Skip to main content
Erschienen in: Experimental Brain Research 3/2010

01.07.2010 | Research note

Somatosensory effects of action inhibition: a study with the stop-signal paradigm

verfasst von: Eamonn Walsh, Patrick Haggard

Erschienen in: Experimental Brain Research | Ausgabe 3/2010

Einloggen, um Zugang zu erhalten

Abstract

When a weak shock is delivered to the finger immediately before a voluntary movement, or during a delay interval where subjects are prepared to make the movement, shock detection rates worsen progressively as the movement approaches. Further, we previously showed that shock detection improves again if a NoGo signal produces inhibition of a prepared response. Here, we used a somatosensory version of the stop-signal paradigm to investigate inhibitory processing during the ‘horserace’ period when motor excitation and inhibition processes may be simultaneously active. When subjects made a rapid keypress response to a go-signal, shock detection deteriorated in a time-dependent manner, replicating sensory suppression. However, when go-signals were followed by adaptively delayed stop-signals so that subjects could not inhibit the prepared movement, and made errors of commission, we found a paradoxical brief increase in shock detection performance just after the stop-signal, as if in a NoGo trial. During this brief window, the somatosensory system showed a pattern consistent with motor inhibition, even though the motor system itself was too far advanced in movement execution for action to be inhibited. Most models of stop-signal processing propose a two-horse race between excitation and inhibition, with a winner-takes-all solution. We show that there may be distinct motor and somatosensory races. Moreover, inhibitory processes may lead in the somatosensory race, at least briefly, even when excitatory processes win the motor race.
Literatur
Zurück zum Zitat Angel RW, Malenka RC (1982) Velocity-dependent suppression of cutaneous sensitivity during movement. Exp Neurol 77:266–284CrossRefPubMed Angel RW, Malenka RC (1982) Velocity-dependent suppression of cutaneous sensitivity during movement. Exp Neurol 77:266–284CrossRefPubMed
Zurück zum Zitat Aron AR, Poldrack RA (2006) Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus. J Neurosci 26:2424–2433CrossRefPubMed Aron AR, Poldrack RA (2006) Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus. J Neurosci 26:2424–2433CrossRefPubMed
Zurück zum Zitat Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6(2):115–116CrossRefPubMed Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6(2):115–116CrossRefPubMed
Zurück zum Zitat Band GPH, van der Molen MW, Logan GD (2003) Horse-race model simulations of the stop-signal procedure. Acta Psychol 112:105–142CrossRef Band GPH, van der Molen MW, Logan GD (2003) Horse-race model simulations of the stop-signal procedure. Acta Psychol 112:105–142CrossRef
Zurück zum Zitat Boucher L, Palmeri TJ, Logan GD, Schall JD (2007) Inhibitory Control in Mind and Brain: An Interactive Race Model of Countermanding Saccades. Psychol Rev 114(2):376–397CrossRefPubMed Boucher L, Palmeri TJ, Logan GD, Schall JD (2007) Inhibitory Control in Mind and Brain: An Interactive Race Model of Countermanding Saccades. Psychol Rev 114(2):376–397CrossRefPubMed
Zurück zum Zitat Chapman CE, Jiang W, Lamarre Y (1988) Modulation of lemniscal input during conditioned arm movements in the monkey. Exp Brain Res 72:316–334CrossRefPubMed Chapman CE, Jiang W, Lamarre Y (1988) Modulation of lemniscal input during conditioned arm movements in the monkey. Exp Brain Res 72:316–334CrossRefPubMed
Zurück zum Zitat Coxon JP, Stinear CM, Byblow WD (2007) Selective inhibition of movement. J Neurophysiol 97:2480–2489CrossRefPubMed Coxon JP, Stinear CM, Byblow WD (2007) Selective inhibition of movement. J Neurophysiol 97:2480–2489CrossRefPubMed
Zurück zum Zitat De Jong R, Coles MGH, Logan GD (1995) Strategies and mechanisms in nonselective and selective inhibitory motor control. J Exp Psychol Hum Percept Perform 21(3):498–511CrossRefPubMed De Jong R, Coles MGH, Logan GD (1995) Strategies and mechanisms in nonselective and selective inhibitory motor control. J Exp Psychol Hum Percept Perform 21(3):498–511CrossRefPubMed
Zurück zum Zitat Haggard P, Whitford B (2004) Supplementary motor area provides an efferent signal for sensory suppression. Cogn Brain Res 19(1):52–58CrossRef Haggard P, Whitford B (2004) Supplementary motor area provides an efferent signal for sensory suppression. Cogn Brain Res 19(1):52–58CrossRef
Zurück zum Zitat Harris JA, Miniussi C, Harris IM, Diamond ME (2002) Transient storage of a tactile memory trace in primary somatosensory cortex. J Neurosci 22(19):8720–8725PubMed Harris JA, Miniussi C, Harris IM, Diamond ME (2002) Transient storage of a tactile memory trace in primary somatosensory cortex. J Neurosci 22(19):8720–8725PubMed
Zurück zum Zitat Hays WL (1994) Statistics, 5th edn. Wadsworth, Belmont Hays WL (1994) Statistics, 5th edn. Wadsworth, Belmont
Zurück zum Zitat Lappin JS, Eriksen CW (1966) Use of a delayed signal to stop a visual reaction-time response. J Exp Psychol 72(6):805–811CrossRef Lappin JS, Eriksen CW (1966) Use of a delayed signal to stop a visual reaction-time response. J Exp Psychol 72(6):805–811CrossRef
Zurück zum Zitat Libet B, Alberts WW, Wright EW Jr, Feinstein B (1967) Responses of human somatosensory cortex to stimuli below threshold for conscious sensation. Science 158:1597–1600CrossRefPubMed Libet B, Alberts WW, Wright EW Jr, Feinstein B (1967) Responses of human somatosensory cortex to stimuli below threshold for conscious sensation. Science 158:1597–1600CrossRefPubMed
Zurück zum Zitat Logan GD (1994) On the ability to inhibit thought and action: a users’ guide to the stop signal paradigm. In: Dagenbach D, Carr TH (eds) Inhibitory processes in attention, memory, and language. Academic Press, San Diego, pp 189–239 Logan GD (1994) On the ability to inhibit thought and action: a users’ guide to the stop signal paradigm. In: Dagenbach D, Carr TH (eds) Inhibitory processes in attention, memory, and language. Academic Press, San Diego, pp 189–239
Zurück zum Zitat Logan GD, Burkell J (1986) Dependence and independence in responding to double stimulation: a comparison of stop, change, and dual-task paradigms. J Exp Psychol Hum Percept Perform 12:549–563CrossRef Logan GD, Burkell J (1986) Dependence and independence in responding to double stimulation: a comparison of stop, change, and dual-task paradigms. J Exp Psychol Hum Percept Perform 12:549–563CrossRef
Zurück zum Zitat Logan GD, Cowan WB, Davis KA (1984) On the ability to inhibit simple and choice reaction time responses: a model and a method. J Exp Psychol Hum Percept Perform 10:276–291CrossRefPubMed Logan GD, Cowan WB, Davis KA (1984) On the ability to inhibit simple and choice reaction time responses: a model and a method. J Exp Psychol Hum Percept Perform 10:276–291CrossRefPubMed
Zurück zum Zitat Nachev P, Kennard C, Husain M (2008) Functional role of supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9:856–869CrossRefPubMed Nachev P, Kennard C, Husain M (2008) Functional role of supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9:856–869CrossRefPubMed
Zurück zum Zitat Rieger M, Gauggel S (1999) Inhibitory after-effects in the stop-signal paradigm. Br J Psychol 90:509–518CrossRef Rieger M, Gauggel S (1999) Inhibitory after-effects in the stop-signal paradigm. Br J Psychol 90:509–518CrossRef
Zurück zum Zitat Stuphorn V, Schall JD (2006) Executive control of countermanding saccades by the supplementary eye field. Nat Neurosci 9(7):925–931CrossRefPubMed Stuphorn V, Schall JD (2006) Executive control of countermanding saccades by the supplementary eye field. Nat Neurosci 9(7):925–931CrossRefPubMed
Zurück zum Zitat van Boxtel GJM, van der Molen MW, Jennings JR, Brunia CHM (2001) A psychophysiological analysis of inhibitory motor control in the stop-signal paradigm. Biol Psychol 58:229–262CrossRefPubMed van Boxtel GJM, van der Molen MW, Jennings JR, Brunia CHM (2001) A psychophysiological analysis of inhibitory motor control in the stop-signal paradigm. Biol Psychol 58:229–262CrossRefPubMed
Zurück zum Zitat Verbruggen F, Logan GD (2009) Proactive adjustments of response strategies in the stop-signal paradigm. J Exp Psychol Hum Percept Perform 35(3):835–854CrossRefPubMed Verbruggen F, Logan GD (2009) Proactive adjustments of response strategies in the stop-signal paradigm. J Exp Psychol Hum Percept Perform 35(3):835–854CrossRefPubMed
Zurück zum Zitat Verbruggen F, Liefooghe B, Notebaert W, Vandierendonck A (2005) The effects of stimulus-stimulus compatibility and stimulus-response compatibility on response inhibition. Acta Psychol 120:307–326CrossRef Verbruggen F, Liefooghe B, Notebaert W, Vandierendonck A (2005) The effects of stimulus-stimulus compatibility and stimulus-response compatibility on response inhibition. Acta Psychol 120:307–326CrossRef
Zurück zum Zitat Voss M, Ingram JN, Haggard P, Wolpert DM (2006) Sensorimotor attenuation by central motor command signals in the absence of movement. Nat Neurosci 91:26–27CrossRef Voss M, Ingram JN, Haggard P, Wolpert DM (2006) Sensorimotor attenuation by central motor command signals in the absence of movement. Nat Neurosci 91:26–27CrossRef
Zurück zum Zitat Walsh E, Haggard P (2007) The internal structure of stopping as revealed by a sensory detection task. Exp Brain Res 183:405–410CrossRefPubMed Walsh E, Haggard P (2007) The internal structure of stopping as revealed by a sensory detection task. Exp Brain Res 183:405–410CrossRefPubMed
Zurück zum Zitat Williams SR, Shenasa J, Chapman CE (1998) Time course and magnitude of movement-related gating of tactile detection in Humans. I. Importance of stimulus location. J Neurophysiol 79:947–963PubMed Williams SR, Shenasa J, Chapman CE (1998) Time course and magnitude of movement-related gating of tactile detection in Humans. I. Importance of stimulus location. J Neurophysiol 79:947–963PubMed
Metadaten
Titel
Somatosensory effects of action inhibition: a study with the stop-signal paradigm
verfasst von
Eamonn Walsh
Patrick Haggard
Publikationsdatum
01.07.2010
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 3/2010
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-010-2181-y

Weitere Artikel der Ausgabe 3/2010

Experimental Brain Research 3/2010 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.