Skip to main content
Erschienen in: Der Orthopäde 8/2015

01.08.2015 | CME Zertifizierte Fortbildung

Biomaterialien in der Orthopädie

verfasst von: Prof. Dr. S. Vogt, T. Tischer, F. Blanke

Erschienen in: Die Orthopädie | Ausgabe 8/2015

Einloggen, um Zugang zu erhalten

Zusammenfassung

Biomaterialien sind künstliche oder natürliche Materialien, die für verschiedenste Bedürfnisse in lebende Organismen eingesetzt werden. Derzeit gibt es praktisch für alle Gewebe Biomaterialien. Insbesondere der Bereich der regenerativen Orthopädie hat in den letzten Jahren zu einem deutlichen Anstieg der Implantate geführt. Biomaterialien können sowohl temporäre als auch permanente Aufgaben erfüllen. Idealerweise werden Materialien, die eine temporäre Aufgabe besitzen, nach dem Funktionsverlust komplett resorbiert, und solche mit permanenter Aufgabe verbleiben stabil im Körper. Diese optimalen Eigenschaften besitzen viele Biomaterialien derzeit nicht. Solche mit temporären Aufgaben verbleiben häufig verändert im Organismus oder induzieren nur eine unvollständige Regeneration und solche mit permanenten Aufgaben unterliegen biologischen Veränderungen, durch die die Funktion reduziert wird. Trotz der enormen Menge an Biomaterialien muss immer überlegt werden, ob ein therapeutisches Ziel nicht implantatfrei erreicht werden kann.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Mantripragada VP, Lecka-Czernik B, Ebraheim NA, Jayasuriya AC (2013) An overview of recent advances in designing orthopedic and craniofacial implants. J Biomed Mater Res A 101:3349–3364PubMed Mantripragada VP, Lecka-Czernik B, Ebraheim NA, Jayasuriya AC (2013) An overview of recent advances in designing orthopedic and craniofacial implants. J Biomed Mater Res A 101:3349–3364PubMed
2.
Zurück zum Zitat Callaghan JJ, Liu SS, Phruetthiphat OA (2014) The revision acetabulum – allograft and bone substitutes: vestigial organs for bone deficiency. Bone Joint J 96-B:70–72CrossRefPubMed Callaghan JJ, Liu SS, Phruetthiphat OA (2014) The revision acetabulum – allograft and bone substitutes: vestigial organs for bone deficiency. Bone Joint J 96-B:70–72CrossRefPubMed
3.
Zurück zum Zitat Stoddart MJ, Grad S, Eglin D, Alini M (2009) Cells and biomaterials in cartilage tissue engineering. Regen Med 4:81–98CrossRefPubMed Stoddart MJ, Grad S, Eglin D, Alini M (2009) Cells and biomaterials in cartilage tissue engineering. Regen Med 4:81–98CrossRefPubMed
4.
Zurück zum Zitat Rongen JJ, van Tienen TG, van Bochove B, Grijpma DW, Buma P (2014) Biomaterials in search of a meniscus substitute. Biomaterials 35:3527–3540CrossRefPubMed Rongen JJ, van Tienen TG, van Bochove B, Grijpma DW, Buma P (2014) Biomaterials in search of a meniscus substitute. Biomaterials 35:3527–3540CrossRefPubMed
5.
Zurück zum Zitat Font Tellado S, Rosado Balmayor E, Van Griensven M (2015) Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors. Adv Drug Deliv Rev. (PubMed) Font Tellado S, Rosado Balmayor E, Van Griensven M (2015) Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors. Adv Drug Deliv Rev. (PubMed)
6.
Zurück zum Zitat Suh JK, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598CrossRefPubMed Suh JK, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598CrossRefPubMed
7.
Zurück zum Zitat Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S, Desnoyers J et al (2013) Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Joint Surg Am 95:1640–1650CrossRefPubMed Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S, Desnoyers J et al (2013) Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Joint Surg Am 95:1640–1650CrossRefPubMed
8.
Zurück zum Zitat Nixon AJ, Rickey E, Butler TJ, Scimeca MS, Moran N, Matthews GL (2015) A chondrocyte infiltrated collagen type I/III membrane (MACI((R)) implant) improves cartilage healing in the equine patellofemoral joint model. Osteoarthritis Cartilage 23:648–660CrossRefPubMed Nixon AJ, Rickey E, Butler TJ, Scimeca MS, Moran N, Matthews GL (2015) A chondrocyte infiltrated collagen type I/III membrane (MACI((R)) implant) improves cartilage healing in the equine patellofemoral joint model. Osteoarthritis Cartilage 23:648–660CrossRefPubMed
9.
Zurück zum Zitat Shen W, Chen X, Hu Y, Yin Z, Zhu T, Hu J et al (2014) Long-term effects of knitted silk-collagen sponge scaffold on anterior cruciate ligament reconstruction and osteoarthritis prevention. Biomaterials 35:8154–8163CrossRefPubMed Shen W, Chen X, Hu Y, Yin Z, Zhu T, Hu J et al (2014) Long-term effects of knitted silk-collagen sponge scaffold on anterior cruciate ligament reconstruction and osteoarthritis prevention. Biomaterials 35:8154–8163CrossRefPubMed
10.
Zurück zum Zitat Vogt S, Braun S, Imhoff AB (2007) [Stage oriented surgical cartilage therapy. Current situation]. Z Rheumatol 66:493–503 (quiz 4)CrossRefPubMed Vogt S, Braun S, Imhoff AB (2007) [Stage oriented surgical cartilage therapy. Current situation]. Z Rheumatol 66:493–503 (quiz 4)CrossRefPubMed
11.
Zurück zum Zitat Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895CrossRefPubMed Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895CrossRefPubMed
12.
Zurück zum Zitat Niemeyer P, Lenz P, Kreuz PC, Salzmann GM, Sudkamp NP, Schmal H et al (2010) Chondrocyte-seeded type I/III collagen membrane for autologous chondrocyte transplantation: prospective 2-year results in patients with cartilage defects of the knee joint. Arthroscopy 26:1074–1082CrossRefPubMed Niemeyer P, Lenz P, Kreuz PC, Salzmann GM, Sudkamp NP, Schmal H et al (2010) Chondrocyte-seeded type I/III collagen membrane for autologous chondrocyte transplantation: prospective 2-year results in patients with cartilage defects of the knee joint. Arthroscopy 26:1074–1082CrossRefPubMed
13.
Zurück zum Zitat Vogt S, Wexel G, Tischer T, Schillinger U, Ueblacker P, Wagner B et al (2009) The influence of the stable expression of BMP2 in fibrin clots on the remodelling and repair of osteochondral defects. Biomaterials 30:2385–2392CrossRefPubMed Vogt S, Wexel G, Tischer T, Schillinger U, Ueblacker P, Wagner B et al (2009) The influence of the stable expression of BMP2 in fibrin clots on the remodelling and repair of osteochondral defects. Biomaterials 30:2385–2392CrossRefPubMed
14.
Zurück zum Zitat Anders S, Volz M, Frick H, Gellissen J (2013) A randomized, controlled trial comparing Autologous Matrix-Induced Chondrogenesis (AMIC(R)) to microfracture: analysis of 1- and 2-year follow-up data of 2 centers. Open Orthop J 7:133–143PubMedCentralCrossRefPubMed Anders S, Volz M, Frick H, Gellissen J (2013) A randomized, controlled trial comparing Autologous Matrix-Induced Chondrogenesis (AMIC(R)) to microfracture: analysis of 1- and 2-year follow-up data of 2 centers. Open Orthop J 7:133–143PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Kon E, Roffi A, Filardo G, Tesei G, Marcacci M (2015) Scaffold-Based Cartilage Treatments: with or without cells? A systematic review of preclinical and clinical evidence. Arthroscopy 31(4):767–775CrossRefPubMed Kon E, Roffi A, Filardo G, Tesei G, Marcacci M (2015) Scaffold-Based Cartilage Treatments: with or without cells? A systematic review of preclinical and clinical evidence. Arthroscopy 31(4):767–775CrossRefPubMed
16.
Zurück zum Zitat Ali MS, French TA, Hastings GW, Rae T, Rushton N, Ross ER et al (1990) Carbon fibre composite bone plates. Development, evaluation and early clinical experience. J Bone Joint Surg Br 72:586–591PubMed Ali MS, French TA, Hastings GW, Rae T, Rushton N, Ross ER et al (1990) Carbon fibre composite bone plates. Development, evaluation and early clinical experience. J Bone Joint Surg Br 72:586–591PubMed
18.
19.
Zurück zum Zitat Daniels AU, Chang MK, Andriano KP (1990) Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater 1:57–78CrossRefPubMed Daniels AU, Chang MK, Andriano KP (1990) Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater 1:57–78CrossRefPubMed
20.
Zurück zum Zitat Weiler A, Hoffmann RF, Stahelin AC, Helling HJ, Sudkamp NP (2000) Biodegradable implants in sports medicine: the biological base. Arthroscopy 16:305–321CrossRefPubMed Weiler A, Hoffmann RF, Stahelin AC, Helling HJ, Sudkamp NP (2000) Biodegradable implants in sports medicine: the biological base. Arthroscopy 16:305–321CrossRefPubMed
21.
Zurück zum Zitat Scherer MA (1993) Therapie der akuten und chronischen Läsion des vorderen Kreuzbandes. Chir Praxis 46:279–294 Scherer MA (1993) Therapie der akuten und chronischen Läsion des vorderen Kreuzbandes. Chir Praxis 46:279–294
22.
Zurück zum Zitat Koebke J (1988) Alloplastischer Ersatz des anterioren Kreuzbandes. Unfallchirurg 91:106–109PubMed Koebke J (1988) Alloplastischer Ersatz des anterioren Kreuzbandes. Unfallchirurg 91:106–109PubMed
23.
Zurück zum Zitat Batty LM, Norsworthy CJ, Lash NJ, Wasiak J, Richmond AK, Feller JA (2015) Synthetic devices for reconstructive surgery of the cruciate ligaments: a systematic review. Arthroscopy 31(5):957–968CrossRefPubMed Batty LM, Norsworthy CJ, Lash NJ, Wasiak J, Richmond AK, Feller JA (2015) Synthetic devices for reconstructive surgery of the cruciate ligaments: a systematic review. Arthroscopy 31(5):957–968CrossRefPubMed
24.
Zurück zum Zitat Eggli S, Kohlhof H, Zumstein M, Henle P, Hartel M, Evangelopoulos DS et al (2015) Dynamic intraligamentary stabilization: novel technique for preserving the ruptured ACL. Knee Surg Sports Traumatol Arthrosc 23(4):1215-1221PubMedCentralCrossRefPubMed Eggli S, Kohlhof H, Zumstein M, Henle P, Hartel M, Evangelopoulos DS et al (2015) Dynamic intraligamentary stabilization: novel technique for preserving the ruptured ACL. Knee Surg Sports Traumatol Arthrosc 23(4):1215-1221PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Trumees E (1999) Alternatives to autologous bone harvest in spine surgery. Orthop J 12:77–88 Trumees E (1999) Alternatives to autologous bone harvest in spine surgery. Orthop J 12:77–88
26.
Zurück zum Zitat Heidemann W, Jeschkeit S, Ruffieux K, Fischer JH, Wagner M, Kruger G et al (2001) Degradation of poly(D, L)lactide implants with or without addition of calciumphosphates in vivo. Biomaterials 22:2371–2381CrossRefPubMed Heidemann W, Jeschkeit S, Ruffieux K, Fischer JH, Wagner M, Kruger G et al (2001) Degradation of poly(D, L)lactide implants with or without addition of calciumphosphates in vivo. Biomaterials 22:2371–2381CrossRefPubMed
27.
Zurück zum Zitat Chen J, Xu J, Wang A, Zheng M (2009) Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Expert Rev Med Devices 6:61–73CrossRefPubMed Chen J, Xu J, Wang A, Zheng M (2009) Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Expert Rev Med Devices 6:61–73CrossRefPubMed
28.
Zurück zum Zitat Cheung EV, Silverio L, Sperling JW (2010) Strategies in biologic augmentation of rotator cuff repair: a review. Clin Orthop Relat Res. 468:1476–1484PubMedCentralCrossRefPubMed Cheung EV, Silverio L, Sperling JW (2010) Strategies in biologic augmentation of rotator cuff repair: a review. Clin Orthop Relat Res. 468:1476–1484PubMedCentralCrossRefPubMed
29.
Zurück zum Zitat Iannotti JP, Codsi MJ, Kwon YW, Derwin K, Ciccone J, Brems JJ (2006) Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J Bone Joint Surg Am 88:1238–1244CrossRefPubMed Iannotti JP, Codsi MJ, Kwon YW, Derwin K, Ciccone J, Brems JJ (2006) Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J Bone Joint Surg Am 88:1238–1244CrossRefPubMed
30.
Zurück zum Zitat Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA et al (2008) The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29:2348–2358PubMedCentralCrossRefPubMed Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA et al (2008) The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29:2348–2358PubMedCentralCrossRefPubMed
31.
Zurück zum Zitat Xu H, Sandor M, Qi S, Lombardi J, Connor J, McQuillan DJ et al (2012) Implantation of a porcine acellular dermal graft in a primate model of rotator cuff repair. J Shoulder Elbow Surg 21:580–588CrossRefPubMed Xu H, Sandor M, Qi S, Lombardi J, Connor J, McQuillan DJ et al (2012) Implantation of a porcine acellular dermal graft in a primate model of rotator cuff repair. J Shoulder Elbow Surg 21:580–588CrossRefPubMed
32.
Zurück zum Zitat Gupta AK, Hug K, Boggess B, Gavigan M, Toth AP (2013) Massive or 2-tendon rotator cuff tears in active patients with minimal glenohumeral arthritis: clinical and radiographic outcomes of reconstruction using dermal tissue matrix xenograft. Am J Sports Med 41:872–879CrossRefPubMed Gupta AK, Hug K, Boggess B, Gavigan M, Toth AP (2013) Massive or 2-tendon rotator cuff tears in active patients with minimal glenohumeral arthritis: clinical and radiographic outcomes of reconstruction using dermal tissue matrix xenograft. Am J Sports Med 41:872–879CrossRefPubMed
33.
Zurück zum Zitat Kreuz PC, Lenz R, Vogt S, Imhoff AB, Tischer T (2011) Meniskus Tissue Engineering. Arthroskopie 24:57–61CrossRef Kreuz PC, Lenz R, Vogt S, Imhoff AB, Tischer T (2011) Meniskus Tissue Engineering. Arthroskopie 24:57–61CrossRef
34.
Zurück zum Zitat Sandmann GH, Adamczyk C, Grande Garcia E, Doebele S, Buettner A, Milz S et al (2013) Biomechanical comparison of menisci from different species and artificial constructs. BMC musculoskelet Disord 14:324PubMedCentralCrossRefPubMed Sandmann GH, Adamczyk C, Grande Garcia E, Doebele S, Buettner A, Milz S et al (2013) Biomechanical comparison of menisci from different species and artificial constructs. BMC musculoskelet Disord 14:324PubMedCentralCrossRefPubMed
35.
Zurück zum Zitat Martinek V, Ueblacker P, Braun K, Nitschke S, Mannhardt R, Specht K et al (2006) Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma surg 126:228–234CrossRefPubMed Martinek V, Ueblacker P, Braun K, Nitschke S, Mannhardt R, Specht K et al (2006) Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma surg 126:228–234CrossRefPubMed
36.
Zurück zum Zitat Rodkey WG, DeHaven KE, Montgomery WH 3rd, Baker CL, Jr, Beck CL, Jr, Hormel SE et al (2008) Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone Joint Surg Am 90:1413–1426CrossRefPubMed Rodkey WG, DeHaven KE, Montgomery WH 3rd, Baker CL, Jr, Beck CL, Jr, Hormel SE et al (2008) Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone Joint Surg Am 90:1413–1426CrossRefPubMed
37.
Zurück zum Zitat Warth RJ, Rodkey WG (2015) Resorbable collagen scaffolds for the treatment of meniscus defects: a systematic review. Arthroscopy 31(5):927–941CrossRefPubMed Warth RJ, Rodkey WG (2015) Resorbable collagen scaffolds for the treatment of meniscus defects: a systematic review. Arthroscopy 31(5):927–941CrossRefPubMed
38.
Zurück zum Zitat Buma P, Ramrattan NN, van Tienen TG, Veth RP (2004) Tissue engineering of the meniscus. Biomaterials 25:1523–1532CrossRefPubMed Buma P, Ramrattan NN, van Tienen TG, Veth RP (2004) Tissue engineering of the meniscus. Biomaterials 25:1523–1532CrossRefPubMed
39.
Zurück zum Zitat Welsing RT, van Tienen TG, Ramrattan N, Heijkants R, Schouten AJ, Veth RP et al (2008) Effect on tissue differentiation and articular cartilage degradation of a polymer meniscus implant: a 2-year follow-up study in dogs. Am J Sports Med 36:1978–1989CrossRefPubMed Welsing RT, van Tienen TG, Ramrattan N, Heijkants R, Schouten AJ, Veth RP et al (2008) Effect on tissue differentiation and articular cartilage degradation of a polymer meniscus implant: a 2-year follow-up study in dogs. Am J Sports Med 36:1978–1989CrossRefPubMed
40.
Zurück zum Zitat Verdonk R, Verdonk P, Huysse W. Forsyth R, Heinrichs EL (2011) Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am J Sports Med 39:774–782CrossRefPubMed Verdonk R, Verdonk P, Huysse W. Forsyth R, Heinrichs EL (2011) Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am J Sports Med 39:774–782CrossRefPubMed
41.
Zurück zum Zitat Verdonk P, Beaufils P, Bellemans J, Djian P, Heinrichs EL, Huysse W et al (2012) Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: two-year safety and clinical outcomes. Am J Sports Med 40:844–853CrossRefPubMed Verdonk P, Beaufils P, Bellemans J, Djian P, Heinrichs EL, Huysse W et al (2012) Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: two-year safety and clinical outcomes. Am J Sports Med 40:844–853CrossRefPubMed
Metadaten
Titel
Biomaterialien in der Orthopädie
verfasst von
Prof. Dr. S. Vogt
T. Tischer
F. Blanke
Publikationsdatum
01.08.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Die Orthopädie / Ausgabe 8/2015
Print ISSN: 2731-7145
Elektronische ISSN: 2731-7153
DOI
https://doi.org/10.1007/s00132-015-3147-3

Weitere Artikel der Ausgabe 8/2015

Der Orthopäde 8/2015 Zur Ausgabe

Update Orthopädie • Osteoporose/Knochenerkrankungen

DVO-Leitlinien zur spezifischen Osteoporosetherapie

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.