Skip to main content
Erschienen in: European Journal of Clinical Microbiology & Infectious Diseases 8/2008

01.08.2008 | Article

siRNA silencing of angiotensin-converting enzyme 2 reduced severe acute respiratory syndrome-associated coronavirus replications in Vero E6 cells

verfasst von: C.-Y. Lu, H.-Y. Huang, T.-H. Yang, L.-Y. Chang, C.-Y. Lee, L.-M. Huang

Erschienen in: European Journal of Clinical Microbiology & Infectious Diseases | Ausgabe 8/2008

Einloggen, um Zugang zu erhalten

Abstract

The outbreak of severe acute respiratory syndrome (SARS) in 2002–2003 has had a significant impact worldwide. No effective prophylaxis or treatment for SARS is available up to now. Angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for SARS-associated coronavirus (SARS-CoV). By expressing a U6 promoter-driven small interfering RNA containing sequences homologous to part of ACE2 mRNA, we successfully silenced ACE2 expression in Vero E6 cells. By detecting negative strand SARS-CoV RNA and measuring RNA copy numbers of SARS-CoV by real-time reverse transcription polymerase chain reaction (RT-PCR), we demonstrated that SARS-CoV infection was reduced in the ACE2-silenced cell lines. These findings support the involvement of ACE2 in SARS-CoV infections and provide a basis for further studies on potential use of siRNA targeting ACE2 as a preventive or therapeutic strategy for SARS.
Literatur
1.
Zurück zum Zitat Groneberg DA, Poutanen SM, Low DE, Lode H, Welte T, Zabel P (2005) Treatment and vaccines for severe acute respiratory syndrome. Lancet Infect Dis 5:147–155PubMed Groneberg DA, Poutanen SM, Low DE, Lode H, Welte T, Zabel P (2005) Treatment and vaccines for severe acute respiratory syndrome. Lancet Infect Dis 5:147–155PubMed
2.
Zurück zum Zitat Hsueh PR, Hsiao CH, Yeh SH et al (2003) Microbiologic characteristics, serologic responses, and clinical manifestations in severe acute respiratory syndrome, Taiwan. Emerg Infect Dis 9:1163–1167PubMed Hsueh PR, Hsiao CH, Yeh SH et al (2003) Microbiologic characteristics, serologic responses, and clinical manifestations in severe acute respiratory syndrome, Taiwan. Emerg Infect Dis 9:1163–1167PubMed
3.
Zurück zum Zitat Gallagher TM, Buchmeier MJ (2001) Coronavirus spike proteins in viral entry and pathogenesis. Virology 279:371–374PubMedCrossRef Gallagher TM, Buchmeier MJ (2001) Coronavirus spike proteins in viral entry and pathogenesis. Virology 279:371–374PubMedCrossRef
4.
Zurück zum Zitat Li W, Moore MJ, Vasilieva N et al (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454PubMedCrossRef Li W, Moore MJ, Vasilieva N et al (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454PubMedCrossRef
5.
Zurück zum Zitat Donoghue M, Hsieh F, Baronas E et al (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87:E1–E9PubMed Donoghue M, Hsieh F, Baronas E et al (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87:E1–E9PubMed
6.
Zurück zum Zitat Harmer D, Gilbert M, Borman R, Clark KL (2002) Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett 532:107–110PubMedCrossRef Harmer D, Gilbert M, Borman R, Clark KL (2002) Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett 532:107–110PubMedCrossRef
7.
Zurück zum Zitat Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67:657–685PubMedCrossRef Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67:657–685PubMedCrossRef
8.
Zurück zum Zitat Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811PubMedCrossRef Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811PubMedCrossRef
9.
Zurück zum Zitat Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6:206–220PubMedCrossRef Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6:206–220PubMedCrossRef
10.
Zurück zum Zitat Ksiazek TG, Erdman D, Goldsmith CS et al (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966PubMedCrossRef Ksiazek TG, Erdman D, Goldsmith CS et al (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966PubMedCrossRef
11.
Zurück zum Zitat Drosten C, Gunther S, Preiser W et al (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976PubMedCrossRef Drosten C, Gunther S, Preiser W et al (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976PubMedCrossRef
12.
Zurück zum Zitat Li T, Zhang Y, Fu L et al (2005) siRNA targeting the leader sequence of SARS-CoV inhibits virus replication. Gene Ther 12:751–761PubMedCrossRef Li T, Zhang Y, Fu L et al (2005) siRNA targeting the leader sequence of SARS-CoV inhibits virus replication. Gene Ther 12:751–761PubMedCrossRef
13.
Zurück zum Zitat Qin ZL, Zhao P, Zhang XL et al (2004) Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells. Biochem Biophys Res Commun 324:1186–1193PubMedCrossRef Qin ZL, Zhao P, Zhang XL et al (2004) Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells. Biochem Biophys Res Commun 324:1186–1193PubMedCrossRef
14.
Zurück zum Zitat Zhang Y, Li T, Fu L et al (2004) Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference. FEBS Lett 560:141–146PubMedCrossRef Zhang Y, Li T, Fu L et al (2004) Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference. FEBS Lett 560:141–146PubMedCrossRef
15.
Zurück zum Zitat Shi Y, Yang DH, Xiong J, Jia J, Huang B, Jin YX (2005) Inhibition of genes expression of SARS coronavirus by synthetic small interfering RNAs. Cell Res 15:193–200PubMedCrossRef Shi Y, Yang DH, Xiong J, Jia J, Huang B, Jin YX (2005) Inhibition of genes expression of SARS coronavirus by synthetic small interfering RNAs. Cell Res 15:193–200PubMedCrossRef
16.
Zurück zum Zitat Qin ZL, Zhao P, Cao MM, Qi ZT (2007) siRNAs targeting terminal sequences of the SARS-associated coronavirus membrane gene inhibit M protein expression through degradation of M mRNA. J Virol Methods 145:146–154PubMedCrossRef Qin ZL, Zhao P, Cao MM, Qi ZT (2007) siRNAs targeting terminal sequences of the SARS-associated coronavirus membrane gene inhibit M protein expression through degradation of M mRNA. J Virol Methods 145:146–154PubMedCrossRef
17.
Zurück zum Zitat Wang Z, Ren L, Zhao X et al (2004) Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells. J Virol 78:7523–7527PubMedCrossRef Wang Z, Ren L, Zhao X et al (2004) Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells. J Virol 78:7523–7527PubMedCrossRef
18.
Zurück zum Zitat Ni B, Shi X, Li Y, Gao W, Wang X, Wu Y (2005) Inhibition of replication and infection of severe acute respiratory syndrome-associated coronavirus with plasmid-mediated interference RNA. Antivir Ther 10:527–533PubMed Ni B, Shi X, Li Y, Gao W, Wang X, Wu Y (2005) Inhibition of replication and infection of severe acute respiratory syndrome-associated coronavirus with plasmid-mediated interference RNA. Antivir Ther 10:527–533PubMed
19.
Zurück zum Zitat Akerstrom S, Mirazimi A, Tan YJ (2007) Inhibition of SARS-CoV replication cycle by small interference RNAs silencing specific SARS proteins, 7a/7b, 3a/3b and S. Antiviral Res 73:219–227PubMedCrossRef Akerstrom S, Mirazimi A, Tan YJ (2007) Inhibition of SARS-CoV replication cycle by small interference RNAs silencing specific SARS proteins, 7a/7b, 3a/3b and S. Antiviral Res 73:219–227PubMedCrossRef
20.
Zurück zum Zitat Wu CJ, Huang HW, Liu CY, Hong CF, Chan YL (2005) Inhibition of SARS-CoV replication by siRNA. Antiviral Res 65:45–48PubMedCrossRef Wu CJ, Huang HW, Liu CY, Hong CF, Chan YL (2005) Inhibition of SARS-CoV replication by siRNA. Antiviral Res 65:45–48PubMedCrossRef
21.
Zurück zum Zitat Li BJ, Tang Q, Cheng D et al (2005) Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med 11:944–951PubMed Li BJ, Tang Q, Cheng D et al (2005) Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med 11:944–951PubMed
22.
Zurück zum Zitat Wu CJ, Chan YL (2006) Antiviral applications of RNAi for coronavirus. Expert Opin Investig Drugs 15:89–97PubMedCrossRef Wu CJ, Chan YL (2006) Antiviral applications of RNAi for coronavirus. Expert Opin Investig Drugs 15:89–97PubMedCrossRef
23.
Zurück zum Zitat Chang Z, Babiuk LA, Hu J (2007) Therapeutic and prophylactic potential of small interfering RNAs against severe acute respiratory syndrome: progress to date. BioDrugs 21:9–15PubMedCrossRef Chang Z, Babiuk LA, Hu J (2007) Therapeutic and prophylactic potential of small interfering RNAs against severe acute respiratory syndrome: progress to date. BioDrugs 21:9–15PubMedCrossRef
24.
Zurück zum Zitat Anderson J, Akkina R (2005) CXCR4 and CCR5 shRNA transgenic CD34+ cell derived macrophages are functionally normal and resist HIV-1 infection. Retrovirology 2:53PubMedCrossRef Anderson J, Akkina R (2005) CXCR4 and CCR5 shRNA transgenic CD34+ cell derived macrophages are functionally normal and resist HIV-1 infection. Retrovirology 2:53PubMedCrossRef
25.
Zurück zum Zitat Novina CD, Murray MF, Dykxhoorn DM et al (2002) siRNA-directed inhibition of HIV-1 infection. Nat Med 8:681–686PubMed Novina CD, Murray MF, Dykxhoorn DM et al (2002) siRNA-directed inhibition of HIV-1 infection. Nat Med 8:681–686PubMed
26.
Zurück zum Zitat Hattermann K, Muller MA, Nitsche A, Wendt S, Donoso Mantke O, Niedrig M (2005) Susceptibility of different eukaryotic cell lines to SARS-coronavirus. Arch Virol 150:1023–1031PubMedCrossRef Hattermann K, Muller MA, Nitsche A, Wendt S, Donoso Mantke O, Niedrig M (2005) Susceptibility of different eukaryotic cell lines to SARS-coronavirus. Arch Virol 150:1023–1031PubMedCrossRef
27.
Zurück zum Zitat Hofmann H, Geier M, Marzi A et al (2004) Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem Biophys Res Commun 319:1216–1221PubMedCrossRef Hofmann H, Geier M, Marzi A et al (2004) Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem Biophys Res Commun 319:1216–1221PubMedCrossRef
28.
Zurück zum Zitat Nie Y, Wang P, Shi X et al (2004) Highly infectious SARS-CoV pseudotyped virus reveals the cell tropism and its correlation with receptor expression. Biochem Biophys Res Commun 321:994–1000PubMedCrossRef Nie Y, Wang P, Shi X et al (2004) Highly infectious SARS-CoV pseudotyped virus reveals the cell tropism and its correlation with receptor expression. Biochem Biophys Res Commun 321:994–1000PubMedCrossRef
29.
Zurück zum Zitat Mossel EC, Huang C, Narayanan K, Makino S, Tesh RB, Peters CJ (2005) Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication. J Virol 79:3846–3850PubMedCrossRef Mossel EC, Huang C, Narayanan K, Makino S, Tesh RB, Peters CJ (2005) Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication. J Virol 79:3846–3850PubMedCrossRef
30.
Zurück zum Zitat Jeffers SA, Tusell SM, Gillim-Ross L et al (2004) CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA 101:15748–15753PubMedCrossRef Jeffers SA, Tusell SM, Gillim-Ross L et al (2004) CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA 101:15748–15753PubMedCrossRef
31.
Zurück zum Zitat He ML, Zheng BJ, Chen Y et al (2006) Kinetics and synergistic effects of siRNAs targeting structural and replicase genes of SARS-associated coronavirus. FEBS Lett 580:2414–2420PubMedCrossRef He ML, Zheng BJ, Chen Y et al (2006) Kinetics and synergistic effects of siRNAs targeting structural and replicase genes of SARS-associated coronavirus. FEBS Lett 580:2414–2420PubMedCrossRef
32.
Zurück zum Zitat de Lang A, Osterhaus AD, Haagmans BL (2006) Interferon-gamma and interleukin-4 downregulate expression of the SARS coronavirus receptor ACE2 in Vero E6 cells. Virology 353:474–481PubMedCrossRef de Lang A, Osterhaus AD, Haagmans BL (2006) Interferon-gamma and interleukin-4 downregulate expression of the SARS coronavirus receptor ACE2 in Vero E6 cells. Virology 353:474–481PubMedCrossRef
33.
Zurück zum Zitat Goulter AB, Goddard MJ, Allen JC, Clark KL (2004) ACE2 gene expression is up-regulated in the human failing heart. BMC Med 2:19PubMedCrossRef Goulter AB, Goddard MJ, Allen JC, Clark KL (2004) ACE2 gene expression is up-regulated in the human failing heart. BMC Med 2:19PubMedCrossRef
34.
Zurück zum Zitat Crackower MA, Sarao R, Oudit GY et al (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417:822–828PubMedCrossRef Crackower MA, Sarao R, Oudit GY et al (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417:822–828PubMedCrossRef
Metadaten
Titel
siRNA silencing of angiotensin-converting enzyme 2 reduced severe acute respiratory syndrome-associated coronavirus replications in Vero E6 cells
verfasst von
C.-Y. Lu
H.-Y. Huang
T.-H. Yang
L.-Y. Chang
C.-Y. Lee
L.-M. Huang
Publikationsdatum
01.08.2008
Verlag
Springer-Verlag
Erschienen in
European Journal of Clinical Microbiology & Infectious Diseases / Ausgabe 8/2008
Print ISSN: 0934-9723
Elektronische ISSN: 1435-4373
DOI
https://doi.org/10.1007/s10096-008-0495-5

Weitere Artikel der Ausgabe 8/2008

European Journal of Clinical Microbiology & Infectious Diseases 8/2008 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.