Skip to main content
Erschienen in: Monatsschrift Kinderheilkunde 6/2017

12.07.2016 | Adipositas | Übersichten

Physiologische Relevanz des braunen Fettgewebes beim Menschen

verfasst von: D. Tews, P. Fischer-Posovszky, K. M. Debatin, A. J. Beer, Prof. Dr. M. Wabitsch

Erschienen in: Monatsschrift Kinderheilkunde | Ausgabe 6/2017

Einloggen, um Zugang zu erhalten

Zusammenfassung

Zur Regulation der Körpertemperatur verfügen Säugetiere über braunes Fettgewebe (brown adipose tissue, BAT), welches erhebliche Mengen von chemischer Energie in Wärme umwandeln kann. Die Entdeckung von funktionell aktivem BAT bei Erwachsenen führte zu Überlegungen, seine Aktivität im Rahmen einer Adipositastherapie zu nutzen. In diesem Review sollen grundlegende Mechanismen der BAT-Thermogenese dargestellt sowie die physiologische Relevanz des BAT hinsichtlich der Körpergewichtsregulation beim Menschen diskutiert werden.
Literatur
1.
2.
Zurück zum Zitat Aherne W, Hull D (1966) Brown adipose tissue and heat production in the newborn infant. J Pathol Bacteriol 91:223–234. doi:10.1002/path.1700910126CrossRefPubMed Aherne W, Hull D (1966) Brown adipose tissue and heat production in the newborn infant. J Pathol Bacteriol 91:223–234. doi:10.1002/path.1700910126CrossRefPubMed
3.
Zurück zum Zitat Barbatelli G, Murano I, Madsen L et al (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298:E1244–E1253. doi:10.1152/ajpendo.00600.2009CrossRefPubMed Barbatelli G, Murano I, Madsen L et al (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298:E1244–E1253. doi:10.1152/ajpendo.00600.2009CrossRefPubMed
4.
Zurück zum Zitat Blondin DP, Labbé SM, Tingelstad HC et al (2014) Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab 99:438–446. doi:10.1210/jc.2013-3901CrossRef Blondin DP, Labbé SM, Tingelstad HC et al (2014) Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab 99:438–446. doi:10.1210/jc.2013-3901CrossRef
5.
Zurück zum Zitat Bordicchia M, Liu D, Amri E et al (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program im mouse and human adipocytes. J Clin Invest 122:1022–1036. doi:10.1172/JCI59701DS1CrossRefPubMedPubMedCentral Bordicchia M, Liu D, Amri E et al (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program im mouse and human adipocytes. J Clin Invest 122:1022–1036. doi:10.1172/JCI59701DS1CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359. doi:10.1152/physrev.00015.2003CrossRefPubMed Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359. doi:10.1152/physrev.00015.2003CrossRefPubMed
7.
Zurück zum Zitat Chalfant JS, Smith ML, Hu HH et al (2012) Inverse association between brown adipose tissue activation and white adipose tissue accumulation in successfully treated pediatric malignancy. Am J Clin Nutr 95:1144–1149. doi:10.3945/ajcn.111.030650CrossRefPubMedPubMedCentral Chalfant JS, Smith ML, Hu HH et al (2012) Inverse association between brown adipose tissue activation and white adipose tissue accumulation in successfully treated pediatric malignancy. Am J Clin Nutr 95:1144–1149. doi:10.3945/ajcn.111.030650CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Chondronikola M, Volpi E, Børsheim E et al (2014) Brown adipose tissue improves whole body glucose homeostasis and insulin sensitivity in humans. Diabetes. doi:10.2337/db14-0746PubMedPubMedCentral Chondronikola M, Volpi E, Børsheim E et al (2014) Brown adipose tissue improves whole body glucose homeostasis and insulin sensitivity in humans. Diabetes. doi:10.2337/db14-0746PubMedPubMedCentral
9.
Zurück zum Zitat Cinti S (2001) The adipose organ: morphological perspectives of adipose tissues. Proc Nutr Soc 60:319–328. doi:10.1079/PNS200192CrossRefPubMed Cinti S (2001) The adipose organ: morphological perspectives of adipose tissues. Proc Nutr Soc 60:319–328. doi:10.1079/PNS200192CrossRefPubMed
10.
Zurück zum Zitat Cypess AM, Chen Y‑C, Sze C et al (2012) Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proc Natl Acad Sci 109:10001–10005. doi:10.1073/pnas.1207911109CrossRefPubMedPubMedCentral Cypess AM, Chen Y‑C, Sze C et al (2012) Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proc Natl Acad Sci 109:10001–10005. doi:10.1073/pnas.1207911109CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Cypess AM, Lehman S, Williams G et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517. doi:10.1097/OGX.0b013e3181ac8aa2CrossRefPubMedPubMedCentral Cypess AM, Lehman S, Williams G et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517. doi:10.1097/OGX.0b013e3181ac8aa2CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Cypess AM, Weiner LS, Roberts-Toler C et al (2015) Activation of human brown adipose tissue by a β3-Adrenergic receptor agonist. Cell Metab 21:33–38. doi:10.1016/j.cmet.2014.12.009CrossRefPubMedPubMedCentral Cypess AM, Weiner LS, Roberts-Toler C et al (2015) Activation of human brown adipose tissue by a β3-Adrenergic receptor agonist. Cell Metab 21:33–38. doi:10.1016/j.cmet.2014.12.009CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Cypess AM, White AP, Vernochet C et al (2013) Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med 19:635–639. doi:10.1038/nm.3112CrossRefPubMedPubMedCentral Cypess AM, White AP, Vernochet C et al (2013) Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med 19:635–639. doi:10.1038/nm.3112CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Divakaruni AS, Humphrey DM, Brand MD (2012) Fatty acids change the conformation of uncoupling protein 1 (UCP1). J Biol Chem 287:36845–36853. doi:10.1074/jbc.M112.381780CrossRefPubMedPubMedCentral Divakaruni AS, Humphrey DM, Brand MD (2012) Fatty acids change the conformation of uncoupling protein 1 (UCP1). J Biol Chem 287:36845–36853. doi:10.1074/jbc.M112.381780CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Drubach LA, Palmer EL 3rd, Connolly LP et al (2011) Pediatric brown adipose tissue: detection, epidemiology, and differences from adults. J Pediatr. doi:10.1016/j.jpeds.2011.06.028PubMed Drubach LA, Palmer EL 3rd, Connolly LP et al (2011) Pediatric brown adipose tissue: detection, epidemiology, and differences from adults. J Pediatr. doi:10.1016/j.jpeds.2011.06.028PubMed
16.
Zurück zum Zitat Enerbäck S, Jacobsson A, Simpson EM et al (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387:90–94. doi:10.1038/387090a0CrossRefPubMed Enerbäck S, Jacobsson A, Simpson EM et al (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387:90–94. doi:10.1038/387090a0CrossRefPubMed
17.
Zurück zum Zitat Gilsanz V, Chung SA, Jackson H et al (2011) Functional brown adipose tissue is related to muscle volume in children and adolescents. J Pediatr 158:722–726. doi:10.1016/j.jpeds.2010.11.020CrossRefPubMed Gilsanz V, Chung SA, Jackson H et al (2011) Functional brown adipose tissue is related to muscle volume in children and adolescents. J Pediatr 158:722–726. doi:10.1016/j.jpeds.2010.11.020CrossRefPubMed
18.
Zurück zum Zitat Gilsanz V, Smith ML, Goodarzian F et al (2012) Changes in brown adipose tissue in boys and girls during childhood and puberty. J Pediatr 160:604–609. doi:10.1016/j.jpeds.2011.09.035CrossRefPubMed Gilsanz V, Smith ML, Goodarzian F et al (2012) Changes in brown adipose tissue in boys and girls during childhood and puberty. J Pediatr 160:604–609. doi:10.1016/j.jpeds.2011.09.035CrossRefPubMed
19.
Zurück zum Zitat Hatai S (1902) On the presence in human embryos of an interscapular gland corresponding to the so-called Hibernating gland of lower mammals. Anat Anz 21:369–373 Hatai S (1902) On the presence in human embryos of an interscapular gland corresponding to the so-called Hibernating gland of lower mammals. Anat Anz 21:369–373
21.
Zurück zum Zitat Himms-Hagen J, Melnyk A, Zingaretti MC et al (2000) Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 279:C670–C681PubMed Himms-Hagen J, Melnyk A, Zingaretti MC et al (2000) Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 279:C670–C681PubMed
22.
Zurück zum Zitat Jespersen NZ, Larsen TJ, Peijs L et al (2013) A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab 17:798–805. doi:10.1016/j.cmet.2013.04.011CrossRefPubMed Jespersen NZ, Larsen TJ, Peijs L et al (2013) A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab 17:798–805. doi:10.1016/j.cmet.2013.04.011CrossRefPubMed
23.
Zurück zum Zitat Kern PA, Finlin BS, Zhu B et al (2014) The effects of temperature and seasons on subcutaneous white adipose tissue in humans: evidence for thermogenic gene induction. J Clin Endocrinol Metab 99:jc20142440. doi:10.1210/jc.2014–2440CrossRef Kern PA, Finlin BS, Zhu B et al (2014) The effects of temperature and seasons on subcutaneous white adipose tissue in humans: evidence for thermogenic gene induction. J Clin Endocrinol Metab 99:jc20142440. doi:10.1210/jc.2014–2440CrossRef
24.
Zurück zum Zitat Van Der Lans AAJJ, Hoeks J, Brans B et al (2013) Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 123:3395–3403. doi:10.1172/JCI68993CrossRefPubMedPubMedCentral Van Der Lans AAJJ, Hoeks J, Brans B et al (2013) Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 123:3395–3403. doi:10.1172/JCI68993CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Lean ME, James WP, Jennings G, Trayhurn P (1986) Brown adipose tissue uncoupling protein content in human infants, children and adults. Clin Sci 71:291–297CrossRefPubMed Lean ME, James WP, Jennings G, Trayhurn P (1986) Brown adipose tissue uncoupling protein content in human infants, children and adults. Clin Sci 71:291–297CrossRefPubMed
26.
Zurück zum Zitat Lee P, Linderman JD, Smith S et al (2014) Irisin and {FGF}21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 19:302–309. doi:10.1016/j.cmet.2013.12.017CrossRefPubMed Lee P, Linderman JD, Smith S et al (2014) Irisin and {FGF}21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 19:302–309. doi:10.1016/j.cmet.2013.12.017CrossRefPubMed
27.
Zurück zum Zitat Lee P, Swarbrick MM, Zhao JT, Ho KKY (2011) Inducible brown adipogenesis of supraclavicular fat in adult humans. Endocrinology 152:3597–3602. doi:10.1210/en.2011-1349CrossRefPubMed Lee P, Swarbrick MM, Zhao JT, Ho KKY (2011) Inducible brown adipogenesis of supraclavicular fat in adult humans. Endocrinology 152:3597–3602. doi:10.1210/en.2011-1349CrossRefPubMed
28.
Zurück zum Zitat Lidell ME, Betz MJ, Dahlqvist Leinhard O et al (2013) Evidence for two types of brown adipose tissue in humans. Nat Med 19:631–634. doi:10.1038/nm.3017CrossRefPubMed Lidell ME, Betz MJ, Dahlqvist Leinhard O et al (2013) Evidence for two types of brown adipose tissue in humans. Nat Med 19:631–634. doi:10.1038/nm.3017CrossRefPubMed
29.
Zurück zum Zitat Marken Lichtenbelt WD van, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508 (360/15/1500 [pii]). doi:10.1056/NEJMoa0808718CrossRefPubMed Marken Lichtenbelt WD van, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508 (360/15/1500 [pii]). doi:10.1056/NEJMoa0808718CrossRefPubMed
30.
Zurück zum Zitat Muzik O, Mangner TJ, Granneman JG (2012) Assessment of oxidative metabolism in brown fat using {PET} imaging. Front Endocrinol (Lausanne) 3:15. doi:10.3389/fendo.2012.00015 Muzik O, Mangner TJ, Granneman JG (2012) Assessment of oxidative metabolism in brown fat using {PET} imaging. Front Endocrinol (Lausanne) 3:15. doi:10.3389/fendo.2012.00015
31.
Zurück zum Zitat Orava J, Nuutila P, Noponen T et al (2013) Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity (Silver Spring):1–37. doi:10.1002/oby.20456 Orava J, Nuutila P, Noponen T et al (2013) Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity (Silver Spring):1–37. doi:10.1002/oby.20456
32.
Zurück zum Zitat Ouellet V, Labbé SM, Blondin DP et al (2012) Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 122:545–552. doi:10.1172/JCI60433CrossRefPubMedPubMedCentral Ouellet V, Labbé SM, Blondin DP et al (2012) Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 122:545–552. doi:10.1172/JCI60433CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Pfannenberg C, Werner MK, Ripkens S et al (2010) Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59:1789–1793. doi:10.2337/db10-0004CrossRefPubMedPubMedCentral Pfannenberg C, Werner MK, Ripkens S et al (2010) Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59:1789–1793. doi:10.2337/db10-0004CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Ponrartana S, Aggabao PC, Hu HH et al (2012) Brown adipose tissue and its relationship to bone structure in pediatric patients. J Clin Endocrinol Metab 97:2693–2698. doi:10.1210/jc.2012-1589CrossRefPubMedPubMedCentral Ponrartana S, Aggabao PC, Hu HH et al (2012) Brown adipose tissue and its relationship to bone structure in pediatric patients. J Clin Endocrinol Metab 97:2693–2698. doi:10.1210/jc.2012-1589CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Richard D, Monge-Roffarello B, Chechi K et al (2012) Control and physiological determinants of sympathetically mediated brown adipose tissue thermogenesis. Front Endocrinol (Lausanne) 3:1–8. doi:10.3389/fendo.2012.00036 Richard D, Monge-Roffarello B, Chechi K et al (2012) Control and physiological determinants of sympathetically mediated brown adipose tissue thermogenesis. Front Endocrinol (Lausanne) 3:1–8. doi:10.3389/fendo.2012.00036
36.
Zurück zum Zitat Rockstroh D, Landgraf K, Wagner IV et al (2015) Direct evidence of brown adipocytes in different fat depots in children. PLoS ONE 10:e0117841. doi:10.1371/journal.pone.0117841CrossRefPubMedPubMedCentral Rockstroh D, Landgraf K, Wagner IV et al (2015) Direct evidence of brown adipocytes in different fat depots in children. PLoS ONE 10:e0117841. doi:10.1371/journal.pone.0117841CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Rosenwald M, Perdikari A, Rülicke T, Wolfrum C (2013) Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 15:659–667. doi:10.1038/ncb2740CrossRefPubMed Rosenwald M, Perdikari A, Rülicke T, Wolfrum C (2013) Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 15:659–667. doi:10.1038/ncb2740CrossRefPubMed
38.
Zurück zum Zitat Saito M, Okamatsu-Ogura Y, Matsushita M et al (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531. doi:10.2337/db09-0530CrossRefPubMedPubMedCentral Saito M, Okamatsu-Ogura Y, Matsushita M et al (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531. doi:10.2337/db09-0530CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Schlein C, Talukdar S, Heine M et al (2016) FGF21 lowers plasma triglycerides by accelerating lipoprotein catabolism in white and brown adipose tissues. Cell Metab. doi:10.1016/j.cmet.2016.01.006PubMed Schlein C, Talukdar S, Heine M et al (2016) FGF21 lowers plasma triglycerides by accelerating lipoprotein catabolism in white and brown adipose tissues. Cell Metab. doi:10.1016/j.cmet.2016.01.006PubMed
40.
Zurück zum Zitat Sharp LZ, Shinoda K, Ohno H et al (2012) Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE. doi:10.1371/journal.pone.0049452 Sharp LZ, Shinoda K, Ohno H et al (2012) Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE. doi:10.1371/journal.pone.0049452
41.
Zurück zum Zitat Shimasaki T, Masaki T, Mitsutomi K et al (2013) The Dipeptidyl Peptidase-4 inhibitor Des-Fluoro-Sitagliptin regulates brown adipose tissue uncoupling protein levels in mice with diet-induced obesity. PLoS ONE 8:1–11. doi:10.1371/journal.pone.0063626CrossRef Shimasaki T, Masaki T, Mitsutomi K et al (2013) The Dipeptidyl Peptidase-4 inhibitor Des-Fluoro-Sitagliptin regulates brown adipose tissue uncoupling protein levels in mice with diet-induced obesity. PLoS ONE 8:1–11. doi:10.1371/journal.pone.0063626CrossRef
42.
Zurück zum Zitat Shinoda K, Luijten IHN, Hasegawa Y et al (2015) Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat Med 2:1–8. doi:10.1038/nm.3819 Shinoda K, Luijten IHN, Hasegawa Y et al (2015) Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat Med 2:1–8. doi:10.1038/nm.3819
43.
Zurück zum Zitat Stuart JA, Harper JA, Brindle KM et al (2001) A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast. Biochem J 356:779–789CrossRefPubMedPubMedCentral Stuart JA, Harper JA, Brindle KM et al (2001) A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast. Biochem J 356:779–789CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Symonds ME, Henderson K, Elvidge L et al (2012) Thermal imaging to assess age-related changes of skin temperature within the supraclavicular region co-locating with brown adipose tissue in healthy children. J Pediatr. doi:10.1016/j.jpeds.2012.04.056PubMed Symonds ME, Henderson K, Elvidge L et al (2012) Thermal imaging to assess age-related changes of skin temperature within the supraclavicular region co-locating with brown adipose tissue in healthy children. J Pediatr. doi:10.1016/j.jpeds.2012.04.056PubMed
45.
Zurück zum Zitat Tews D, Schwar V, Scheithauer M et al (2014) Comparative gene array analysis of progenitor cells from human paired deep neck and subcutaneous adipose tissue. Mol Cell Endocrinol 395:41–50. doi:10.1016/j.mce.2014.07.011CrossRefPubMed Tews D, Schwar V, Scheithauer M et al (2014) Comparative gene array analysis of progenitor cells from human paired deep neck and subcutaneous adipose tissue. Mol Cell Endocrinol 395:41–50. doi:10.1016/j.mce.2014.07.011CrossRefPubMed
46.
Zurück zum Zitat Tseng Y‑H, Kokkotou E, Schulz TJ et al (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004. doi:10.1038/nature07221CrossRefPubMedPubMedCentral Tseng Y‑H, Kokkotou E, Schulz TJ et al (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004. doi:10.1038/nature07221CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Vijgen GHEJ, Bouvy ND, Teule GJJ et al (2012) Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J Clin Endocrinol Metab 97:E1229–E1233. doi:10.1210/jc.2012-1289CrossRefPubMed Vijgen GHEJ, Bouvy ND, Teule GJJ et al (2012) Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J Clin Endocrinol Metab 97:E1229–E1233. doi:10.1210/jc.2012-1289CrossRefPubMed
48.
Zurück zum Zitat Virtanen KA, Lidell ME, Orava J et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525 (360/15/1518 [pii]). doi:10.1056/NEJMoa0808949CrossRefPubMed Virtanen KA, Lidell ME, Orava J et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525 (360/15/1518 [pii]). doi:10.1056/NEJMoa0808949CrossRefPubMed
49.
Zurück zum Zitat Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19:1338–1344. doi:10.1038/nm.3324CrossRefPubMedPubMedCentral Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19:1338–1344. doi:10.1038/nm.3324CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Wu J, Boström P, Sparks LM et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376. doi:10.1016/j.cell.2012.05.016CrossRefPubMedPubMedCentral Wu J, Boström P, Sparks LM et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376. doi:10.1016/j.cell.2012.05.016CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Xue R, Wan Y, Zhang S et al (2013) Role of bone morphogenetic protein 4 in the differentiation of brown fat-like adipocytes. Am J Physiol Endocrinol Metab 306:E363–E372. doi:10.1152/ajpendo.00119.2013CrossRefPubMed Xue R, Wan Y, Zhang S et al (2013) Role of bone morphogenetic protein 4 in the differentiation of brown fat-like adipocytes. Am J Physiol Endocrinol Metab 306:E363–E372. doi:10.1152/ajpendo.00119.2013CrossRefPubMed
52.
Zurück zum Zitat Yoneshiro T, Aita S, Kawai Y et al (2012) Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am J Clin Nutr. doi:10.3945/ajcn.111.018606PubMed Yoneshiro T, Aita S, Kawai Y et al (2012) Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am J Clin Nutr. doi:10.3945/ajcn.111.018606PubMed
53.
Zurück zum Zitat Yoneshiro T, Aita S, Matsushita M et al (2010) Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity (Silver Spring). doi:10.1038/oby.2010.105 Yoneshiro T, Aita S, Matsushita M et al (2010) Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity (Silver Spring). doi:10.1038/oby.2010.105
54.
Zurück zum Zitat Yoneshiro T, Aita S, Matsushita M et al (2013) Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest 123:3404–3408. doi:10.1172/JCI67803CrossRefPubMedPubMedCentral Yoneshiro T, Aita S, Matsushita M et al (2013) Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest 123:3404–3408. doi:10.1172/JCI67803CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Young P, Arch JR, Ashwell M (1984) Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett 167:10–14CrossRefPubMed Young P, Arch JR, Ashwell M (1984) Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett 167:10–14CrossRefPubMed
56.
Zurück zum Zitat Zingaretti MC, Crosta F, Vitali A et al (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 23:3113–3120. doi:10.1096/fj.09-133546CrossRefPubMed Zingaretti MC, Crosta F, Vitali A et al (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 23:3113–3120. doi:10.1096/fj.09-133546CrossRefPubMed
Metadaten
Titel
Physiologische Relevanz des braunen Fettgewebes beim Menschen
verfasst von
D. Tews
P. Fischer-Posovszky
K. M. Debatin
A. J. Beer
Prof. Dr. M. Wabitsch
Publikationsdatum
12.07.2016
Verlag
Springer Medizin
Schlagwörter
Adipositas
Adipositas
Erschienen in
Monatsschrift Kinderheilkunde / Ausgabe 6/2017
Print ISSN: 0026-9298
Elektronische ISSN: 1433-0474
DOI
https://doi.org/10.1007/s00112-016-0129-4

Weitere Artikel der Ausgabe 6/2017

Monatsschrift Kinderheilkunde 6/2017 Zur Ausgabe

Mitteilungen der DGKJ

Mitteilungen der DGKJ

Pädiatrie aktuell

Pädiatrie aktuell

Einführung zum Thema

Lernstörungen

Neuer Typ-1-Diabetes bei Kindern am Wochenende eher übersehen

23.04.2024 Typ-1-Diabetes Nachrichten

Wenn Kinder an Werktagen zum Arzt gehen, werden neu auftretender Typ-1-Diabetes und diabetische Ketoazidosen häufiger erkannt als bei Arztbesuchen an Wochenenden oder Feiertagen.

Neue Studienergebnisse zur Myopiekontrolle mit Atropin

22.04.2024 Fehlsichtigkeit Nachrichten

Augentropfen mit niedrig dosiertem Atropin können helfen, das Fortschreiten einer Kurzsichtigkeit bei Kindern zumindest zu verlangsamen, wie die Ergebnisse einer aktuellen Studie mit verschiedenen Dosierungen zeigen.

Spinale Muskelatrophie: Neugeborenen-Screening lohnt sich

18.04.2024 Spinale Muskelatrophien Nachrichten

Seit 2021 ist die Untersuchung auf spinale Muskelatrophie Teil des Neugeborenen-Screenings in Deutschland. Eine Studie liefert weitere Evidenz für den Nutzen der Maßnahme.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.