccaldi M, Gabelle A, Marelli C, Labauge P, Jonveaux T, Vercelletto M, Boutoleau-Bretonnière C, Castelnovo G, Paquet C, Dumurgier J, Hugon J, De Boisgueheneuc F, Belliard S, Bakchine S, Sarazin M, Barrellon M-O, Laurent B, Blanc F, Pariente J, Jurici S (2017) Contribution to Alzheimer’s disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls. Neurobiol Aging 59:220.e1–220.e9CrossRef Bellenguez C, Charbonnier C, Grenier-Boley B, Quenez O, Le Guennec K, Nicolas G, Chauhan G, Wallon D, Rousseau S, Richard AC, Boland A, Bourque G, Munter HM, Olaso R, Meyer V, Rollin-Sillaire A, Pasquier F, Letenneur L, Redon R, Dartigues J-F, Tzourio C, Frebourg T, Lathrop M, Deleuze J-F, Hannequin D, Genin E, Amouyel P, Debette S, Lambert J-C, Campion D, Hannequin D, Campion D, Wallon D, Martinaud O, Zarea A, Nicolas G, Rollin-Sillaire A, Bombois S, Mackowiak M-A, Deramecourt V, Pasquier F, Michon A, Le Ber I, Dubois B, Godefroy O, Etcharry-Bouyx F, Chauviré V, Chamard L, Berger E, Magnin E, Dartigues J-F, Auriacombe S, Tison F, de la Sayette V, Castan D, Dionet E, Sellal F, Rouaud O, Thauvin C, Moreaud O, Sauvée M, Formaglio M, Mollion H, Roullet-Solignac I, Vighetto A, Croisile B, Didic M, Félician O, Koric L, Ceccaldi M, Gabelle A, Marelli C, Labauge P, Jonveaux T, Vercelletto M, Boutoleau-Bretonnière C, Castelnovo G, Paquet C, Dumurgier J, Hugon J, De Boisgueheneuc F, Belliard S, Bakchine S, Sarazin M, Barrellon M-O, Laurent B, Blanc F, Pariente J, Jurici S (2017) Contribution to Alzheimer’s disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls. Neurobiol Aging 59:220.e1–220.e9CrossRef
25.
Zurück zum Zitat Kim WS, Li H, Ruberu K, Chan S, Elliott DA, Low JK, Cheng D, Karl T, Garner B (2013) Deletion of Abca7 increases cerebral amyloid-β accumulation in the J20 mouse model of Alzheimer’s disease. J Neurosci 33:4387–4394CrossRef Kim WS, Li H, Ruberu K, Chan S, Elliott DA, Low JK, Cheng D, Karl T, Garner B (2013) Deletion of Abca7 increases cerebral amyloid-β accumulation in the J20 mouse model of Alzheimer’s disease. J Neurosci 33:4387–4394CrossRef
26.
Zurück zum Zitat Apostolova LG, Risacher SL, Duran T, Stage EC, Goukasian N, West JD, Do TM, Grotts J, Wilhalme H, Nho K, Phillips M, Elashoff D, Saykin AJ (2018) Associations of the top 20 Alzheimer disease risk variants with brain amyloidosis. JAMA Neurol 75:328–341CrossRef Apostolova LG, Risacher SL, Duran T, Stage EC, Goukasian N, West JD, Do TM, Grotts J, Wilhalme H, Nho K, Phillips M, Elashoff D, Saykin AJ (2018) Associations of the top 20 Alzheimer disease risk variants with brain amyloidosis. JAMA Neurol 75:328–341CrossRef
27.
Zurück zum Zitat Willnow TE, Andersen OM (2013) Sorting receptor SORLA - a trafficking path to avoid Alzheimer disease. J Cell Sci 126:2751–2760CrossRef Willnow TE, Andersen OM (2013) Sorting receptor SORLA - a trafficking path to avoid Alzheimer disease. J Cell Sci 126:2751–2760CrossRef
28.
Zurück zum Zitat Andersen OM, Rudolph I-M, Willnow TE (2016) Risk factor SORL1: from genetic association to functional validation in Alzheimer’s disease. Acta Neuropathol 132:653–665CrossRef Andersen OM, Rudolph I-M, Willnow TE (2016) Risk factor SORL1: from genetic association to functional validation in Alzheimer’s disease. Acta Neuropathol 132:653–665CrossRef
29.
Zurück zum Zitat Svetoni F, Frisone P, Paronetto MP (2016) Role of FET proteins in neurodegenerative disorders. RNA Biol 13:1089–1102CrossRef Svetoni F, Frisone P, Paronetto MP (2016) Role of FET proteins in neurodegenerative disorders. RNA Biol 13:1089–1102CrossRef
30.
Zurück zum Zitat Münch C, Rosenbohm A, Sperfeld A-D, Uttner I, Reske S, Krause BJ, Sedlmeier R, Meyer T, Hanemann CO, Stumm G, Ludolph AC (2005) Heterozygous R1101K mutation of the DCTN1 gene in a family with ALS and FTD. Ann Neurol 58:777–780CrossRef Münch C, Rosenbohm A, Sperfeld A-D, Uttner I, Reske S, Krause BJ, Sedlmeier R, Meyer T, Hanemann CO, Stumm G, Ludolph AC (2005) Heterozygous R1101K mutation of the DCTN1 gene in a family with ALS and FTD. Ann Neurol 58:777–780CrossRef
31.
Zurück zum Zitat Wider C, Dachsel JC, Farrer MJ, Dickson DW, Tsuboi Y, Wszolek ZK (2010) Elucidating the genetics and pathology of Perry syndrome. J Neurol Sci 289:149–154CrossRef Wider C, Dachsel JC, Farrer MJ, Dickson DW, Tsuboi Y, Wszolek ZK (2010) Elucidating the genetics and pathology of Perry syndrome. J Neurol Sci 289:149–154CrossRef
32.
Zurück zum Zitat Stockmann M, Meyer-Ohlendorf M, Achberger K, Putz S, Demestre M, Yin H, Hendrich C, Linta L, Heinrich J, Brunner C, Proepper C, Kuh GF, Baumann B, Langer T, Schwalenstöcker B, Braunstein KE, von Arnim C, Schneuwly S, Meyer T, Wong PC, Boeckers TM, Ludolph AC, Liebau S (2013) The dynactin p150 subunit: cell biology studies of sequence changes found in ALS/MND and Parkinsonian syndromes. J Neural Transm 120:785–798CrossRef Stockmann M, Meyer-Ohlendorf M, Achberger K, Putz S, Demestre M, Yin H, Hendrich C, Linta L, Heinrich J, Brunner C, Proepper C, Kuh GF, Baumann B, Langer T, Schwalenstöcker B, Braunstein KE, von Arnim C, Schneuwly S, Meyer T, Wong PC, Boeckers TM, Ludolph AC, Liebau S (2013) The dynactin p150 subunit: cell biology studies of sequence changes found in ALS/MND and Parkinsonian syndromes. J Neural Transm 120:785–798CrossRef
33.
Zurück zum Zitat Holstege H, van der Lee SJ, Hulsman M, Wong TH, van Rooij JG, Weiss M, Louwersheimer E, Wolters FJ, Amin N, Uitterlinden AG, Hofman A, Ikram MA, van Swieten JC, Meijers-Heijboer H, van der Flier WM, Reinders MJ, van Duijn CM, Scheltens P (2017) Characterization of pathogenic SORL1 genetic variants for association with Alzheimer’s disease: a clinical interpretation strategy. Eur J Hum Genet 25:973–981CrossRef Holstege H, van der Lee SJ, Hulsman M, Wong TH, van Rooij JG, Weiss M, Louwersheimer E, Wolters FJ, Amin N, Uitterlinden AG, Hofman A, Ikram MA, van Swieten JC, Meijers-Heijboer H, van der Flier WM, Reinders MJ, van Duijn CM, Scheltens P (2017) Characterization of pathogenic SORL1 genetic variants for association with Alzheimer’s disease: a clinical interpretation strategy. Eur J Hum Genet 25:973–981CrossRef
34.
Zurück zum Zitat Verheijen J, Van den Bossche T, van der Zee J, Engelborghs S, Sanchez-Valle R, Lladó A, Graff C, Thonberg H, Pastor P, Ortega-Cubero S, Pastor MA, Benussi L, Ghidoni R, Binetti G, Clarimon J, Lleó A, Fortea J, de Mendonça A, Martins M, Grau-Rivera O, Gelpi E, Bettens K, Mateiu L, Dillen L, Cras P, De Deyn PP, Van Broeckhoven C, Sleegers K (2016) A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer’s disease. Acta Neuropathol 132:213–224CrossRef Verheijen J, Van den Bossche T, van der Zee J, Engelborghs S, Sanchez-Valle R, Lladó A, Graff C, Thonberg H, Pastor P, Ortega-Cubero S, Pastor MA, Benussi L, Ghidoni R, Binetti G, Clarimon J, Lleó A, Fortea J, de Mendonça A, Martins M, Grau-Rivera O, Gelpi E, Bettens K, Mateiu L, Dillen L, Cras P, De Deyn PP, Van Broeckhoven C, Sleegers K (2016) A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer’s disease. Acta Neuropathol 132:213–224CrossRef
35.
Zurück zum Zitat Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch NC, Soto-Ortolaza A, Lash J, Wider C, Wojtas A, DeJesus-Hernandez M, Adamson J, Kouri N, Sundal C, Shuster EA, Aasly J, MacKenzie J, Roeber S, Kretzschmar HA, Boeve BF, Knopman DS, Petersen RC, Cairns NJ, Ghetti B, Spina S, Garbern J, Tselis AC, Uitti R, Das P, Gerpen V, Jan A, Meschia JF, Levy S, Broderick DF, Graff-Radford N, Ross OA, Miller BB, Swerdlow RH, Dickson DW, Wszolek ZK (2012) Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 44:8CrossRef Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch NC, Soto-Ortolaza A, Lash J, Wider C, Wojtas A, DeJesus-Hernandez M, Adamson J, Kouri N, Sundal C, Shuster EA, Aasly J, MacKenzie J, Roeber S, Kretzschmar HA, Boeve BF, Knopman DS, Petersen RC, Cairns NJ, Ghetti B, Spina S, Garbern J, Tselis AC, Uitti R, Das P, Gerpen V, Jan A, Meschia JF, Levy S, Broderick DF, Graff-Radford N, Ross OA, Miller BB, Swerdlow RH, Dickson DW, Wszolek ZK (2012) Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 44:8CrossRef
36.
Zurück zum Zitat Sassi C, Nalls MA, Ridge PG, Gibbs JR, Lupton MK, Troakes C, Lunnon K, Al-Sarraj S, Brown KS, Medway C, Lord J, Turton J, Bras J, Blumenau S, Thielke M, Josties C, Freyer D, Dietrich A, Hammer M, Baier M, Dirnagl U, Morgan K, Powell JF, Kauwe JS, Cruchaga C, Goate AM, Singleton AB, Guerreiro R, Hodges A, Hardy J, Passmore P, Craig D, Johnston J, McGuinness B, Todd S, Heun R, Kölsch H, Kehoe PG, Vardy ERLC, Hooper NM, Mann DM, Pickering-Brown S, Brown K, Lowe J, Morgan K, Smith AD, Wilcock G, Warden D, Holmes C (2018) Mendelian adult-onset leukodystrophy genes in Alzheimer’s disease: critical influence of CSF1R and NOTCH3. Neurobiol Aging 66:179.e17–179.e29CrossRef Sassi C, Nalls MA, Ridge PG, Gibbs JR, Lupton MK, Troakes C, Lunnon K, Al-Sarraj S, Brown KS, Medway C, Lord J, Turton J, Bras J, Blumenau S, Thielke M, Josties C, Freyer D, Dietrich A, Hammer M, Baier M, Dirnagl U, Morgan K, Powell JF, Kauwe JS, Cruchaga C, Goate AM, Singleton AB, Guerreiro R, Hodges A, Hardy J, Passmore P, Craig D, Johnston J, McGuinness B, Todd S, Heun R, Kölsch H, Kehoe PG, Vardy ERLC, Hooper NM, Mann DM, Pickering-Brown S, Brown K, Lowe J, Morgan K, Smith AD, Wilcock G, Warden D, Holmes C (2018) Mendelian adult-onset leukodystrophy genes in Alzheimer’s disease: critical influence of CSF1R and NOTCH3. Neurobiol Aging 66:179.e17–179.e29CrossRef
37.
Zurück zum Zitat Guerreiro RJ, Lohmann E, Kinsella E, Brás JM, Luu N, Gurunlian N, Dursun B, Bilgic B, Santana I, Hanagasi H, Gurvit H, Gibbs JR, Oliveira C, Emre M, Singleton A (2012) Exome sequencing reveals an unexpected genetic cause of disease: NOTCH3 mutation in a Turkish family with Alzheimer’s disease. Neurobiol Aging 33:1008.e17–1008.e23CrossRef Guerreiro RJ, Lohmann E, Kinsella E, Brás JM, Luu N, Gurunlian N, Dursun B, Bilgic B, Santana I, Hanagasi H, Gurvit H, Gibbs JR, Oliveira C, Emre M, Singleton A (2012) Exome sequencing reveals an unexpected genetic cause of disease: NOTCH3 mutation in a Turkish family with Alzheimer’s disease. Neurobiol Aging 33:1008.e17–1008.e23CrossRef
38.
Zurück zum Zitat Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JSK, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert J-C, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St. George-Hyslop P, Singleton A, Hardy J (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127CrossRef Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JSK, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert J-C, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St. George-Hyslop P, Singleton A, Hardy J (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127CrossRef
39.
Zurück zum Zitat Belorgey D, Crowther DC, Mahadeva R, Lomas DA (2002) Mutant Neuroserpin (S49P) that causes familial encephalopathy with Neuroserpin inclusion bodies is a poor proteinase inhibitor and readily forms polymers in vitro. J Biol Chem 277:17367–17373CrossRef Belorgey D, Crowther DC, Mahadeva R, Lomas DA (2002) Mutant Neuroserpin (S49P) that causes familial encephalopathy with Neuroserpin inclusion bodies is a poor proteinase inhibitor and readily forms polymers in vitro. J Biol Chem 277:17367–17373CrossRef
40.
Zurück zum Zitat Roussel BD, Lomas DA, Crowther DC (2016) Progressive myoclonus epilepsy associated with neuroserpin inclusion bodies (neuroserpinosis). Epileptic Disord 18:103–110CrossRef Roussel BD, Lomas DA, Crowther DC (2016) Progressive myoclonus epilepsy associated with neuroserpin inclusion bodies (neuroserpinosis). Epileptic Disord 18:103–110CrossRef
Metadaten
Titel
Singular cases of Alzheimer’s disease disclose new and old genetic “acquaintances”
verfasst von
Cinzia Coppola
Dario Saracino
Mariano Oliva
Lorenzo Cipriano
Gianfranco Puoti
Sabina Pappatà
Giuseppe Di Fede
Marcella Catania
Martina Ricci
Sara Cimini
Giorgio Giaccone
Simona Bonavita
Giacomina Rossi
Publikationsdatum
02.10.2020
Verlag
Springer International Publishing
Erschienen in
Neurological Sciences / Ausgabe 5/2021
Print ISSN: 1590-1874
Elektronische ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-020-04774-y

Weitere Artikel der Ausgabe 5/2021

Neurological Sciences 5/2021 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.