Skip to main content
Erschienen in: BMC Cancer 1/2023

Open Access 01.12.2023 | Research

Six polymorphisms in the lncRNA H19 gene and the risk of cancer: a systematic review and meta-analysis

verfasst von: Maoquan Yang, Mingwei Zhang, Qiong Wang, Xiaojing Guo, Peizhen Geng, Jinhua Gu, Wansheng Ji, Li Zhang

Erschienen in: BMC Cancer | Ausgabe 1/2023

Abstract

Background

Numerous studies have demonstrated long noncoding RNA (lncRNA) play an important role in the occurrence and progression of cancer, and single nucleotide polymorphisms (SNPs) located in lncRNA are considered to affect cancer suspensibility. Herein, a meta-analysis was carried out to better assess the relationship of H19 polymorphisms and cancer susceptibility.

Methods

A literature search was conducted through using PubMed, EMBASE, and Web of Science databases to obtain relevant publications before Aug 23, 2022. The reference lists of the retrieved studies were also investigated to identify additional relevant articles. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to appraise the risk of various cancers.

Results

There appeared to be a remarkable correlation between the rs2107425 variation and decreased cancer risk among Caucasians. Nevertheless, the rs217727 polymorphism was significantly associated with an increased risk of lung cancer, hepatocellular carcinoma and oral squamous cell carcinoma. Also, we found a significant correlation between the rs2839698 polymorphism and increased cancer risk among Asians, gastric cancer, hepatocellular carcinoma, hospital-based control and larger simple size subgroups, respectively. Similarly, the rs3741219 mutation was notably related to cancer risk in higher quality score. As for rs3024270 polymorphism, the homozygous model was markedly linked to cancer risk in overall analysis and population-based controls. There was no significant association between the rs3741216 polymorphism and cancer risk.

Conclusion

H19 rs2839698 and rs3024270 were closely associated with overall cancer risk. H19 rs2107425 was related to lower cancer risk among Caucasians, while the rs2839698 was related to increased cancer risk among Asians. Our results supported that H19 SNPs were significantly correlated with cancer risk.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12885-023-11164-y.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Cancer has been the second biggest cause of mortality worldwide, seriously endangering public health and increasing economic burden on society [1]. In 2023, 1,918,030 new cancer cases and 609,360 cancer mortalities are estimated to occur in the United States. And prostate, lung, and colorectal cancers account for 48% of all male incident cases, while 51% of all female incident cases are diagnosed with breast, lung, and colorectal cancers [2]. Although the specific pathological mechanism of tumorigenesis still remains unclear, cancer is considered as a complex and multifactorial disease that results from the interaction of environmental and genetic risk factors, such as high-calorie diet, smoking, excessive drinking, obesity, hypertension, diabetes [35]. Recent advances in cancer diagnosis and treatment, including multifunctional nanomaterials combined with imaging probes and drugs, nanomedicine products and therapeutic vaccines are improving options for cancer patients [68]. On the other hand, preference heterogeneity between patients indicates that tradeoffs between survival benefits and long-term physical, emotional, cognitive, and functional side effects should be carefully considered in treatment decision-making [9]. At present, genome-wide association studies (GWAS) have identified a strong association of several common single nucleotide polymorphisms (SNPs) with cancer risk [10, 11]. Certain genetic SNPs were found to be related to cancer risk, including miR-143/145, CASP9, CASP10 and IL-1β [1214]. In addition, functional SNPs are present in lncRNA genes and influence gene expression and function through various means, and then result in the occurrence and progression of cancer [15].
Being widely transcribed in the human genome, long non-coding RNAs (lncRNAs) are defined as single stranded non-coding RNAs with a length of more than 200 base pairs and no open reading frames, thereby lacking of protein-coding function, although some of them may produce small functional peptides [16]. LncRNAs take part in numerous cellular processes by interacting with cellular molecules, such as DNAs, RNAs, or proteins [17]. At the levels of epigenetic, transcriptional, and post-transcriptional modifications, they can regulate gene expression via different mechanisms, including chromatin remodeling induction, alternative splicing, intranuclear transport, production of miRNA sponges, and transcriptional interference [1822]. Interestingly, lncRNAs paly crucial regulatory roles in a variety of physiological and pathological processes and cancer biology, including cell proliferation, differentiation, apoptosis, and carcinogenesis progression [2327]. It has been found that lncRNAs are dysregulated in various types of cancer, which contributes to tumorigenesis and development of tumors by affecting the expression of oncogenes or tumor suppressors. Generally, lncRNAs are thought to have prospective clinical implications and to be appraised as independent novel biomarkers for diagnosis and prognosis in human cancer treatment [2830].
As a critical maternally imprinted gene, lncRNA H19 was initially discovered in the 1990s [31]. The H19 gene, possessing five exons and four introns, encodes a 2.3-kb long, capped, spliced, and polyadenylated noncoding RNA, of which the transcript is highly conserved at a cluster with the insulin-like growth factor 2 (IGF2) locus on human chromosome 11p15.5, and plays an essential role in embryonic development and growth control [3235]. It has been reported that the aberrant expression of H19 was implicated in various types of cancer, including breast, lung, esophageal, gastric, pancreatic, colorectal, liver, bladder and cervical cancer. H19 acts as an oncogene or a suppressor gene, which may be attributed to the heterogeneity of different types of cancer [3638]. Previous researches have shown that H19 gene polymorphisms are markedly associated with malignancies, however, the results were controversial and inconsistent. Therefore, the aim of this meta-analysis was to accurately examine the correlation between H19 polymorphisms and cancer susceptibility.

Materials and methods

Literature search strategy

Eligible studies were retrieved from the PubMed, EMBASE, and Web of Science electronic databases up to Aug 23, 2022. Our search strategy included the main terms for: (H19 or long Noncoding RNA H19 or lncRNA H19) and (polymorphism or genotype or SNP) and (carcinoma or neoplasm or cancer or tumor). At the same time, we manually screened out the relevant potential articles in the references extracted.

Selection and exclusion criteria

Inclusion criteria are as follows: (1) case-control studies investigated the relationship between H19 polymorphisms and the risk of cancer; (2) the histopathological diagnosis of cancer patients was clearly defined; the control group did not have any history of cancer; (3) sufficient data on genotype distribution of H19 polymorphisms was applied to calculate the odds ratio (OR) and 95% confidence interval (CI).
The exclusion criteria were as follows: (1) abstract, case reports, comment, editorials and review; (2) duplication of the previous reports; (3) lack of the full text or main genotyping data; (4) non-case-control or cohort design studies.

Data extraction

Two investigators separately conducted literature screening, data extraction, literature quality evaluation, and any disagreements that could be resolved through discussion or a third analyst. The relevant information independently extracted by two investigators included the following information from each study: first author, year of publication, country of the population, ethnicity, source of controls, genotyping methods, cancer types, sample size and P value of (HWE).
The Newcastle-Ottawa scale (NOS) was adopted to assess the process in terms of queue selection, comparability of queues, and evaluation of results [39]. A study with a score of at least six was considered as a high-quality literature. Higher NOS scores showed higher literature quality.

Statistical analysis

All data analysis was conducted using Stata16.0 software (Stata Corp LP, TX, USA). Odds ratio (OR) and 95% confidence intervals (CIs) were used to evaluate the association between lncRNA H19 polymorphisms and various cancers. After that, the heterogeneity test was conducted. When P ≥ 0.05 or I2 < 50% was performed, it indicated that there was no obvious heterogeneity, and the fixed-effect pattern should be applied for a merger. Otherwise, the random-effect model was used. Results were considered significant statistically when the p-value less than 0.05. Subgroup analysis was implemented to determine the source of heterogeneity. Additionally, sensitivity analysis was performed to assess the impact of each individual study on overall results. The Begg’s rank correlation test and Egger’s linear regression test were used to verify the publication bias among these studies. If P < 0.05 indicates obvious publication bias.

False-positive report probability (FPRP) analysis

The probability of meaningful relationships between H19 SNPs and cancer risk can be determined through carrying out the FPRP analysis [40]. In order to investigate the remarkable associations observed in the meta-analysis, we adopted prior probabilities of 0.25, 0.1, 0.01, 0.001, and 0.0001 and computed the FPRP values as described previously. The association that reached the FPRP threshold of < 0.2 was considered significant.

Results

Process of study selection and description of qualified studies

As shown in Fig. 1, the initial 472 studies were retrieved by databases of PubMed (n = 229), Embase (n = 76), Web of science (n = 166). After eliminating 152 duplicate articles, 191 additional publications were excluded by screening the abstract and title. Among these, 147 articles were reviews, letters, conference abstracts, meta-analysis, notes, editorials and short surveys, and 44 articles focused on animal or vitro experiment. After careful review of the full texts, 88 articles were further excluded due to the following reasons: 30 articles were involved with other genes or other SNPs of H19, 45 studies were not relevant to cancer and 13 studies had no available data. Finally, the remaining 40 eligible articles were included in this analysis [4180].
Through literature search and selection, a total of 40 eligible articles embodying 95 studies were embodying in our study, which included 13 studies for rs2107425, 30 studies for rs217727, 26 studies for rs2839698, 10 studies for rs3741219, 12 studies for rs3024270, and 4 studies for rs3741216 polymorphisms. One article referred to two independent case-control studies, and thus the study was regarded as two separate estimates [44]. Among the included studies, 30 studies were from China, four studies from Iran, two studies form European countries, two studies from Egypt, two studies from the mixed countries, and one study from America. At the same time, 34 studies were conducted in the Asian descent, five studies were conducted in the Caucasian descent and two studies were conducted in the African descent. Thirteen of the studies focused on population-based controls and 27 on hospital-based controls. If the number of different cancer types is less than 1, the cancer type is classified into other cancer subgroup. The detailed characteristics of selected studies are illustrated in Table 1, such as cancer type, genotyping method, sample size, distributions of genotype frequency and Hardy-Weinberg equilibrium. The NOS score of all articles ranged from 6 to 8, implying that all included studies were of high quality.
Table 1
Characteristics of all studies included in the meta-analysis
First author
Year
Country
Ethnicity
Genotyping
Source of
Genotype distribution
HWE
NOS
Cancer
    
methods
control
Case
Control
P-value
 
types
13 Studies for H19 gene rs2107425 C/T polymorphism
      
CC
CT
TT
CC
CT
TT
   
Verhaegh
2008
Netherlands
Caucasian
PCR-RFLP
PB
92
65
20
89
96
19
0.3402
9
BLC
Song HL
2009
Mixed
Caucasian
TaqMan
PB
2619
2192
555
4029
3667
842
0.8565
9
OC
Quaye
2009
Mixed
Caucasian
TaqMan
PB
767
544
149
1118
1098
247
0.3449
6
OC
Barnholtz
2010
USA
African
Illumina
PB
161
390
186
170
339
149
0.4199
7
BC
Barnholtz
2010
USA
Caucasian
Illumina
PB
604
516
105
521
478
119
0.5489
7
BC
Butt S
2012
Sweden
Caucasian
Mass Array
PB
361
250
68
668
573
145
0.1816
8
BC
Gong WJ
2016
China
Asian
Sequenom
HB
181
235
63
79
96
28
0.8920
6
LC
Yin ZH
2018
China
Asian
Illumina
HB
161
266
129
140
185
70
0.5129
8
LC
Wu
2019
China
Asian
TaqMan
HB
134
185
40
422
560
208
0.3451
8
HCC
Huang MC
2019
China
Asian
PCR
PB
88
107
38
109
155
48
0.5590
8
CC
Yang PJ
2019
China
Asian
RT-PCR
HB
152
213
66
171
190
70
0.1636
7
UCC
Ghapanchi
2020
Iran
Asian
ARMS-PCR
PB
79
94
27
74
101
25
0.2911
8
OSCC
Khalil
2022
Egypt
African
QIAamp
HB
25
32
13
20
9
1
0.9919
6
CRC
30 Studies for H19 gene rs217727 G/A polymorphism
      
GG
GA
AA
GG
GA
AA
   
Verhaegh
2008
Netherlands
Caucasian
PCR-RFLP
PB
114
59
4
115
80
9
0.2880
9
BLC
Yang C
2015
Netherlands
Caucasian
TaqMan
HB
160
252
88
193
244
63
0.2957
8
GC
Li SW
2016
China
Asian
TaqMan
HB
480
514
153
456
570
177
0.9585
9
CRC
Hua QH
2016
China
Asian
TaqMan
HB
431
467
148
573
665
156
0.0740
7
BLC
Xia Z
2016
China
Asian
CRS-RFLP
PB
160
156
148
139
212
116
0.0521
9
BC
Jin TB
2016
China
Asian
Mass Array
PB
117
103
26
169
99
16
0.7651
9
CC
Guo QY
2017
China
Asian
Illumina
HB
101
181
80
252
348
137
0.3840
8
OSCC
Hassanzarei
2017
China
Asian
PCR-RFLP
HB
71
132
27
125
113
2
0.0000*
7
BC
He TD
2017
Iran
Asian
TaqMan
HB
79
102
12
195
165
23
0.1207
6
Osteosarcoma
Hu PH
2017
China
Asian
TaqMan
HB
133
200
83
128
196
92
0.3022
8
PC
Lin YX
2017
China
Asian
G0104K
HB
403
471
131
465
450
105
0.8007
8
BC
Li LL
2018
China
Asian
TaqMan
HB
210
250
95
246
305
67
0.0542
8
LC
Yin ZH
2018
China
Asian
Illumina
HB
204
264
88
165
172
58
0.2319
8
LC
Yuan ZY
2018
China
Asian
Mass Array
PB
186
194
51
488
423
73
0.1511
7
OSCC
Cui P
2018
China
Asian
TaqMan
PB
611
692
185
685
773
217
0.9628
7
BC
      
GG
GA
AA
GG
GA
AA
   
Abdollahzadeh
2018
China
Asian
RFLP-PCR
HB
116
29
5
86
14
0
0.4516
8
BC
Hu C
2019
Iran
Asian
TaqMan
HB
186
164
43
382
342
86
0.4696
7
Neuroblastoma
Li Z
2019
China
Asian
TaqMan
HB
51
140
9
84
90
26
0.8061
8
BLC
Mohammad
2019
China
Asian
ARMS-PCR
HB
79
30
2
64
54
12
0.9003
7
BC
Wang GZ
2019
Iran
Asian
TaqMan
HB
162
277
125
493
751
291
0.8676
6
LC
Wu
2019
China
Asian
TaqMan
HB
154
170
35
495
539
156
0.6265
8
HCC
Wei MR
2019
China
Asian
TaqMan
HB
88
72
65
63
44
93
0.0000*
7
GC
Huang MC
2019
China
Asian
PCR
PB
102
103
28
135
139
39
0.7289
8
CC
Yang PJ
2019
China
Asian
RT-PCR
HB
185
202
44
191
188
52
0.5845
7
UCC
Cao Q
2020
China
Asian
RT-PCR
HB
343
550
201
350
494
183
0.7042
8
RCC
Ghapanchi
2020
China
Asian
ARMS-PCR
PB
110
75
15
133
64
3
0.1259
8
OSCC
Deng YJ
2020
Iran
Asian
Mass Array
HB
254
278
73
557
591
152
0.8018
7
Glioma
Tan TB
2020
China
Asian
TaqMan
HB
126
68
19
438
410
109
0.3811
8
Hepatoblastoma
Li WY
2021
China
Asian
TaqMan
PB
177
130
48
486
469
113
0.9925
7
Wilms
Pei JS
2021
China
Asian
RT-PCR
PB
111
120
35
114
120
32
0.9610
7
Leukemia
26 Studies for H19 gene rs2839698 G/A polymorphism
      
GG
GA
AA
GG
GA
AA
   
Verhaegh
2008
Netherlands
Caucasian
PCR-RFLP
PB
54
74
49
52
109
43
0.3125
9
BLC
Yang C
2015
China
Asian
TaqMan
HB
250
195
55
284
178
38
0.1754
8
GC
Li SW
2016
China
Asian
TaqMan
HB
583
462
102
666
462
75
0.6665
9
CRC
Hua QH
2016
China
Asian
TaqMan
HB
552
418
79
729
565
103
0.6510
7
BLC
Gong WJ
2016
China
Asian
TaqMan
HB
237
220
39
99
80
27
0.0982
6
LC
Guo QY
2017
China
Asian
Illumina
HB
133
171
58
244
377
120
0.2021
8
ORC
Hassanzarei
2017
China
Asian
PCR-RFLP
HB
0
64
166
0
18
222
0.5461
7
BC
He TD
2017
Iran
Asian
TaqMan
HB
83
98
12
178
175
30
0.1462
6
Osteosarcoma
Lin YX
2017
China
Asian
G0104K
HB
452
440
113
484
432
104
0.5998
8
BC
Yang ML
2018
China
Asian
KASP
HB
215
211
40
245
185
32
0.7141
8
HCC
Cui P
2018
China
Asian
TaqMan
PB
801
568
122
875
673
129
0.9793
7
BC
Hu C
2019
China
Asian
TaqMan
HB
179
175
39
365
373
72
0.0896
7
Neuroblastoma
Mohammad
2019
China
Asian
ARMS-PCR
HB
15
57
39
53
55
22
0.2410
7
BC
Wang GZ
2019
China
Asian
TaqMan
HB
277
225
61
712
645
175
0.1173
6
LC
Wu
2019
China
Asian
TaqMan
HB
140
178
41
532
524
134
0.7718
8
HCC
Wei MR
2019
Iran
Asian
TaqMan
HB
90
68
67
88
78
34
0.0248*
7
GC
Huang MC
2019
China
Asian
PCR
PB
115
99
20
154
134
30
0.9132
8
CC
      
GG
GA
AA
GG
GA
AA
   
Yang PJ
2019
China
Asian
RT-PCR
HB
206
170
55
192
184
55
0.2973
7
UCC
Cao Q
2020
Iran
Asian
RT-PCR
HB
516
435
76
615
425
54
0.0732
8
RCC
Deng YJ
2020
China
Asian
PCR
HB
134
140
40
154
211
72
0.0581
7
Glioma
Yu BQ
2020
China
Asian
Mass Array
HB
311
240
54
675
504
121
0.9847
7
CRC
Zhang HB
2020
China
Asian
Mass Array
HB
70
93
38
92
88
16
0.4260
6
OC
Tan TB
2020
China
Asian
TaqMan
PB
102
78
33
439
424
94
0.5679
8
Hepatoblastoma
Li WY
2021
China
Asian
TaqMan
HB
174
127
54
488
480
100
0.2453
7
Wilms
Pei JS
2021
China
Asian
RT-PCR
PB
91
131
44
119
117
30
0.8781
7
Leukemia
Zhang JZ
2021
Iran
Asian
PCR-RFLP
HB
192
244
137
351
248
89
0.0000*
8
Lymphoma
10 Studies for H19 gene rs3741219 A/G polymorphism
      
AA
AG
GG
AA
AG
GG
   
Yang C
2015
China
Asian
TaqMan
HB
260
187
53
268
189
43
0.2446
8
GC
Hassanzarei
2017
Iran
Asian
PCR-RFLP
HB
63
126
42
109
102
29
0.4979
7
BC
Cui P
2018
China
Asian
TaqMan
PB
782
582
127
832
706
139
0.5291
7
BC
Abdollahzadeh
2018
Iran
Asian
RFLP-PCR
HB
119
24
7
80
17
3
0.0993
8
BC
Wu
2019
China
Asian
TaqMan
HB
129
182
48
517
536
137
0.9140
8
HCC
Yang PJ
2019
China
Asian
RT-PCR
HB
192
181
58
185
190
56
0.5121
7
UCC
Huang MC
2019
China
Asian
PCR
PB
112
100
21
152
130
32
0.5906
8
CC
Cao Q
2020
China
Asian
RT-PCR
HB
567
416
111
552
389
86
0.1400
8
RCC
Deng YJ
2020
China
Asian
Mass Array
HB
439
107
59
651
520
129
0.0956
7
Glioma
Zhang HB
2020
China
Asian
Mass Array
HB
190
1
20
186
0
9
0.0000*
6
OC
12 Studies for H19 gene rs3024270 C/G polymorphism
      
CC
CG
GG
CC
CG
GG
   
Hua QH
2016
China
Asian
TaqMan
HB
174
527
346
260
688
447
0.8686
7
BLC
Li SW
2016
China
Asian
TaqMan
HB
385
527
235
420
582
201
0.9794
9
CRC
Guo QY
2017
China
Asian
Illumina
HB
75
183
104
145
350
245
0.3213
8
OSCC
He TD
2017
China
Asian
TaqMan
HB
17
91
85
31
179
173
0.1014
6
Osteosarcoma
Yang ML
2018
China
Asian
KASP
HB
95
225
151
81
215
170
0.3609
8
HCC
Hu C
2019
China
Asian
TaqMan
HB
99
203
91
213
424
173
0.1591
7
Neuroblastoma
Li Z
2019
China
Asian
TaqMan
HB
16
101
83
22
97
81
0.3771
8
BLC
Huang MC
2019
China
Asian
PCR
PB
51
120
60
71
150
95
0.4225
8
CC
Wu
2019
China
Asian
TaqMan
HB
87
187
85
334
593
263
0.9945
8
HCC
Yang PJ
2019
China
Asian
RT-PCR
HB
114
210
107
120
208
103
0.4894
7
UCC
Tan TB
2020
China
Asian
TaqMan
PB
50
87
76
264
489
204
0.4216
8
Hepatoblastoma
      
CC
CG
GG
CC
CG
GG
   
Li WY
2021
China
Asian
TaqMan
HB
120
141
94
290
556
222
0.1376
7
Wilms
4 Studies for H19 gene rs3741216 A/T polymorphism
      
AA
AT
TT
AA
AT
TT
   
Yang C
2015
China
Asian
TaqMan
HB
380
102
18
379
109
12
0.2210
8
GC
Hassanzarei
2017
Iran
Asian
PCR-RFLP
HB
0
26
204
0
65
26
0.0150*
7
BC
Wei MR
2019
China
Asian
TaqMan
HB
79
91
55
70
78
52
0.0025*
7
GC
Cao Q
2020
China
Asian
RT-PCR
HB
791
255
48
718
264
35
0.0834
8
RCC
BC: breast cancer; LC: lung cancer; BLC: bladder cancer; GC: gastric cancer; CRC: colorectal cancer; PC: pancreatic cancer; OC: ovarian cancer; CC: cervical cancer; OSCC: oral squamous cell carcinoma; UCC: urothelial cell carcinoma; RCC: renal cell carcinoma. *P < 0.05

Correlation between rs2107425 C/T polymorphism and cancer risk

Thirteen relevant studies with 11,972 cancer patients and 17,128 controls were examined for the association between the rs2107425 polymorphism and cancer risk. Compared with the wild-type CC homozygote, the genotypes of rs2107425 were not linked to cancer risk in overall analyses (T vs. C: OR = 0.98, 95%CI = 0.91–1.06, P = 0.595; TT vs. CC: OR = 1.01, 95%CI = 0.88–1.17, P = 0.846; TC vs. CC: OR = 0.96, 95%CI = 0.85–1.07, P = 0.438). Similarly, no relationships were detected in the dominant and recessive models (TT + TC vs. CC: OR = 0.97, 95%CI = 0.87–1.08, P = 0.543; TT vs. TC + CC: OR = 0.98, 95%CI = 091-1.06, P = 0.651; Table 2; Fig. 2). Stratification analysis by ethnicity showed the rs2107425 variation significantly reduced cancer risk among Caucasians (T vs. C: OR = 0.91, 95% CI = 0.85 − 0.7, P = 0.006; CT vs. CC: OR = 0.83, 95% CI = 0.73–0.94, P = 0.003; OR = 0.85, 95% CI = 0.76–0.94, P = 0.003), which might be a protective factor in the Caucasian population. Also, we found a significant association of rs2107425 variant with cancer risk under the heterozygote models in hospital-based subgroup (CT vs. CC: OR = 1.18, 95% CI = 1.00-1.39, P = 0.049) and population-based source of controls (CT vs. CC: OR = 0.87, 95% CI = 0.78–0.97, P = 0.016, Table 2). There was significant association between the rs2107425 variant and elevated risk of CRC (T vs. C: OR = 3.15, 95%CI = 1.51–6.57, P = 0.002; TT vs. CC: OR = 10.40, 95%CI = 0.1.25–86.4, P = 0.030; TC vs. CC: OR = 2.84, 95%CI = 1.11–7.32, P = 0.030; TT + TC vs. CC: OR = 3.60, 95%CI = 1.46–8.88, P = 0.005). The heterozygote and recessive models of rs2107425 notably decreased the risk of hepatocellular carcinoma (TT vs. CC: OR = 0.61, 95%CI = 0.41–0.90, P = 0.012; TT vs. CC + TC: OR = 0.59, 95%CI = 0.41–0.85, P = 0.004, Table 2). Heterogeneity test results suggested that heterogeneity existed in all five genetic models of overall analyses. Heterogeneity was not observed under the allelic, homozygote, and recessive models in Caucasians subgroup.
Table 2
Summary ORs and 95% CIs of H19 SNPs and risk of cancer
Locus
No.
Allele
Homozygote
Heterozygote
Dominant
Recessive
  
OR (95%CI) P
I2 (%)
OR (95%CI) P
I2 (%)
OR (95%CI) P
I2 (%)
OR (95%CI) P
I2 (%)
OR (95%CI) P
I2 (%)
rs2107425C/T
Total
13
0.98 (0.91, 1.06) 0.595
68.0
1.01 (0.88, 1.17) 0.846
53.9
0.96 (0.85, 1.07) 0.438
66.8
0.97 (0.87, 1.08) 0.543
69.2
0.98 (0.91, 1.06) 0.651
43.2
Ethnicity
           
Caucasian
5
0.91 (0.85, 0.97) 0.006*
46.2
0.94 (0.85, 1.04) 0.226
6.4
0.83 (0.73, 0.94) 0.003*
67.0
0.85 (0.76, 0.94) 0.003*
62.3
1.01 (0.93, 1.11) 0.813
5.1
Asian
6
1.02 (0.89, 1.16) 0.799
54.9
1.00 (0.75, 1.35) 0.978
60.6
1.08 (0.95, 1.23) 0.249
0.0
1.06 (0.92, 1.22) 0.453
24.6
0.96 (0.82, 1.13) 0.649
60.1
African
2
1.77 (0.66, 4.76) 0.255
85.8
2.82 (0.39, 20.15) 0.302
72.5
1.64 (0.74, 3.63) 0.224
65.5
1.93 (0.69, 5.38) 0.208
79.7
1.21 (0.95, 1.54) 0.132
62.8
Source of control
           
PB
8
0.94 (0.87, 1.00) 0.067
50.1
0.97 (0.87, 1.08) 0.529
16.8
0.87 (0.78, 0.97) 0.016*
61.6
0.89 (0.80, 0.98) 0.024
60.5
1.03 (0.95, 1.12) 0.519
0.0
HB
5
1.13 (0.90, 1.52) 0.313
79.3
1.11 (0.69, 1.77) 0.664
76.8
1.18 (1.00, 1.39) 0.049*
18.4
1.20 (0.94, 1.53) 0.143
63.3
0.96 (0.80, 1.15) 0.475
74.1
NOS scores
           
N1
6
1.02 (0.88, 1.20) 0.761
78.9
1.00 (0.79, 1.28) 0.977
59.6
1.06 (0.83, 1.35) 0.658
81.3
1.07 (0.84, 1.35) 0.593
82.3
1.02 (0.90, 1.16) 0.778
7.3
N2
7
0.96 (0.87, 1.06) 0.414
55.6
0.98 (0.80, 1.20) 0.839
55.4
0.93 (0.82, 1.03) 0.129
36.1
0.93 (0.83, 1.04) 0.197
43.0
0.97 (0.89, 1.07) 0.568
62.3
Sample size
           
S1
7
1.08 (0.92, 1.26) 0.344
60.1
1.17 (0.91, 1.49) 0.221
28.6
1.04 (0.84, 1.31) 0.708
56.1
1.08 (0.86, 1.36) 0.492
62.4
1.15 (0.96, 1.37) 0.215
3.3
S2
6
0.93 (0.85, 1.06) 0.061
67.5
0.91 (0.76, 1.07) 0.249
63.7
0.91 (0.80, 1.03) 0.115
71.8
0.90 (0.80, 1.01) 0.070
69.7
0.99 (0.91, 1.08) 0.830
62.2
Cancer type
           
OC
2
0.92 (0.80, 1.05) 0.196
82.5
0.98 (0.86, 1.11) 0.698
18.4
0.82 (0.65, 1.04) 0.102
89.2
0.85 (0.68, 1.05) 0.127
88.6
1.05 (0.95, 1.16) 0.371
0.0
BC
3
0.96 (0.82, 1.13) 0.624
74.6
0.95 (0.69, 1.32) 0.774
71.6
0.96 (0.78, 1.17) 0.661
66.9
0.96 (0.77, 1.19) 0.683
73.0
0.97 (0.83, 1.13) 0.681
51.3
LC
2
1.15 (0.92, 1.44) 0.226
56.0
1.30 (0.81, 2.09) 0.280
65.1
1.17 (0.94, 1.47) 0.168
0.0
1.21 (0.95, 1.54) 0.119
21.0
1.24 (0.95, 1.63) 0.114
43.7
rs217727G/A
Total
30
1.06 (0.99, 1.14) 0.097
77.6
1.12 (0.97, 1.30) 0.109
70.2
1.07 (0.97, 1.17) 0.182
70.2
1.08 (0.98, 1.19) 0.109
74.4
1.09 (0.96, 1.24) 0.201
70.1
Ethnicity
           
Caucasian
1
0.74 (0.52, 1.05) 0.089
 
0.49 (0.13, 1.50) 0.192
 
0.74 (0.49, 1.14) 0.172
 
0.71 (0.47, 1.08) 0.111
 
0.50 (0.15, 1.66) 0.257
 
Asian
29
1.07 (1.00, 1.15) 0.060
77.6
1.14 (0.98, 1.31) 0.082
70.6
1.08 (0.98, 1.18) 0.130
70.5
1.09 (0.99, 1.20) 0.070
74.5
1.10 (0.96, 1.025) 0.165
70.6
Source of control
           
PB
9
1.06 (0.91, 1.24) 0.460
79.2
1.18 (0.87, 1.06) 0.286
70.6
0.96 (0.79, 1.17) 0.689
73.9
1.01 (0.83, 1.24) 0.903
77.4
1.21 (0.94, 1.57) 0.143
63.9.
HB
21
1.07 (0.98, 1.16) 0.144
77.9
1.11 (0.94, 1.31) 0.236
71.5
1.11 (1.00, 1.23) 0.055
68.7
1.11 (1.00, 1.24) 0.063
73.7
1.05 (0.90, 1.23) 0.567
73.0
NOS scores
           
N1
11
1.03 (0.89, 1.19) 0.068
84.7
1.12 (0.85, 1.47) 0.441
77.9
1.05 (0.90, 1.22) 0.558
70.7
1.04 (0.88, 1.23) 0.063
78.8
1.10 (0.94, 1.27) 0.529
78.1
N2
19
1.08 (0.99, 1.17) 0.717
71.4
1.13 (0.96, 1.34) 0.145
65.4
1.08 (0.95, 1.22) 0.229
71.3
1.10 (0.98, 1.24) 0.103
72.5
1.09 (0.84, 1.41) 0.240
64.7
Sample size
           
S1
14
1.08 (0.90, 1.29) 0.432
84.3
1.11 (0.76, 1.60) 0.595
76.5
1.15 (0.92, 1.44) 0.215
77.9
1.14 (0.91, 1.42) 0.272
81.1
1.03 (0.68, 1.40) 0.873
79.2
S2
16
1.06 (0.99, 1.13) 0.094
67.8
1.17 (1.02, 1.33) 0.022*
61.9
1.02 (0.94, 1.11) 0.636
57.7
1.05 (0.96, 1.15) 0.290
65.1
1.14 (1.03, 1.28) 0.015*
52.0
Cancer type
           
BLC
3
1.01 (0.82, 1.25) 0.923
56.8
0.80 (0.40, 1.62) 0.538
64
1.20 (0.64, 2.23) 0.574
90.1
1.13 (0.68, 1.88) 0.629
85.9
0.63 (0.22, 1.80) 0.390
85.1
GC
2
0.88 (0.42, 1.84) 0.738
95.1
0.92 (0.28, 3.04) 0.896
93.8
1.23 (0.97, 1.56) 0.093
0.0
1.00 (0.54, 1.84) 0.993
84.7
0.84 (0.27, 2.59) 0.756
94.5
BC
6
1.13 (0.87, 1.46) 0.351
89.5
1.33 (0.79, 2.25) 0.284
83.8
1.02 (0.74, 1.40) 0.908
85.5
1.09 (0.79, 1.52) 0.594
88.1
1.33 (0.85, 2.08) 0.211
80.8
CC
2
1.22 (0.78, 1.90) 0.379
82.4
1.46 (0.60, 3.55) 0.399
76.3
1.21 (0.80, 1.84) 0.364
62.5
1.26 (0.76, 2.07) 0.371
76.3
1.34 (0.66, 2.72) 0.416
65.8
OSCC
3
1.31 (1.14, 1.50) 0.000*
24.8
1.89 (1.18, 3.00) 0.008*
57.7
1.27 (1.07, 1.50) 0.006*
0.0
1.36 (1.16, 1.60) 0.000*
0.0
1.67 (1.04, 2.68) 0.035*
64.6
Cancer type
           
LC
3
1.16 (1.06, 1.27) 0.002*
0.0
1.38 (1.14, 1.67) 0.001*
0.0
1.09 (0.95, 1.26) 0.219
0.0
1.16 (1.01, 1.33) 0.031
0.0
1.31 (1.03, 1.66) 0.028*
44.7
HCC
2
0.79 (0.60, 1.05) 0.100
71.7
0.68 (0.49, 0.93) 0.017*
0.0
0.77 (0.44, 1.34) 0.359
86.3
0.75 (0.47, 1.21) 0.237
83.8
0.73 (0.54, 1.00) 0.048*
0.0
rs2839698G/A
Total
26
1.10 (1.01, 1.20) 0.039*
82.8
1.29 (1.09, 1.52) 0.003*
74.7
1.06 (0.97,1.17) 0.215
68.5
1.11 (1.01, 1.23) 0.036*
75.4
1.18 (1.01, 1.39) 0.042*
76.6
Ethnicity
           
Caucasian
1
1.03 (0.78, 1.37) 0.827
 
1.10 (0.63, 1.92) 0.745
 
0.65 (0.40, 2.06) 0.084
 
0.78 (0.50, 1.22) 0.276
 
1.43 (0.90, 2.30) 0.134
 
Asian
25
1.10 (1.00, 1.21) 0.041*
83.5
1.30 (1.09, 1.54) 0.003*
75.7
1.07 (0.98, 1.18) 0.138
68.2
1.12 (1.02, 1.24) 0.024*
75.9
1.17 (0.99, 1.39) 0.060
74.4
Source of control
           
PB
5
1.06 (0.94, 1.21) 0.344
45.6
1.22 (0.95, 1.57) 0.122
34.4
0.94 (0.76,1.16) 0.560
55.2
1.00 (1.025,1.21) 0.983
51.3
1.28 (1.02, 1.59) 0.032*
27.9
HB
21
1.10 (0.99, 1.23) 0.072
85.3
1.30 (1.07, 1.59) 0.009*
78.5
1.09 (0.98,1.21) 0.106
69.5
1.14 (1.02, 1.28) 0.025*
77.6
1.16 (0.95, 1.04) 0.142
80.2
NOS scores
           
N1
14
1.01 (0.90, 1.15) 0.830
76.6
1.14 (0.91, 1.43) 0.251
73.2
0.99 (0.88,1.11) 0.843
60.3
1.02 (0.91, 1.16) 0.704
66.4
1.02 (0.80, 1.31) 0.881
81.1
N2
12
1.20 (1.08, 1.34) 0.001*
82.0
1.46 (1.17, 1.81) 0.001*
69.4
1.14 (1.00, 1.29) 0.052
65.7
1.20 (1.05, 1.38) 0.010*
73.4
1.39 (1.17, 1.65) 0.000*
54.8
Sample size
           
S1
10
1.07 (0.87, 1.32) 0.510
86.5
1.33 (0.92, 1.92) 0.134
79.6
1.11 (0.91,1.35) 0.317
67.9
1.17 (0.95,1.45) 0.138
75.3
1.08 (0.74, 1.57) 0.692
84.5
S2
14
1.11 (1.01, 1.21) 0.030*
79.7
1.28 (1.07, 1.53) 0.006*
71.6
1.04 (0.94, 1.16) 0.425
91.0
1.09 (0.97, 1.22) 0.137
77.2
1.25 (1.09, 1.45) 0.002*
60.7
Cancer type
           
BLC
2
1.00 (0.89, 1.12) 0.992
0.0
1.03 (0.79, 1.36) 0.819
0.0
0.85 (0.59, 1.24) 0.405
58.0
0.96 (0.82, 1.13) 0.570
0.0
1.15 (0.84, 1.58) 0.379
28.0
GC
2
1.33 (1.13, 1.56) 0.000*
0.0
1.76 (1.26, 2.46) 0.001*
0.0
1.07 (0.75, 1.54) 0.699
52.3
1.27 (1.03, 1.57) 0.024*
0.0
1.74 (1.27, 2.40) 0.001*
0.0
HCC
3
1.15 (1.03, 1.29) 0.014*
0.0
1.33 (1.03, 1.72) 0.027*
0.0
1.12 (0.83, 1.51) 0.299
73.1
1.17 (0.95, 1.44) 0.136
45.4
1.27 (0.94, 1.73) 0.117
34.5
CRC
2
0.98 (0.65, 1.48) 0.927
90.9
1.01 (0.42, 2.42) 0.981
90.0
0.96 (0.64, 1.42) 0.817
79.6
0.95 (0.59, 1.55) 0.842
87.8
1.06 (0.54, 2.07) 0.869
85.0
LC
2
0.92 (0.81, 1.04) 0.178
0.0
0.78 (0.54, 1.13) 0.192
33.4
0.97 (0.78, 1.23) 0.822
31.0
0.93 (0.78, 1.09) 0.359
0.0
0.76 (0.47, 2.25) 0.283
63.4
BC
4
0.96 (0.63, 1.45) 0.839
94.3
1.72 (0.88, 3.34) 0.111
89.3
1.28 (0.86, 1.90) 0.220
87.3
1.40 (0.91, 1.11) 0.132
90.7
0.91 (0.45, 1.83) 0.789
92.7
rs3741219 A/G
Total
10
1.07 (0.88, 1.30) 0.507
89.4
1.18 (0.94, 1.48) 0.154
61.8
0.97 (0.71, 1.33) 0.842
91.8
1.56 (0.79, 1.41) 0.709
91.8
1.14 (1.01, 1.29) 0.037*
0.0
Ethnicity
           
Asian
10
1.07 (0.88, 1.30) 0.507
89.4
1.18 (0.94, 1.48) 0.154
61.8
0.97 (0.71, 1.33) 0.842
91.8
1.56 (0.79, 1.41) 0.709
91.8
1.14 (1.01, 1.29) 0.037*
0.0
Source of control
           
PB
2
0.94 (0.85, 1.04) 0.253
0.0
0.96 (0.76, 1.22) 0.730
0.0
0.90 (0.79, 1.03) 0.126
0.0
0.91 (0.80, 1.04) 0.149
0.0
1.00 (0.80, 1.26) 0.978
0.0
HB
8
1.11 (0.86, 1.45) 0.424
91.6
1.28 (0.96, 1.71) 0.100
67.6
0.98 (0.63, 1.54) 0.941
93.6
1.10 (0.74, 1.64) 0.625
93.6
1.20 (1.04, 1.39) 0.014
0.0
NOS scores
           
N1
5
1.07 (0.74, 1.55) 0.726
94.2
1.19 (0.79, 1.79) 0.417
78.9
0.88 (0.46, 1.67) 0.691
95.4
1.04 (0.60, 1.79) 0.898
95.4
1.10 (0.94, 1.30) 0.235
0.0
N2
4
1.11 (1.02, 1.21) 0.015*
20.0
1.26 (1.03, 1.53) 0.022*
0.0
1.10 (0.97, 1.24) 0.131
0.0
1.12 (1.00, 1.26) 0.042*
0.0
1.19 (0.98, 1.43) 0.038*
29.3
Sample size
           
S1
5
0.94 (0.73, 1.22) 0.119
76.2
1.44 (0.90, 2.29) 0.126
59.1
1.20 (0.82, 1.77) 0.348
67.4
1.32 (0.89, 1.95) 0.164
76.0
1.23 (0.96, 1.59) 0.107
21.8
S2
5
1.26 (0.94, 1.69) 0.642
93.3
1.07 (0.83, 1.37) 0.618
64.7
0.83 (0.53, 1.29) 0.399
95.5
0.88 (0.59, 1.31) 0.527
95.2
1.11 (0.97, 1.28) 0.137
0.0
Cancer type
           
BC
3
1.20 (0.78, 1.85) 0.405
87.2
1.51 (0.72, 3.18) 0.281
78.0
1.21 (0.65, 2.28) 0.546
87.8
1.27 (0.67, 2.40) 0.462
89.5
1.14 (0.91, 1.42) 0.258
23.9
rs3024270 C/G
Total
12
1.04 (0.97, 1.12) 0.261
45.0
1.12 (1.01, 1.24) 0.025*
40.6
1.00 (0.91, 1.09) 0.926
34.1
1.03 (0.95, 1.12) 0.421
19.9
1.09 (0.95, 1.25) 0.228
65.3
Ethnicity
           
Asian
12
1.04 (0.97, 1.12) 0.261
45.0
1.12 (1.01, 1.24) 0.025*
40.6
1.00 (0.91, 1.09) 0.926
34.1
1.03 (0.95, 1.12) 0.421
19.9
1.09 (0.95, 1.25) 0.228
65.3
Source of control
           
PB
2
1.16 (0.75, 1.80) 0.494
86.5
1.42 (1.05, 1.93) 0.025*
84.2
1.01 (0.76, 1.35) 0.936
0.0
1.15 (0.88, 1.49) 0.309
0.0
1.30 (0.53, 3.21) 0.568
92.4
HB
10
1.03 (0.98, 1.09) 0.289
6.9
1.09 (0.98, 1.21) 0.112
7.2
0.99 (0.91, 1.09) 0.902
44.9
1.02 (0.94, 1.12) 0.610
28.4
1.06 (0.95, 1.17) 0.320
35.9
NOS scores
           
N1
5
1.04 (0.96, 1.15) 0.336
0.0
1.10 (0.95, 1.27) 0.220
0.0
0.96 (0.84, 1.09) 0.502
68.6
1.00 (0.88, 1.13) 0.968
49.0
1.10 (0.98, 1.23) 0.117
0.0
N2
7
1.05 (0.93, 1.19) 0.457
68.2
1.14 (1.00, 1.31) 0.056
65.9
1.03 (0.92, 1.15) 0.644
0.0
1.06 (0.95, 1.19) 0.271
0.0
1.08 (0.85, 1.37) 0.550
78.6
Sample size
           
S1
1
0.93 (0.73, 1.18) 0.545
 
0.88 (0.54, 1.43) 0.602
 
1.11 (0.72, 1.72) 0.625
 
1.02 (0.68, 1.54) 0.914
 
0.82 (0.56, 1.19) 0.295
 
S2
11
1.05 (0.98, 1.13) 0.205
47.4
1.13 (1.02, 1.26) 0.017
42.9
0.99 (0.91, 1.08) 0.845
39.1
1.04 (0.95, 1.13) 0.424
27.1
1.11 (0.96, 1.28) 0.146
65.8
Cancer type
           
BLC
2
1.07 (0.96, 1.19) 0.230
0.0
1.18 (0.94, 1.48) 0.151
0.0
1.17 (0.95, 1.45) 0.151
0.0
1.17 (0.96, 1.43) 0.124
0.0
1.05 (0.89, 1.22) 0.574
0.0
HCC
3
1.11 (0.84, 1.47) 0.452
84.9
1.20 (0.97, 1.48) 0.089
83.1
1.04 (0.86, 1.26) 0.711
44.7
1.10 (0.92, 1.31) 0.313
47.0
1.22 (0.73, 2.03) 0.448
89.2
rs3741216 A/T
Total
4
1.66 (0.87, 3.18) 0.127
95.9
1.16 (0.85, 1.56) 0.348
0.0
0.91 (0.78, 1.06) 0.236
0.0
0.95 (0.82, 1.10) 0.471
0.0
2.42 (0.66, 8.83) 0.181
95.7
Ethnicity
           
Asian
4
1.66 (0.87, 3.18) 0.127
95.9
1.16 (0.85, 1.56) 0.348
0.0
0.91 (0.78, 1.06) 0.236
0.0
0.95 (0.82, 1.10) 0.471
0.0
2.42 (0.66, 8.83) 0.181
95.7
Source of control
           
HB
4
1.66 (0.87, 3.18) 0.127
95.9
0.87 (0.64, 1.17) 0.348
0.0
0.91 (0.78, 1.06) 0.236
0.0
0.95 (0.82, 1.10) 0.471
0.0
2.42 (0.66, 8.83) 0.181
95.7
NOS scores
           
N1
2
2.96 (0.32, 27.18) 0.336
 
1.07 (0.65, 1.75) 0.798
 
0.97 (0.62, 1.50) 0.883
 
1.00 (0.67, 1.48) 0.981
 
4.22 (0.21, 84.51) 0.347
98.4
N2
2
0.99 (0.87, 1.14) 0.916
0.0
0.77 (0.52, 1.12) 0.170
0.0
1.12 (0.95, 1.32) 0.186
0.0
0.94 (0.80, 1.10) 0.444
0.0
1.35 (0.92, 1.97) 0.127
0.0
Sample size
           
S1
2
2.96 (0.32, 27.18) 0.336
 
1.07 (0.65, 1.75) 0.798
 
0.97 (0.62, 1.50) 0.883
 
1.00 (0.67, 1.48) 0.981
 
4.22 (0.21, 84.51) 0.347
98.4
S2
2
0.99 (0.87, 1.14) 0.916
0.0
0.77 (0.52, 1.12) 0.170
0.0
1.12 (0.95, 1.32) 0.186
0.0
0.94 (0.80, 1.10) 0.444
0.0
1.35 (0.92, 1.97) 0.127
0.0
Cancer type
           
GC
2
1.01 (0.84, 1.21) 0.944
0.0
1.09 (0.72, 1.64) 0.697
4.7
0.97 (0.75, 1.24) 0.779
0.0
0.99 (0.78, 1.25) 0.941
0.0
1.08 (0.65, 1.70) 0.748
22.9
BC: breast cancer; LC: lung cancer; BLC: bladder cancer; GC: gastric cancer; CRC: colorectal cancer; PC: pancreatic cancer; OC: ovarian cancer; CC: cervical cancer; OSCC: oral squamous cell carcinoma; UCC: urothelial cell carcinoma; RCC: renal cell carcinoma. *P < 0.05

Correlation between rs217727 G/A polymorphism and cancer risk

Intriguingly, we obtained thirty studies about the relationship between rs217727 polymorphism and cancer risk with 14,215 patients and 20,247 controls. Overall, the rs217727 polymorphism was not significantly correlated with cancer risk (Table 2; Fig. 3). The allelic, homozygote, dominant and recessive models of rs217727 notably increased the risk of lung cancer (A vs. G: OR = 1.16, 95% CI = 1.06–1.27, P = 0.002; AA vs. GG: OR = 1.38, 95% CI = 1.14–1.67, P = 0.001; AA + GA vs. GG: OR = 1.16, 95% CI = 1.01–1.33, P = 0.031; AA vs. GG + GA: OR = 1.31, 95% CI = 1,03-1.66, P = 0.028) and oral squamous cell carcinoma (A vs. G: OR = 1.31, 95% CI = 1.14–1.50, P = 0.000; AA vs. GG: OR = 1,89, 95% CI = 1.18-3.00, P = 0.008; GA vs. GG: OR = 1.27, 95% CI = 1.07–1.50, P = 0.006; AA + GA vs. GG: OR = 1.36, 95% CI = 1.16–1.60, P = 0.000; AA vs. GG + GA: OR = 1.67, 95% CI = 1.04–2.68, P = 0.035, Table 2). Additionally, the rs217727 mutation significantly decreased the risk of hepatocellular carcinoma (GA vs. GG: OR = 0.68, 95% CI = 0.49–0.93, P = 0.017; AA vs. GG + GA: OR = 0.73, 95% CI = 0.54-1.00, P = 0.048, Table 2), suggesting that the rs217727 mutation may be an important protective factor for liver cancer, but a key risk factor for lung cancer and oral squamous cell carcinoma. The pooled results indicated that the homozygote and recessive models of rs217727 have a positive association with cancer risk in larger sample size (AA vs. GG: OR = 1.17, 95% CI = 1.02–1.33, P = 0.022; AA vs. GG + GA: OR = 1.14, 95% CI = 1.03–1.28, P = 0.015, Table 2). Heterogeneity was shown to exist in all five gene models, and results demonstrated that heterogeneity significantly decreased or disappeared in lung cancer and oral squamous cell carcinoma.

Correlation between rs2839698 G/A polymorphism and cancer risk

A total of twenty-six studies with 12,413 cancer patients and 18,650 controls were included to examine the association between H19 SNP rs2839698 and cancer risk. The rs2839698 polymorphism remarkably enhanced the risk of cancer in the allelic, homozygote, dominant and recessive models (A vs. G: OR = 1.10, 95% CI = 1.01–1.20, P = 0.039; AA vs. GG: OR = 1.29, 95% CI = 1.09–1.52, P = 0.003; AA + GA vs. GG: OR = 1.18, 95% CI = 1.01–1.23, P = 0.036; AA vs. GG + GA: OR = 1.18, 95% CI = 1.01–1.39, P = 0.042, Table 2; Fig. 4). Next, stratification analyses by cancer type showed the rs2839698 mutation significantly increased the risk of gastric cancer (A vs. G: OR = 1.33, 95% CI = 1.13–1.56, P = 0.000; AA vs. GG: OR = 1.76, 95% CI = 1.26–2.46, P = 0.001; AA + GA vs. GG: OR = 1.27, 95% CI = 1.03–1.57, P = 0.024; AA vs. GG + GA: OR = 1.74, 95% CI = 1.27–2.40, P = 0.001), hepatocellular cancer (A vs. G: OR = 1.17, 95% CI = 1.03–1.34, P = 0.015; GA vs. GG: OR = 1.30, 95% CI = 1.08–1.56, P = 0.006; AA + GA vs. GG: OR = 1.29, 95% CI = 1.08–1.93, P = 0.005), renal cell carcinoma and ovarian cancer, leukemia and lymphoma (Table 2). Similarly, a positive association was detected between the allelic, homozygous, and dominant models and cancer susceptibility in the Asian descent (A vs. G: OR = 1.10, 95% CI = 1.00-1.21, P = 0.041; AA vs. GG: OR = 1.30, 95% CI = 1.09–1.54, P = 0.003; AA + GA vs. GG: OR = 1.12, 95% CI = 1.02–1.24, P = 0.024, Table 2). When stratifying by source of control, quality score and sample size, the significantly increased cancer risk was discovered in hospital-based control (AA vs. GG: OR = 1.30, 95% CI = 1.07–1.59, P = 0.009; AA + GA vs. GG: OR = 1.14, 95% CI = 1.02–1.28, P = 0.025), population-based control (AA vs. GG + GA: OR = 1.28, 95% CI = 1.02–1.59, P = 0.032) and large simple size (A vs. G: OR = 1.11, 95% CI = 1.01–1.21, P = 0.030; AA vs. GG: OR = 1.28, 95% CI = 1.07–1.53, P = 0.006; AA vs. GG + GA: OR = 1.25, 95% CI = 1.09–1.45, P = 0.002, Table 2). Heterogeneity results suggested that heterogeneity consisted in the five genetic models of overall analysis. Interestingly, we found that heterogeneity notably diminish or disappear in hepatocellular carcinoma, bladder, gastric, and lung cancer.

Correlation between rs3741219 A/G polymorphism and cancer risk

To explore the association between H19 rs3741219 polymorphism and cancer risk, we included 10 studies with 5305 patients and 6974 controls. Compared with AA + GA genotype, the GG allele of rs3741219 polymorphism was correlated with cancer susceptibility in overall analysis (AA vs. GG + GA: OR = 1.14, 95% CI = 1.01–1.29; P = 0.037, Table 2; Fig. 5). Stratified analyses indicated that the rs3741219 mutant remarkably enhanced the risk of hepatocellular carcinoma and ovarian cancer, but also decreased the risk of Glioma tumor. We next performed stratification analysis by source of control and sample size, the pooled results indicated no association between 3,741,219 polymorphism and cancer risk. Beyond that, subgroup analyses by quality score strongly showed an elevated cancer risk in higher quality score (G vs. A: OR = 1.11, 95% CI = 1.02–1.21, P = 0.015; GG vs. AA: OR = 1.26, 95% CI = 1.03–1.53, P = 0.022; GG + GA vs. AA: OR = 1.12, 95% CI = 1.00-1.26, P = 0.042; GG vs. AA + GA: OR = 1.19, 95% CI = 0.98–1.43, P = 0.038, Table 2). It manifested that heterogeneity mainly appeared in the five gene models of overall analysis and Asian population. Moreover, there was no heterogeneity existing in population-based and higher quality score.

Correlation between rs3024270 C/G polymorphism and cancer risk

Through integrating 12 potential studies embodying 5402 patients and 9159 controls, we found a significant relationship of rs3024270 polymorphism with cancer risk under homozygous model (GG vs. CC: OR = 1.12, 95% CI = 1.01–1.24, P = 0.025, Table 2; Fig. 6). The homozygous and recessive models of rs3024270 were significantly correlated with the increased risk of colorectal cancer (GG vs. CC: OR = 1.28, 95% CI = 1.01–1.61, P = 0.041; GG vs. CC + GC: OR = 1.29, 95% CI = 1.04–1.58, P = 0.019). There was no significant association between the rs3024270 polymorphism and cancer susceptibility in stratification analysis by ethnicity and quality score. We found that the rs3024270 polymorphism was positively related to cancer risk in hospital-based controls under the homozygote model (GG vs. CC: OR = 1.42, 95% CI = 1.05–1.93; P = 0.025, Table 2). Except for the recessive model (I2 = 65.3%, P = 0.001), there was no heterogeneity in other models.

Correlation between rs3741216 A/T polymorphism and cancer risk

In general, four eligible studies with 2049 patients and 1808 controls were included to detect the relation between rs2107425 polymorphism and cancer risk. The pooled results suggested that the rs2107425 polymorphism was not related to cancer risk in five genetic models (T vs. A: OR = 1.66, 95% CI = 0.87–3.18, P = 0.127; TT vs. AA: OR = 1.66, 95% CI = 0.85–1.56, P = 0.348; AT vs. AA: OR = 0.91, 95% CI = 0.78–1.06, P = 0.236; AT + TT vs. AA: OR = 0.95, 95% CI = 0.82–1.10, P = 0.471; TT vs. AA + AT: OR = 2.42, 95% CI = 0.66–8.83, P = 0.181, Table 2; Fig. 7). Similarly, when stratifying analyses by ethnicity, cancer type, quality score, and source of control, we did find any correlation between the rs3741216 polymorphism and cancer risk. The result of heterogeneity test exhibited I2 = 95.9 and 95.7, implying that heterogeneity clearly exists in both homologous and recessive models, and thus random-effects model was used to examine the correlation.

FPRP results

We investigated determinants of FPRP across a range of probabilities to determine whether a given association between H19 SNPs and cancer risk is deserving of attention or is noteworthy. In this respect, we found that our main results were further supported by FPRP analysis. As shown in Table 3, with a prior probability < 0.25, the H19 rs2839698 polymorphism was associated with the risk of cancer under allele, homozygote, dominant and recessive models. Similarly, with a prior probability of 0.25, the homozygote model of H19 rs3024270 polymorphism was associated with cancer risk and the recessive model of H19 rs3024270 polymorphis was associated with cancer risk (P < 0.2).
Table 3
False-positive report probability analysis of the noteworthy results
     
Prior probability
SNP
Genetic model
OR (95% CI)
P
Power
0.25
0.1
0.01
0.001
0.0001
rs2107425
Allele
0.98 (0.91, 1.06)
0.614
1.000
0.648
0.847
0.984
0.998
1.000
 
Homozygote
1.01 (0.88, 1.17)
0.894
1.000
0.729
0.890
0.989
0.999
1.000
 
Heterozygote
0.96 (0.85, 1.07)
0.461
1.000
0.580
0.806
0.979
0.998
1.000
 
Dominant
0.97 (0.87, 1.08)
0.578
1.000
0.634
0.839
0.983
0.998
1.000
 
Recessive
0.98 (0.91, 1.06)
0.578
1.000
0.648
0.847
0.984
0.998
1.000
rs217727
Allele
1.06 (0.99, 1.14)
0.116
1.000
0.259
0.512
0.920
0.991
0.999
 
Homozygote
1.12 (0.97, 1.30)
0.136
1.000
0.290
0.551
0.931
0.933
0.999
 
Heterozygote
1.07 (0.97, 1.17)
0.138
1.000
0.292
0.554
0.932
0.993
0.999
 
Dominant
1.08 (0.98, 1.19)
0.120
1.000
0.265
0.519
0.922
0.992
0.999
 
Recessive
1.09 (0.96, 1.24)
0.191
1.000
0.363
0.631
0.950
0.995
0.999
rs2839698
Allele
1.10 (1.01, 1.20)
0.032
1.000
0.087*
0.223
0.759
0.969
0.997
 
Homozygote
1.29 (1.09, 1.52)
0.002
0.964
0.007*
0.021
0.194
0.709
0.961
 
Heterozygote
1.06 (0.97,1.17)
0.247
1.000
0.426
0.690
0.961
0.996
1.000
 
Dominant
1.11 (1.01, 1.23)
0.046
1.000
0.122*
0.294
0.821
0.979
0.998
 
Recessive
1.18 (1.01, 1.39)
0.048
0.998
0.125*
0.300
0.825
0.979
0.998
rs3741219
Allele
1.07 (0.88, 1.30)
0.500
1.000
0.598
0.817
0.980
0.998
1.000
 
Homozygote
1.18 (0.94, 1.48)
0.152
0.981
0.317
0.583
0.939
0.994
0.999
 
Heterozygote
0.97 (0.71, 1.33)
0.850
0.999
0.720
0.885
0.988
0.999
1.000
 
Dominant
1.06 (0.79, 1.41)
0.689
0.991
0.674
0.861
0.986
0.999
1.000
 
Recessive
1.14 (1.01, 1.29)
0.038
1.000
0.102*
0.254
0.789
0.974
0.997
rs3024270
Allele
1.04 (0.97, 1.12)
0.300
1.000
0.473
0.729
0.967
0.997
1.000
 
Homozygote
1.12 (1.01, 1.24)
0.029
1.000
0.080*
0.207
0.742
0.967
0.997
 
Heterozygote
1.00 (0.92, 1.09)
0.928
1.000
0.736
0.893
0.989
0.999
1.000
 
Dominant
1.03 (0.95, 1.12)
0.489
1.000
0.595
0.815
0.980
0.998
1.000
 
Recessive
1.09 (0.95, 1.25)
0.228
1.000
0.406
0.673
0.958
0.996
1.000
rs3741216
Allele
1.66 (0.87, 3.18)
0.126
0.380
0.500
0.750
0.971
0.997
1.000
 
Homozygote
1.16 (0.85, 1.56)
0.773
0.691
0.731
0.891
0.989
0.999
1.000
 
Heterozygote
0.91 (0.78, 1.06)
0.226
1.000
0.404
0.670
0.957
0.996
1.000
 
Dominant
0.95 (0.82, 1.10)
0.493
1.000
0.597
0.816
0.980
0.998
1.000
 
Recessive
2.42 (0.66, 8.83)
0.181
0.234
0.689
0.874
0.987
0.999
1.000
*P < 0.2

Sensitivity analysis and publication bias

Sensitivity analysis was conducted by eliminating each individual study. As shown in Fig. 8, the pooled OR and 95% CI were not materially changed, indicating that our results were relatively robust. After excluding several studies inconsistent with HWE, we found substantial alteration under the allele and heterozygous models in rs3741216 polymorphism (allelic: I2 = 0.0%, P(heterogeneity) = 0.649; heterozygous: I2 = 0.0, P(heterogeneity) = 0.678; homozygous: I2 = 0.0%, P(heterogeneity) = 0.737; dominant: I2 = 0.0%, P(heterogeneity) = 0.681; recessive: I2 = 0.0%, P(heterogeneity) = 0.708, Table 4). Other three gene polymorphisms were not substantially changed. In addition, funnel plot was symmetrical, and no evident publication bias was observed by using the Begg’s test and Egger’s test (Table 5; Fig. 9).
Table 4
After excluding studies inconsistent with HWE, the associations between four H19 polymorphisms and cancer risk under five genetic models
Genetic model
 
rs217727G/A
rs2839698G/A
rs3741219T/C
rs3741216A/T
Allele
OR (95%CI)
P
I2 (%)
P (heterogeneity)
1.06 (1.00, 1.13)
0.071
69.8
0.000
1.06 (0.98, 1.15)
0.132
77.1
0.000
1.02 (0.84, 1.24)
0.850
89.6
0.000
0.99 (0.87, 1.14)
0.916
0.0
0.649
Homozygote
OR (95%CI)
P
I2 (%)
P (heterogeneity)
1.13 (1.00, 1.28)
0.053
60.6
0.000
1.21 (1.04, 1.41)
0.014
66.2
0.000
1.14 (0.91, 1.43)
0.269
61.6
0.000
0.31 (0.89, 1.92)
0.170
0.0
0.678
Heterozygote
OR (95%CI)
P
I2 (%)
P (heterogeneity)
1.04 (0.95, 1.14)
0.369
68.2
0.000
1.04 (0.95, 1.13)
0.392
61.3
0.000
0.96 (0.70, 1.32)
0.795
92.7
0.000
0.89 (0.76, 1.06)
0.186
0.0
0.737
Dominant
OR (95%CI)
P
I2 (%)
P (heterogeneity)
1.67 (0.98, 1.17)
0.157
70.3
0.000
1.07 (0.98, 1.17)
0.124
66.6
0.000
1.00 (0.75, 1.35)
0.978
92.4
0.000
0.94 (0.80, 1.10)
0.444
0.0
0.681
Recessive
OR (95%CI)
P
I2 (%)
P (heterogeneity)
1.11 (0.99, 1.24)
0.073
59.2
0.000
1.12 (0.96, 1.32)
0.147
72.9
0.000
1.12 (0.99, 1.27)
0.074
0.0
0.763
1.35 (0.92, 1.97)
0.127
0.0
0.708
Table 5
Publication bias of the five genetic models for H19 gene polymorphisms
Variables
Allelic
 
Homozygous
 
Heterozygous
 
Dominant
 
Recessive
 
P B PE
 
P B PE
 
P B PE
 
P B PE
 
P B PE
rs2107425C/T
0.360 0.336
 
0.583 0.436
 
0.246 0.286
 
0.300 0.287
 
0.583 0.532
rs217727G/A
0.454 0.515
 
0.592 0.494
 
0.475 0.489
 
0.354 0.445
 
0.748 0.540
rs2839698G/A
0.252 0.317
 
0.315 0.393
 
0.338 0.351
 
0.388 0.363
 
0.252 0.448
rs3741219A/G
0.371 0.404
 
0.371 0.265
 
0.592 0.571
 
0.371 0.346
 
0.474 0.311
rs3024270C/G
1.000 0.867
 
1.000 0.875
 
0.876 0.861
 
0.876 0.775
 
0.533 0.791
rs3741216A/T
0.308 0.170
 
1.000 0.200
 
1.000 0.815
 
1.000 0.815
 
1.000 0.803
P B: P-value of Begg’s rank correlation test. *P < 0.05. PE: P-value of Egger’s linear regression test. *P < 0.05

Discussion

Cancer is one of the leading causes of mortality, seriously affecting public health all over the world. However, the pathogenesis of cancer remains poorly explicit. It is widely accepted that cancer may be influenced by genetic mutations [81]. As a newly identified non-coding RNAs, lncRNAs are extensively present in human genome. Numerous studies have confirmed that lncRNAs play essential roles in diverse biological activities, such as cell cycle processes, epigenetic regulation, transcriptional regulation, stress response and pluripotency maintenance [16, 18]. A large number of SNPs located in the lncRNAs may affect gene expression and function by altering its secondary structure or the targeted microRNAs, ultimately, leading to the occurrence and progression of cancer [8284].
H19 belongs to a class of maternally expressed lncRNA at 2.3 kb length, which is located at imprinted region on chromosome 11p15.5. Differentially methylated region (DMR) usually refers to the upstream of the transcription initiation site of H19, which servers a vital role in the regulation of H19/IGF2 expression [85, 86]. It has been reported that H19 expression is prominently decreased after birth, and only exhibits in cardiac and skeletal muscles [82]. Accumulating evidence has shown that H19 gene polymorphisms are linked to cancer risk. Verhaegh et al. first reported that H19 rs2839698 variants significantly reduced the risk of bladder cancer among Caucasians, especially in non-muscle invasive bladder cancer [41]. Also, some studies have reported that the rs3741219 polymorphism was not associated with the risk of cancer, the rs2839698 polymorphism significantly increases the risk of gastrointestinal cancer, and the rs2107425 polymorphism had a protective effect on Caucasian population [81, 87, 88]. In order to accurately assess the association between H19 polymorphisms and the risk of cancer, we conducted a comprehensive analysis of all relevant potential studies.
Our findings suggested that the rs2839698, rs3741219 and rs3024270 polymorphisms, but not rs2107425, rs217727, or rs3741216 polymorphisms were associated with cancer risk in overall analysis. Among these, the rs2839698 polymorphism was dramatically related to increased cancer risk among Asians, while the rs210742 polymorphism was significantly associated with reduced cancer risk among Caucasians, indicating that ethnic differences in genetic backgrounds might influence the correlation. Using the RNA secondary structure prediction website, Gong et al. verified that the rs2107425 variant changed the minimum free energy of its centroid secondary structure and increased genetic susceptibility to cancer by impacting the H19 function and stability [51]. Further experimental functional studies are necessary to prove the exact mechanism. We found that rs2839698 SNP was positively associated with cancer susceptibility among Asians.
In the present study, the rs217727 mutation positively associated with increased risk of oral squamous cell carcinoma and lung cancer, but reduced the risk of hepatocellular carcinoma. Moreover, the rs2839698 polymorphism was significantly correlated with increased risk of gastric cancer, which was consistent with a previous study [88]. There were significant correlations between the rs2839698 polymorphism and cancer risk in hospital-based control, sample size and quality score subgroups. These results provided evidence that rs2839698 could modify cancer susceptibility based on ethnicity and cancer type. Furthermore, the discrepancy between our results and previous studies may be attributed to different genetic backgrounds and sample sizes. As for the rs3741219 polymorphism, a marginally notable correlation was discovered under recessive model in overall analysis. The positive results of higher quality score showed remarkable association with rs3024270 polymorphism. Moreover, we did not observe any relationships between rs3741216 rs3024270 and cancer in overall and subgroup analyses.
Among these H19 SNPs, rs217727, rs2839698, rs3741219, and rs3741216 located in exon region, as well as rs3024270 in intron region. SNPs at exon region are more likely to alter the H19 conserved folding structure or complementary sequences to target genes, and thus modify its binding affinity with interacting elements, while SNPs at intronic region may participate in alternative splicing and regulation of H19 transcript [86, 89]. Li et al. found that genetic variants of rs2839689, rs217727, rs2735971 and rs3024270 were closely associated with changes of H19 secondary structure in colorectal cancer [57]. It has been reported that the rs217727 polymorphism affected interactions between miRNAs and H19 and induced formation of target miRNA sites, such as hsa-miR-4804-5p and hsa-miR-8071, leading to the loss of hsa-miR-3960 and hsa-miR-8071 binding sites [73]. In addition, the rs2839698 mutation causes the loss of hsa-miR-24-1-5p and hsa-miR-24-2-5p, hsa-miR-566, and miR-675 [71, 75]. We speculated that the rs2839698 variation might hinder the binding of these targeted miRNA sites to the H19 3’-UTR, and then disrupt the reciprocal repression-regulatory loop between them, resulting in the tumorigenesis and progression.
Several limitations should be taken into account in the present study. First, heterogeneities were observed in most of the H19 SNPs, and subgroup analyses by source of control, cancer type, and ethnic diversity failed to completely eliminate these heterogeneities. Second, with regard to rs3741219, rs3024270 and rs3741216 polymorphism, all the included subjects were from Asian, and except for one study from Caucasians in rs217727 and rs2839698 polymorphism, other studies were involved with Asian population, which may not be applicable to other populations. Third, each type of cancer with only one study was assigned to subgroup analysis by other cancers, and the number of included studies for certain H19 polymorphisms was relatively limited in the subgroup analysis. Finally, due to the lack of available data on some factors such as alcohol consumption, smoking, lifestyle and effects of haplotype, we cannot evaluate the impact of gene-environmental and gene-gene interactions.

Conclusions

In conclusion, this meta-analysis demonstrated significant associations between H19 rs2839698 and rs3024270 and overall cancer risk. We found that H19 rs2107425 may be a protective factor for the Caucasian population, while rs2839698 may be a hazard factor for the Asian descent. Therefore, studies with larger sample sizes, diverse races and different cancer types are needed to further and better validate our findings.
Abbreviations: BC = breast cancer, LC = lung cancer, BLC = bladder cancer, GC = gastric cancer, CRC = colorectal cancer, PC = pancreatic cancer, OC = ovarian cancer, HCC: hepatocellular carcinoma, CC = cervical cancer, OSCC = oral squamous cell carcinoma, UCC = urothelial cell carcinoma, RCC = renal cell carcinoma, SNP = single nucleotide polymorphism, CI = confidence interval, HWE = Hardy-Weinberg equilibrium, NOS = Newcastle Ottawa Scale; OR = odds ratio.

Acknowledgements

Not applicable.

Declarations

Competing interests

The authors declare no competing interests.
Not applicable.
Not applicable.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Wild CP. The global cancer burden: necessity is the mother of prevention. Nat Rev Cancer. 2019;19(3):123–4.PubMedCrossRef Wild CP. The global cancer burden: necessity is the mother of prevention. Nat Rev Cancer. 2019;19(3):123–4.PubMedCrossRef
2.
Zurück zum Zitat Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022, 72(1). Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022, 72(1).
3.
Zurück zum Zitat Islami F, Goding Sauer A, Miller KD, Siegel RL, Fedewa SA, Jacobs EJ, McCullough ML, Patel AV, Ma J, Soerjomataram I, et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J Clin. 2018;68(1):31–54.PubMedCrossRef Islami F, Goding Sauer A, Miller KD, Siegel RL, Fedewa SA, Jacobs EJ, McCullough ML, Patel AV, Ma J, Soerjomataram I, et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J Clin. 2018;68(1):31–54.PubMedCrossRef
4.
Zurück zum Zitat Rossi M, Jahanzaib Anwar M, Usman A, Keshavarzian A, Bishehsari F. Colorectal Cancer and alcohol consumption-populations to molecules. Cancers (Basel) 2018, 10(2). Rossi M, Jahanzaib Anwar M, Usman A, Keshavarzian A, Bishehsari F. Colorectal Cancer and alcohol consumption-populations to molecules. Cancers (Basel) 2018, 10(2).
5.
Zurück zum Zitat Yan H, Ying Y, Xie H, Li J, Wang X, He L, Jin K, Tang J, Xu X, Zheng X. Secondhand smoking increases bladder cancer risk in nonsmoking population: a meta-analysis. Cancer Manag Res. 2018;10:3781–91.PubMedPubMedCentralCrossRef Yan H, Ying Y, Xie H, Li J, Wang X, He L, Jin K, Tang J, Xu X, Zheng X. Secondhand smoking increases bladder cancer risk in nonsmoking population: a meta-analysis. Cancer Manag Res. 2018;10:3781–91.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Arshad R, Kiani MH, Rahdar A, Sargazi S, Barani M, Shojaei S, Bilal M, Kumar D, Pandey S. Nano-Based theranostic platforms for breast Cancer: a review of latest advancements. Bioeng (Basel) 2022, 9(7). Arshad R, Kiani MH, Rahdar A, Sargazi S, Barani M, Shojaei S, Bilal M, Kumar D, Pandey S. Nano-Based theranostic platforms for breast Cancer: a review of latest advancements. Bioeng (Basel) 2022, 9(7).
7.
Zurück zum Zitat Sargazi S, Er S, Mobashar A, Gelen SS, Rahdar A, Ebrahimi N, Hosseinikhah SM, Bilal M, Kyzas GZ. Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: a review. Chem Biol Interact. 2022;361:109964.PubMedCrossRef Sargazi S, Er S, Mobashar A, Gelen SS, Rahdar A, Ebrahimi N, Hosseinikhah SM, Bilal M, Kyzas GZ. Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: a review. Chem Biol Interact. 2022;361:109964.PubMedCrossRef
8.
Zurück zum Zitat Davodabadi F, Sarhadi M, Arabpour J, Sargazi S, Rahdar A, Díez-Pascual AM. Breast cancer vaccines: new insights into immunomodulatory and nano-therapeutic approaches. J Control Release. 2022;349:844–75.PubMedCrossRef Davodabadi F, Sarhadi M, Arabpour J, Sargazi S, Rahdar A, Díez-Pascual AM. Breast cancer vaccines: new insights into immunomodulatory and nano-therapeutic approaches. J Control Release. 2022;349:844–75.PubMedCrossRef
9.
Zurück zum Zitat Janssen EM, Dy SM, Meara AS, Kneuertz PJ, Presley CJ, Bridges JFP. Analysis of patient preferences in Lung Cancer - estimating acceptable tradeoffs between Treatment Benefit and Side Effects. Patient Prefer Adherence. 2020;14:927–37.PubMedPubMedCentralCrossRef Janssen EM, Dy SM, Meara AS, Kneuertz PJ, Presley CJ, Bridges JFP. Analysis of patient preferences in Lung Cancer - estimating acceptable tradeoffs between Treatment Benefit and Side Effects. Patient Prefer Adherence. 2020;14:927–37.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Chen J, Jiang Y, Zhou J, Liu S, Qin N, Du J, Jin G, Hu Z, Ma H, Shen H, et al. Evaluation of CpG-SNPs in miRNA promoters and risk of breast cancer. Gene. 2018;651:1–8.PubMedCrossRef Chen J, Jiang Y, Zhou J, Liu S, Qin N, Du J, Jin G, Hu Z, Ma H, Shen H, et al. Evaluation of CpG-SNPs in miRNA promoters and risk of breast cancer. Gene. 2018;651:1–8.PubMedCrossRef
11.
Zurück zum Zitat Zucman-Rossi J, Villanueva A, Nault J-C, Llovet JM. Genetic Landscape and biomarkers of Hepatocellular Carcinoma. Gastroenterology 2015, 149(5). Zucman-Rossi J, Villanueva A, Nault J-C, Llovet JM. Genetic Landscape and biomarkers of Hepatocellular Carcinoma. Gastroenterology 2015, 149(5).
12.
Zurück zum Zitat Harati-Sadegh M, Sargazi S, Saravani M, Sheervalilou R, Mirinejad S, Saravani R. Relationship between miR-143/145 cluster variations and cancer risk: proof from a Meta-analysis. Nucleosides Nucleotides Nucleic Acids. 2021;40(5):578–91.PubMedCrossRef Harati-Sadegh M, Sargazi S, Saravani M, Sheervalilou R, Mirinejad S, Saravani R. Relationship between miR-143/145 cluster variations and cancer risk: proof from a Meta-analysis. Nucleosides Nucleotides Nucleic Acids. 2021;40(5):578–91.PubMedCrossRef
13.
Zurück zum Zitat Sargazi S, Abghari AZ, Sarani H, Sheervalilou R, Mirinejad S, Saravani R, Eskandari E. Relationship between CASP9 and CASP10 gene polymorphisms and Cancer susceptibility: evidence from an updated Meta-analysis. Appl Biochem Biotechnol. 2021;193(12):4172–96.PubMedCrossRef Sargazi S, Abghari AZ, Sarani H, Sheervalilou R, Mirinejad S, Saravani R, Eskandari E. Relationship between CASP9 and CASP10 gene polymorphisms and Cancer susceptibility: evidence from an updated Meta-analysis. Appl Biochem Biotechnol. 2021;193(12):4172–96.PubMedCrossRef
14.
Zurück zum Zitat Harati-Sadegh M, Mohammadoo-Khorasani M, Sargazi S, Saravani R, Shahraki S, Eskandari E. Quantitative Assessment of the Effects of IL-1ß -511 C > T variant on breast Cancer risk: an updated Meta-analysis of 3331 cases and 3609 controls. Lab Med. 2021;52(1):36–46.PubMedCrossRef Harati-Sadegh M, Mohammadoo-Khorasani M, Sargazi S, Saravani R, Shahraki S, Eskandari E. Quantitative Assessment of the Effects of IL-1ß -511 C > T variant on breast Cancer risk: an updated Meta-analysis of 3331 cases and 3609 controls. Lab Med. 2021;52(1):36–46.PubMedCrossRef
15.
Zurück zum Zitat Shastry BS. SNPs: impact on gene function and phenotype. Methods Mol Biol 2009, 578. Shastry BS. SNPs: impact on gene function and phenotype. Methods Mol Biol 2009, 578.
16.
Zurück zum Zitat Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41.PubMedCrossRef Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41.PubMedCrossRef
17.
Zurück zum Zitat Jalali S, Singh A, Maiti S, Scaria V. Genome-wide computational analysis of potential long noncoding RNA mediated DNA:DNA:RNA triplexes in the human genome. J Transl Med. 2017;15(1):186.PubMedPubMedCentralCrossRef Jalali S, Singh A, Maiti S, Scaria V. Genome-wide computational analysis of potential long noncoding RNA mediated DNA:DNA:RNA triplexes in the human genome. J Transl Med. 2017;15(1):186.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Chen L, Zhang S. Long noncoding RNAs in cell differentiation and pluripotency. Cell Tissue Res. 2016;366(3):509–21.PubMedCrossRef Chen L, Zhang S. Long noncoding RNAs in cell differentiation and pluripotency. Cell Tissue Res. 2016;366(3):509–21.PubMedCrossRef
19.
Zurück zum Zitat Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 2014, 15(1). Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 2014, 15(1).
20.
Zurück zum Zitat Tran N-T, Su H, Khodadadi-Jamayran A, Lin S, Zhang L, Zhou D, Pawlik KM, Townes TM, Chen Y, Mulloy JC, et al. The AS-RBM15 lncRNA enhances RBM15 protein translation during megakaryocyte differentiation. EMBO Rep. 2016;17(6):887–900.PubMedPubMedCentralCrossRef Tran N-T, Su H, Khodadadi-Jamayran A, Lin S, Zhang L, Zhou D, Pawlik KM, Townes TM, Chen Y, Mulloy JC, et al. The AS-RBM15 lncRNA enhances RBM15 protein translation during megakaryocyte differentiation. EMBO Rep. 2016;17(6):887–900.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Bhan A, Mandal SS. Long noncoding RNAs: emerging stars in gene regulation, epigenetics and human disease. ChemMedChem. 2014;9(9):1932–56.PubMedCrossRef Bhan A, Mandal SS. Long noncoding RNAs: emerging stars in gene regulation, epigenetics and human disease. ChemMedChem. 2014;9(9):1932–56.PubMedCrossRef
22.
Zurück zum Zitat Taniue K, Akimitsu N. The functions and unique features of LncRNAs in Cancer Development and Tumorigenesis. Int J Mol Sci 2021, 22(2). Taniue K, Akimitsu N. The functions and unique features of LncRNAs in Cancer Development and Tumorigenesis. Int J Mol Sci 2021, 22(2).
24.
Zurück zum Zitat Yang G, Lu X, Yuan L. LncRNA: a link between RNA and cancer. Biochim Biophys Acta. 2014;1839(11):1097–109.PubMedCrossRef Yang G, Lu X, Yuan L. LncRNA: a link between RNA and cancer. Biochim Biophys Acta. 2014;1839(11):1097–109.PubMedCrossRef
25.
Zurück zum Zitat Zou Y, Jiang Z, Yu X, Sun M, Zhang Y, Zuo Q, Zhou J, Yang N, Han P, Ge Z, et al. Upregulation of long noncoding RNA SPRY4-IT1 modulates proliferation, migration, apoptosis, and network formation in trophoblast cells HTR-8SV/neo. PLoS ONE. 2013;8(11):e79598.PubMedPubMedCentralCrossRef Zou Y, Jiang Z, Yu X, Sun M, Zhang Y, Zuo Q, Zhou J, Yang N, Han P, Ge Z, et al. Upregulation of long noncoding RNA SPRY4-IT1 modulates proliferation, migration, apoptosis, and network formation in trophoblast cells HTR-8SV/neo. PLoS ONE. 2013;8(11):e79598.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Shen Y, Xia E, Bhandari A, Wang X, Guo G. LncRNA PROX1-AS1 promotes proliferation, invasion, and migration in papillary thyroid carcinoma. Biosci Rep 2018, 38(5). Shen Y, Xia E, Bhandari A, Wang X, Guo G. LncRNA PROX1-AS1 promotes proliferation, invasion, and migration in papillary thyroid carcinoma. Biosci Rep 2018, 38(5).
27.
Zurück zum Zitat Ou L, Wang D, Zhang H, Yu Q, Hua F. Decreased expression of mir-138-5p by lncRNA H19 in Cervical Cancer promotes Tumor Proliferation. Oncol Res. 2018;26(3):401–10.PubMedPubMedCentralCrossRef Ou L, Wang D, Zhang H, Yu Q, Hua F. Decreased expression of mir-138-5p by lncRNA H19 in Cervical Cancer promotes Tumor Proliferation. Oncol Res. 2018;26(3):401–10.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Yang F, Bi J, Xue X, Zheng L, Zhi K, Hua J, Fang G. Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J. 2012;279(17):3159–65.PubMedCrossRef Yang F, Bi J, Xue X, Zheng L, Zhi K, Hua J, Fang G. Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J. 2012;279(17):3159–65.PubMedCrossRef
29.
Zurück zum Zitat Chi Y, Wang D, Wang J, Yu W, Yang J. Long non-coding RNA in the pathogenesis of cancers. Cells 2019, 8(9). Chi Y, Wang D, Wang J, Yu W, Yang J. Long non-coding RNA in the pathogenesis of cancers. Cells 2019, 8(9).
30.
Zurück zum Zitat Ghahramani Almanghadim H, Ghorbian S, Khademi NS, Soleymani Sadrabadi M, Jarrahi E, Nourollahzadeh Z, Dastani M, Shirvaliloo M, Sheervalilou R, Sargazi S. New Insights into the importance of long non-coding RNAs in Lung Cancer: future clinical approaches. DNA Cell Biol. 2021;40(12):1476–94.PubMedCrossRef Ghahramani Almanghadim H, Ghorbian S, Khademi NS, Soleymani Sadrabadi M, Jarrahi E, Nourollahzadeh Z, Dastani M, Shirvaliloo M, Sheervalilou R, Sargazi S. New Insights into the importance of long non-coding RNAs in Lung Cancer: future clinical approaches. DNA Cell Biol. 2021;40(12):1476–94.PubMedCrossRef
31.
Zurück zum Zitat Pachnis V, Brannan CI, Tilghman SM. The structure and expression of a novel gene activated in early mouse embryogenesis. EMBO J. 1988;7(3):673–81.PubMedPubMedCentralCrossRef Pachnis V, Brannan CI, Tilghman SM. The structure and expression of a novel gene activated in early mouse embryogenesis. EMBO J. 1988;7(3):673–81.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Kallen AN, Zhou X-B, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi J-S, Zhang H, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52(1):101–12.PubMedCrossRef Kallen AN, Zhou X-B, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi J-S, Zhang H, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52(1):101–12.PubMedCrossRef
33.
Zurück zum Zitat Koukoura O, Sifakis S, Zaravinos A, Apostolidou S, Jones A, Hajiioannou J, Widschwendter M, Spandidos DA. Hypomethylation along with increased H19 expression in placentas from pregnancies complicated with fetal growth restriction. Placenta. 2011;32(1):51–7.PubMedCrossRef Koukoura O, Sifakis S, Zaravinos A, Apostolidou S, Jones A, Hajiioannou J, Widschwendter M, Spandidos DA. Hypomethylation along with increased H19 expression in placentas from pregnancies complicated with fetal growth restriction. Placenta. 2011;32(1):51–7.PubMedCrossRef
34.
Zurück zum Zitat Mutter GL, Stewart CL, Chaponot ML, Pomponio RJ. Oppositely imprinted genes H19 and insulin-like growth factor 2 are coexpressed in human androgenetic trophoblast. Am J Hum Genet. 1993;53(5):1096–102.PubMedPubMedCentral Mutter GL, Stewart CL, Chaponot ML, Pomponio RJ. Oppositely imprinted genes H19 and insulin-like growth factor 2 are coexpressed in human androgenetic trophoblast. Am J Hum Genet. 1993;53(5):1096–102.PubMedPubMedCentral
35.
Zurück zum Zitat Brannan CI, Dees EC, Ingram RS, Tilghman SM. The product of the H19 gene may function as an RNA. Mol Cell Biol. 1990;10(1):28–36.PubMedPubMedCentral Brannan CI, Dees EC, Ingram RS, Tilghman SM. The product of the H19 gene may function as an RNA. Mol Cell Biol. 1990;10(1):28–36.PubMedPubMedCentral
36.
Zurück zum Zitat Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, Galun E. The H19 non-coding RNA is essential for human tumor growth. PLoS ONE. 2007;2(9):e845.PubMedPubMedCentralCrossRef Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, Galun E. The H19 non-coding RNA is essential for human tumor growth. PLoS ONE. 2007;2(9):e845.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Yoshimizu T, Miroglio A, Ripoche M-A, Gabory A, Vernucci M, Riccio A, Colnot S, Godard C, Terris B, Jammes H, et al. The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci U S A. 2008;105(34):12417–22.PubMedPubMedCentralCrossRef Yoshimizu T, Miroglio A, Ripoche M-A, Gabory A, Vernucci M, Riccio A, Colnot S, Godard C, Terris B, Jammes H, et al. The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci U S A. 2008;105(34):12417–22.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Zhang L, Yang F, Yuan J-h, Yuan S-x, Zhou W-p, Huo X-s, Xu D, Bi H-s, Wang F. Sun S-h: epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis. 2013;34(3):577–86.PubMedCrossRef Zhang L, Yang F, Yuan J-h, Yuan S-x, Zhou W-p, Huo X-s, Xu D, Bi H-s, Wang F. Sun S-h: epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis. 2013;34(3):577–86.PubMedCrossRef
39.
Zurück zum Zitat Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.PubMedCrossRef Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.PubMedCrossRef
40.
Zurück zum Zitat Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96(6):434–42.PubMedPubMedCentralCrossRef Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96(6):434–42.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Verhaegh GW, Verkleij L, Vermeulen SHHM, den Heijer M, Witjes JA, Kiemeney LA. Polymorphisms in the H19 gene and the risk of bladder cancer. Eur Urol. 2008;54(5):1118–26.PubMedCrossRef Verhaegh GW, Verkleij L, Vermeulen SHHM, den Heijer M, Witjes JA, Kiemeney LA. Polymorphisms in the H19 gene and the risk of bladder cancer. Eur Urol. 2008;54(5):1118–26.PubMedCrossRef
42.
Zurück zum Zitat Song H, Ramus SJ, Kjaer SK, DiCioccio RA, Chenevix-Trench G, Pearce CL, Hogdall E, Whittemore AS, McGuire V, Hogdall C, et al. Association between invasive ovarian cancer susceptibility and 11 best candidate SNPs from breast cancer genome-wide association study. Hum Mol Genet. 2009;18(12):2297–304.PubMedPubMedCentralCrossRef Song H, Ramus SJ, Kjaer SK, DiCioccio RA, Chenevix-Trench G, Pearce CL, Hogdall E, Whittemore AS, McGuire V, Hogdall C, et al. Association between invasive ovarian cancer susceptibility and 11 best candidate SNPs from breast cancer genome-wide association study. Hum Mol Genet. 2009;18(12):2297–304.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Quaye L, Tyrer J, Ramus SJ, Song H, Wozniak E, DiCioccio RA, McGuire V, Høgdall E, Høgdall C, Blaakaer J, et al. Association between common germline genetic variation in 94 candidate genes or regions and risks of invasive epithelial ovarian cancer. PLoS ONE. 2009;4(6):e5983.PubMedPubMedCentralCrossRef Quaye L, Tyrer J, Ramus SJ, Song H, Wozniak E, DiCioccio RA, McGuire V, Høgdall E, Høgdall C, Blaakaer J, et al. Association between common germline genetic variation in 94 candidate genes or regions and risks of invasive epithelial ovarian cancer. PLoS ONE. 2009;4(6):e5983.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Barnholtz-Sloan JS, Shetty PB, Guan X, Nyante SJ, Luo J, Brennan DJ, Millikan RC. FGFR2 and other loci identified in genome-wide association studies are associated with breast cancer in african-american and younger women. Carcinogenesis. 2010;31(8):1417–23.PubMedPubMedCentralCrossRef Barnholtz-Sloan JS, Shetty PB, Guan X, Nyante SJ, Luo J, Brennan DJ, Millikan RC. FGFR2 and other loci identified in genome-wide association studies are associated with breast cancer in african-american and younger women. Carcinogenesis. 2010;31(8):1417–23.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Butt S, Harlid S, Borgquist S, Ivarsson M, Landberg G, Dillner J, Carlson J, Manjer J. Genetic predisposition, parity, age at first childbirth and risk for breast cancer. BMC Res Notes. 2012;5:414.PubMedPubMedCentralCrossRef Butt S, Harlid S, Borgquist S, Ivarsson M, Landberg G, Dillner J, Carlson J, Manjer J. Genetic predisposition, parity, age at first childbirth and risk for breast cancer. BMC Res Notes. 2012;5:414.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Yang C, Tang R, Ma X, Wang Y, Luo D, Xu Z, Zhu Y, Yang L. Tag SNPs in long non-coding RNA H19 contribute to susceptibility to gastric cancer in the chinese Han population. Oncotarget. 2015;6(17):15311–20.PubMedPubMedCentralCrossRef Yang C, Tang R, Ma X, Wang Y, Luo D, Xu Z, Zhu Y, Yang L. Tag SNPs in long non-coding RNA H19 contribute to susceptibility to gastric cancer in the chinese Han population. Oncotarget. 2015;6(17):15311–20.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Li S, Hua Y, Jin J, Wang H, Du M, Zhu L, Chu H, Zhang Z, Wang M. Association of genetic variants in lncRNA H19 with risk of colorectal cancer in a chinese population. Oncotarget. 2016;7(18):25470–7.PubMedPubMedCentralCrossRef Li S, Hua Y, Jin J, Wang H, Du M, Zhu L, Chu H, Zhang Z, Wang M. Association of genetic variants in lncRNA H19 with risk of colorectal cancer in a chinese population. Oncotarget. 2016;7(18):25470–7.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Hua Q, Lv X, Gu X, Chen Y, Chu H, Du M, Gong W, Wang M, Zhang Z. Genetic variants in lncRNA H19 are associated with the risk of bladder cancer in a chinese population. Mutagenesis. 2016;31(5):531–8.PubMedCrossRef Hua Q, Lv X, Gu X, Chen Y, Chu H, Du M, Gong W, Wang M, Zhang Z. Genetic variants in lncRNA H19 are associated with the risk of bladder cancer in a chinese population. Mutagenesis. 2016;31(5):531–8.PubMedCrossRef
49.
Zurück zum Zitat Xia Z, Yan R, Duan F, Song C, Wang P, Wang K. Genetic polymorphisms in long noncoding RNA H19 are Associated with susceptibility to breast Cancer in Chinese Population. Med (Baltim). 2016;95(7):e2771.CrossRef Xia Z, Yan R, Duan F, Song C, Wang P, Wang K. Genetic polymorphisms in long noncoding RNA H19 are Associated with susceptibility to breast Cancer in Chinese Population. Med (Baltim). 2016;95(7):e2771.CrossRef
50.
Zurück zum Zitat Jin T, Wu X, Yang H, Liu M, He Y, He X, Shi X, Wang F, Du S, Ma Y, et al. Association of the mir-17-5p variants with susceptibility to cervical cancer in a chinese population. Oncotarget. 2016;7(47):76647–55.PubMedPubMedCentralCrossRef Jin T, Wu X, Yang H, Liu M, He Y, He X, Shi X, Wang F, Du S, Ma Y, et al. Association of the mir-17-5p variants with susceptibility to cervical cancer in a chinese population. Oncotarget. 2016;7(47):76647–55.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Gong W-J, Peng J-B, Yin J-Y, Li X-P, Zheng W, Xiao L, Tan L-M, Xiao D, Chen Y-X, Li X, et al. Association between well-characterized lung cancer lncRNA polymorphisms and platinum-based chemotherapy toxicity in chinese patients with lung cancer. Acta Pharmacol Sin. 2017;38(4):581–90.PubMedPubMedCentralCrossRef Gong W-J, Peng J-B, Yin J-Y, Li X-P, Zheng W, Xiao L, Tan L-M, Xiao D, Chen Y-X, Li X, et al. Association between well-characterized lung cancer lncRNA polymorphisms and platinum-based chemotherapy toxicity in chinese patients with lung cancer. Acta Pharmacol Sin. 2017;38(4):581–90.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Guo QY, Wang H, Wang Y. LncRNA H19 polymorphisms associated with the risk of OSCC in chinese population. Eur Rev Med Pharmacol Sci. 2017;21(17):3770–4.PubMed Guo QY, Wang H, Wang Y. LncRNA H19 polymorphisms associated with the risk of OSCC in chinese population. Eur Rev Med Pharmacol Sci. 2017;21(17):3770–4.PubMed
53.
Zurück zum Zitat Hassanzarei S, Hashemi M, Sattarifard H, Hashemi SM, Bahari G. Genetic polymorphisms in long noncoding RNA H19 are associated with breast cancer susceptibility in iranian population. Meta Gene. 2017;14:1–5.CrossRef Hassanzarei S, Hashemi M, Sattarifard H, Hashemi SM, Bahari G. Genetic polymorphisms in long noncoding RNA H19 are associated with breast cancer susceptibility in iranian population. Meta Gene. 2017;14:1–5.CrossRef
54.
Zurück zum Zitat He TD, Xu D, Sui T, Zhu JK, Wei ZX, Wang YM. Association between H19 polymorphisms and osteosarcoma risk. Eur Rev Med Pharmacol Sci. 2017;21(17):3775–80.PubMed He TD, Xu D, Sui T, Zhu JK, Wei ZX, Wang YM. Association between H19 polymorphisms and osteosarcoma risk. Eur Rev Med Pharmacol Sci. 2017;21(17):3775–80.PubMed
55.
Zurück zum Zitat Hu P, Qiao O, Wang J, Li J, Jin H, Li Z, Jin Y. rs1859168 A > C polymorphism regulates HOTTIP expression and reduces risk of pancreatic cancer in a chinese population. World J Surg Oncol. 2017;15(1):155.PubMedPubMedCentralCrossRef Hu P, Qiao O, Wang J, Li J, Jin H, Li Z, Jin Y. rs1859168 A > C polymorphism regulates HOTTIP expression and reduces risk of pancreatic cancer in a chinese population. World J Surg Oncol. 2017;15(1):155.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Lin Y, Fu F, Chen Y, Qiu W, Lin S, Yang P, Huang M, Wang C. Genetic variants in long noncoding RNA H19 contribute to the risk of breast cancer in a southeast China Han population. Onco Targets Ther. 2017;10:4369–78.PubMedPubMedCentralCrossRef Lin Y, Fu F, Chen Y, Qiu W, Lin S, Yang P, Huang M, Wang C. Genetic variants in long noncoding RNA H19 contribute to the risk of breast cancer in a southeast China Han population. Onco Targets Ther. 2017;10:4369–78.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Li L, Guo G, Zhang H, Zhou B, Bai L, Chen H, Zhao Y, Yan Y. Association between H19 SNP rs217727 and lung cancer risk in a chinese population: a case control study. BMC Med Genet. 2018;19(1):136.PubMedPubMedCentralCrossRef Li L, Guo G, Zhang H, Zhou B, Bai L, Chen H, Zhao Y, Yan Y. Association between H19 SNP rs217727 and lung cancer risk in a chinese population: a case control study. BMC Med Genet. 2018;19(1):136.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Yang M-L, Huang Z, Wang Q, Chen H-H, Ma S-N, Wu R, Cai W-S. The association of polymorphisms in lncRNA-H19 with hepatocellular cancer risk and prognosis. Biosci Rep 2018, 38(5). Yang M-L, Huang Z, Wang Q, Chen H-H, Ma S-N, Wu R, Cai W-S. The association of polymorphisms in lncRNA-H19 with hepatocellular cancer risk and prognosis. Biosci Rep 2018, 38(5).
59.
Zurück zum Zitat Yin Z, Cui Z, Li H, Li J, Zhou B. Polymorphisms in the H19 gene and the risk of lung Cancer among female never smokers in Shenyang, China. BMC Cancer. 2018;18(1):893.PubMedPubMedCentralCrossRef Yin Z, Cui Z, Li H, Li J, Zhou B. Polymorphisms in the H19 gene and the risk of lung Cancer among female never smokers in Shenyang, China. BMC Cancer. 2018;18(1):893.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Yuan Z, Yu Y, Zhang B, Miao L, Wang L, Zhao K, Ji Y, Wang R, Ma H, Chen N, et al. Genetic variants in lncRNA H19 are associated with the risk of oral squamous cell carcinoma in a chinese population. Oncotarget. 2018;9(35):23915–22.PubMedPubMedCentralCrossRef Yuan Z, Yu Y, Zhang B, Miao L, Wang L, Zhao K, Ji Y, Wang R, Ma H, Chen N, et al. Genetic variants in lncRNA H19 are associated with the risk of oral squamous cell carcinoma in a chinese population. Oncotarget. 2018;9(35):23915–22.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Cui P, Zhao Y, Chu X, He N, Zheng H, Han J, Song F, Chen K. SNP rs2071095 in LincRNA H19 is associated with breast cancer risk. Breast Cancer Res Treat. 2018;171(1):161–71.PubMedCrossRef Cui P, Zhao Y, Chu X, He N, Zheng H, Han J, Song F, Chen K. SNP rs2071095 in LincRNA H19 is associated with breast cancer risk. Breast Cancer Res Treat. 2018;171(1):161–71.PubMedCrossRef
62.
Zurück zum Zitat Abdollahzadeh S, Ghorbian S. Association of the study between LncRNA-H19 gene polymorphisms with the risk of breast cancer. J Clin Lab Anal. 2019;33(3):e22826.PubMedCrossRef Abdollahzadeh S, Ghorbian S. Association of the study between LncRNA-H19 gene polymorphisms with the risk of breast cancer. J Clin Lab Anal. 2019;33(3):e22826.PubMedCrossRef
63.
Zurück zum Zitat Hu C, Yang T, Pan J, Zhang J, Yang J, He J, Zou Y. Associations between H19 polymorphisms and neuroblastoma risk in chinese children. Biosci Rep 2019, 39(4). Hu C, Yang T, Pan J, Zhang J, Yang J, He J, Zou Y. Associations between H19 polymorphisms and neuroblastoma risk in chinese children. Biosci Rep 2019, 39(4).
64.
Zurück zum Zitat Li Z, Niu Y. Association between lncRNA H19 (rs217727, rs2735971 and rs3024270) polymorphisms and the risk of bladder cancer in chinese population. Minerva Urol Nefrol. 2019;71(2):161–7.PubMedCrossRef Li Z, Niu Y. Association between lncRNA H19 (rs217727, rs2735971 and rs3024270) polymorphisms and the risk of bladder cancer in chinese population. Minerva Urol Nefrol. 2019;71(2):161–7.PubMedCrossRef
65.
Zurück zum Zitat Safari MR, Mohammad Rezaei F, Dehghan A, Noroozi R, Taheri M, Ghafouri-Fard S. Genomic variants within the long non-coding RNA H19 confer risk of breast cancer in iranian population. Gene. 2019;701:121–4.PubMedCrossRef Safari MR, Mohammad Rezaei F, Dehghan A, Noroozi R, Taheri M, Ghafouri-Fard S. Genomic variants within the long non-coding RNA H19 confer risk of breast cancer in iranian population. Gene. 2019;701:121–4.PubMedCrossRef
66.
Zurück zum Zitat Wang G, Liu Q, Cui K, Ma A, Zhang H. Association between H19 polymorphisms and NSCLC risk in a Chinese Population. J BUON. 2019;24(3):913–7.PubMed Wang G, Liu Q, Cui K, Ma A, Zhang H. Association between H19 polymorphisms and NSCLC risk in a Chinese Population. J BUON. 2019;24(3):913–7.PubMed
67.
Zurück zum Zitat Wu E-R, Chou Y-E, Liu Y-F, Hsueh K-C, Lee H-L, Yang S-F, Su S-C. Association of lncRNA H19 gene polymorphisms with the occurrence of Hepatocellular Carcinoma. Genes (Basel) 2019, 10(7). Wu E-R, Chou Y-E, Liu Y-F, Hsueh K-C, Lee H-L, Yang S-F, Su S-C. Association of lncRNA H19 gene polymorphisms with the occurrence of Hepatocellular Carcinoma. Genes (Basel) 2019, 10(7).
68.
Zurück zum Zitat Wei M, Wang X, Luo B. Association between lncRNA H19 polymorphisms and susceptibility to gastric carcinoma and EBV-associated gastric carcinoma in han population in qingdao. Chin J Cancer Biotherapy. 2019;26(6):676–82. Wei M, Wang X, Luo B. Association between lncRNA H19 polymorphisms and susceptibility to gastric carcinoma and EBV-associated gastric carcinoma in han population in qingdao. Chin J Cancer Biotherapy. 2019;26(6):676–82.
69.
Zurück zum Zitat Huang M-C, Chou Y-H, Shen H-P, Ng S-C, Lee Y-C, Sun Y-H, Hsu C-F, Yang S-F, Wang P-H. The clinicopathological characteristic associations of long non-coding RNA gene H19 polymorphisms with uterine cervical cancer. J Cancer. 2019;10(25):6191–8.PubMedPubMedCentralCrossRef Huang M-C, Chou Y-H, Shen H-P, Ng S-C, Lee Y-C, Sun Y-H, Hsu C-F, Yang S-F, Wang P-H. The clinicopathological characteristic associations of long non-coding RNA gene H19 polymorphisms with uterine cervical cancer. J Cancer. 2019;10(25):6191–8.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Yang P-J, Hsieh M-J, Hung T-W, Wang S-S, Chen S-C, Lee M-C, Yang S-F, Chou Y-E. Effects of Long Noncoding RNA H19 polymorphisms on Urothelial Cell Carcinoma Development. Int J Environ Res Public Health 2019, 16(8). Yang P-J, Hsieh M-J, Hung T-W, Wang S-S, Chen S-C, Lee M-C, Yang S-F, Chou Y-E. Effects of Long Noncoding RNA H19 polymorphisms on Urothelial Cell Carcinoma Development. Int J Environ Res Public Health 2019, 16(8).
71.
Zurück zum Zitat Cao Q, Li P, Cao P, Qian J, Du M, Li L, Wang M, Qin C, Shao P, Zhang Z, et al. Genetic variant in long non-coding RNA H19 modulates its expression and predicts renal cell Carcinoma susceptibility and mortality. Front Oncol. 2020;10:785.PubMedPubMedCentralCrossRef Cao Q, Li P, Cao P, Qian J, Du M, Li L, Wang M, Qin C, Shao P, Zhang Z, et al. Genetic variant in long non-coding RNA H19 modulates its expression and predicts renal cell Carcinoma susceptibility and mortality. Front Oncol. 2020;10:785.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Ghapanchi J, Ranjbar Z, Mokhtari MJ, Koohpeima F, Derakhshan M, Khademi B, Ghaderi H, Sheikhbahaei S, Aliabadi E. The LncRNA H19 rs217727 polymorphism is Associated with oral squamous cell Carcinoma Susceptibility in Iranian Population. Biomed Res Int. 2020;2020:1634252.PubMedPubMedCentralCrossRef Ghapanchi J, Ranjbar Z, Mokhtari MJ, Koohpeima F, Derakhshan M, Khademi B, Ghaderi H, Sheikhbahaei S, Aliabadi E. The LncRNA H19 rs217727 polymorphism is Associated with oral squamous cell Carcinoma Susceptibility in Iranian Population. Biomed Res Int. 2020;2020:1634252.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Deng Y, Zhou L, Yao J, Liu Y, Zheng Y, Yang S, Wu Y, Li N, Xu P, Lyu L, et al. Associations of lncRNA H19 polymorphisms at MicroRNA binding Sites with Glioma susceptibility and prognosis. Mol Ther Nucleic Acids. 2020;20:86–96.PubMedPubMedCentralCrossRef Deng Y, Zhou L, Yao J, Liu Y, Zheng Y, Yang S, Wu Y, Li N, Xu P, Lyu L, et al. Associations of lncRNA H19 polymorphisms at MicroRNA binding Sites with Glioma susceptibility and prognosis. Mol Ther Nucleic Acids. 2020;20:86–96.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Yu B, Chen J, Hou C, Zhang L, Jia J. LncRNA H19 gene rs2839698 polymorphism is associated with a decreased risk of colorectal cancer in a chinese Han population: a case-control study. J Clin Lab Anal. 2020;34(8):e23311.PubMedPubMedCentralCrossRef Yu B, Chen J, Hou C, Zhang L, Jia J. LncRNA H19 gene rs2839698 polymorphism is associated with a decreased risk of colorectal cancer in a chinese Han population: a case-control study. J Clin Lab Anal. 2020;34(8):e23311.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Zhang H-B, Zeng Y, Li T-L, Wang G. Correlation between polymorphisms in IGF2/H19 gene locus and epithelial ovarian cancer risk in chinese population. Genomics. 2020;112(3):2510–5.PubMedCrossRef Zhang H-B, Zeng Y, Li T-L, Wang G. Correlation between polymorphisms in IGF2/H19 gene locus and epithelial ovarian cancer risk in chinese population. Genomics. 2020;112(3):2510–5.PubMedCrossRef
76.
Zurück zum Zitat Li W, Hua R-X, Wang M, Zhang D, Zhu J, Zhang S, Yang Y, Cheng J, Zhou H, Zhang J, et al. H19 gene polymorphisms and Wilms tumor risk in chinese children: a four-center case-control study. Mol Genet Genomic Med. 2021;9(2):e1584.PubMedPubMedCentralCrossRef Li W, Hua R-X, Wang M, Zhang D, Zhu J, Zhang S, Yang Y, Cheng J, Zhou H, Zhang J, et al. H19 gene polymorphisms and Wilms tumor risk in chinese children: a four-center case-control study. Mol Genet Genomic Med. 2021;9(2):e1584.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Pei J-S, Chen C-C, Chang W-S, Wang Y-C, Chen J-C, Hsiau Y-C, Hsu P-C, Hsu Y-N, Tsai C-W. Bau D-T: significant Associations of lncRNA H19 genotypes with susceptibility to Childhood Leukemia in Taiwan. Pharmaceuticals (Basel) 2021, 14(3). Pei J-S, Chen C-C, Chang W-S, Wang Y-C, Chen J-C, Hsiau Y-C, Hsu P-C, Hsu Y-N, Tsai C-W. Bau D-T: significant Associations of lncRNA H19 genotypes with susceptibility to Childhood Leukemia in Taiwan. Pharmaceuticals (Basel) 2021, 14(3).
78.
Zurück zum Zitat Tan T, Li J, Wen Y, Zou Y, Yang J, Pan J, Hu C, Yao Y, Zhang J, Xin Y, et al. Association between lncRNA-H19 polymorphisms and hepatoblastoma risk in an ethic chinese population. J Cell Mol Med. 2021;25(2):742–50.PubMedCrossRef Tan T, Li J, Wen Y, Zou Y, Yang J, Pan J, Hu C, Yao Y, Zhang J, Xin Y, et al. Association between lncRNA-H19 polymorphisms and hepatoblastoma risk in an ethic chinese population. J Cell Mol Med. 2021;25(2):742–50.PubMedCrossRef
79.
Zurück zum Zitat Zhang J, Liu M, Liang Y, Zhang M, Huang Z. Correlation between lncRNA H19 rs2839698 polymorphism and susceptibility to NK / T cell lymphoma in chinese population. J BUON. 2021;26(2):587–91.PubMed Zhang J, Liu M, Liang Y, Zhang M, Huang Z. Correlation between lncRNA H19 rs2839698 polymorphism and susceptibility to NK / T cell lymphoma in chinese population. J BUON. 2021;26(2):587–91.PubMed
80.
Zurück zum Zitat Khalil EH, Shaker OG, Hasona NA. Impact of rs2107425 polymorphism and expression of lncH19 and miR-200a on the susceptibility of Colorectal Cancer. Indian J Clin Biochem 2022. Khalil EH, Shaker OG, Hasona NA. Impact of rs2107425 polymorphism and expression of lncH19 and miR-200a on the susceptibility of Colorectal Cancer. Indian J Clin Biochem 2022.
81.
Zurück zum Zitat Li W, Jiang X, Jin X, Yan W, Liu Y, Li D, Zhao Z. Significant association between long non-coding RNA H19 polymorphisms and cancer susceptibility: a PRISMA-compliant meta-analysis and bioinformatics prediction. Med (Baltim). 2020;99(15):e19322.CrossRef Li W, Jiang X, Jin X, Yan W, Liu Y, Li D, Zhao Z. Significant association between long non-coding RNA H19 polymorphisms and cancer susceptibility: a PRISMA-compliant meta-analysis and bioinformatics prediction. Med (Baltim). 2020;99(15):e19322.CrossRef
82.
Zurück zum Zitat Berteaux N, Aptel N, Cathala G, Genton C, Coll J, Daccache A, Spruyt N, Hondermarck H, Dugimont T, Curgy J-J, et al. A novel H19 antisense RNA overexpressed in breast cancer contributes to paternal IGF2 expression. Mol Cell Biol. 2008;28(22):6731–45.PubMedPubMedCentralCrossRef Berteaux N, Aptel N, Cathala G, Genton C, Coll J, Daccache A, Spruyt N, Hondermarck H, Dugimont T, Curgy J-J, et al. A novel H19 antisense RNA overexpressed in breast cancer contributes to paternal IGF2 expression. Mol Cell Biol. 2008;28(22):6731–45.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Gao Y, Liu Y, Du L, Li J, Qu A, Zhang X, Wang L, Wang C. Down-regulation of mir-24-3p in colorectal cancer is associated with malignant behavior. Med Oncol. 2015;32(1):362.PubMedCrossRef Gao Y, Liu Y, Du L, Li J, Qu A, Zhang X, Wang L, Wang C. Down-regulation of mir-24-3p in colorectal cancer is associated with malignant behavior. Med Oncol. 2015;32(1):362.PubMedCrossRef
84.
Zurück zum Zitat Inoguchi S, Seki N, Chiyomaru T, Ishihara T, Matsushita R, Mataki H, Itesako T, Tatarano S, Yoshino H, Goto Y, et al. Tumour-suppressive microRNA-24-1 inhibits cancer cell proliferation through targeting FOXM1 in bladder cancer. FEBS Lett. 2014;588(17):3170–9.PubMedCrossRef Inoguchi S, Seki N, Chiyomaru T, Ishihara T, Matsushita R, Mataki H, Itesako T, Tatarano S, Yoshino H, Goto Y, et al. Tumour-suppressive microRNA-24-1 inhibits cancer cell proliferation through targeting FOXM1 in bladder cancer. FEBS Lett. 2014;588(17):3170–9.PubMedCrossRef
85.
Zurück zum Zitat Gao T, He B, Pan Y, Gu L, Chen L, Nie Z, Xu Y, Li R, Wang S. H19 DMR methylation correlates to the progression of esophageal squamous cell carcinoma through IGF2 imprinting pathway. Clin Transl Oncol. 2014;16(4):410–7.PubMedCrossRef Gao T, He B, Pan Y, Gu L, Chen L, Nie Z, Xu Y, Li R, Wang S. H19 DMR methylation correlates to the progression of esophageal squamous cell carcinoma through IGF2 imprinting pathway. Clin Transl Oncol. 2014;16(4):410–7.PubMedCrossRef
86.
Zurück zum Zitat McGeary SE, Lin KS, Shi CY, Pham TM, Bisaria N, Kelley GM, Bartel DP. The biochemical basis of microRNA targeting efficacy. Science 2019, 366(6472). McGeary SE, Lin KS, Shi CY, Pham TM, Bisaria N, Kelley GM, Bartel DP. The biochemical basis of microRNA targeting efficacy. Science 2019, 366(6472).
87.
Zurück zum Zitat Chu M, Yuan W, Wu S, Wang Z, Mao L, Tian T, Lu Y, Zhu B, Yang Y, Wang B, et al. Quantitative assessment of polymorphisms in H19 lncRNA and cancer risk: a meta-analysis of 13,392 cases and 18,893 controls. Oncotarget. 2016;7(48):78631–9.PubMedPubMedCentralCrossRef Chu M, Yuan W, Wu S, Wang Z, Mao L, Tian T, Lu Y, Zhu B, Yang Y, Wang B, et al. Quantitative assessment of polymorphisms in H19 lncRNA and cancer risk: a meta-analysis of 13,392 cases and 18,893 controls. Oncotarget. 2016;7(48):78631–9.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Liu X, Zhao Y, Li Y, Zhang J. Quantitative assessment of lncRNA H19 polymorphisms and cancer risk: a meta-analysis based on 48,166 subjects. Artif Cells Nanomed Biotechnol. 2020;48(1):15–27.PubMedCrossRef Liu X, Zhao Y, Li Y, Zhang J. Quantitative assessment of lncRNA H19 polymorphisms and cancer risk: a meta-analysis based on 48,166 subjects. Artif Cells Nanomed Biotechnol. 2020;48(1):15–27.PubMedCrossRef
89.
Zurück zum Zitat Novikova IV, Hennelly SP, Sanbonmatsu KY. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res. 2012;40(11):5034–51.PubMedPubMedCentralCrossRef Novikova IV, Hennelly SP, Sanbonmatsu KY. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res. 2012;40(11):5034–51.PubMedPubMedCentralCrossRef
Metadaten
Titel
Six polymorphisms in the lncRNA H19 gene and the risk of cancer: a systematic review and meta-analysis
verfasst von
Maoquan Yang
Mingwei Zhang
Qiong Wang
Xiaojing Guo
Peizhen Geng
Jinhua Gu
Wansheng Ji
Li Zhang
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2023
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11164-y

Weitere Artikel der Ausgabe 1/2023

BMC Cancer 1/2023 Zur Ausgabe

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Viel pflanzliche Nahrung, seltener Prostata-Ca.-Progression

12.05.2024 Prostatakarzinom Nachrichten

Ein hoher Anteil pflanzlicher Nahrung trägt möglicherweise dazu bei, das Progressionsrisiko von Männern mit Prostatakarzinomen zu senken. In einer US-Studie war das Risiko bei ausgeprägter pflanzlicher Ernährung in etwa halbiert.

Alter verschlechtert Prognose bei Endometriumkarzinom

11.05.2024 Endometriumkarzinom Nachrichten

Ein höheres Alter bei der Diagnose eines Endometriumkarzinoms ist mit aggressiveren Tumorcharakteristika assoziiert, scheint aber auch unabhängig von bekannten Risikofaktoren die Prognose der Erkrankung zu verschlimmern.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.