Skip to main content
Erschienen in: Angiogenesis 4/2013

01.10.2013 | Original Paper

Sprouty4 regulates endothelial cell migration via modulating integrin β3 stability through c-Src

verfasst von: Yan Gong, Xuehui Yang, Qing He, Lindsey Gower, Igor Prudovsky, Calvin P. H. Vary, Peter C. Brooks, Robert E. Friesel

Erschienen in: Angiogenesis | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

Abstract

Angiogenesis is mediated by signaling through receptor tyrosine kinases (RTKs), Src family kinases and adhesion receptors such as integrins, yet the mechanism how these signaling pathways regulate one another remains incompletely understood. The RTK modulator, Sprouty4 (Spry4) inhibits endothelial cell functions and angiogenesis, but the mechanisms remain to be fully elucidated. In this study, we demonstrate that Spry4 regulates angiogenesis in part by regulating endothelial cell migration. Overexpression of Spry4 in human endothelial cells inhibited migration and adhesion on vitronectin (VTN), whereas knockdown of Spry4 enhanced these behaviors. These activities were shown to be c-Src-dependent and Ras-independent. Spry4 disrupted the crosstalk between vascular endothelial growth factor-2 and integrin αVβ3, the receptor for VTN. Spry4 overexpression resulted in decreased integrin β3 protein levels in a post-transcriptional manner in part by modulating its tyrosine phosphorylation by c-Src. Conversely, knockdown of Spry4 resulted in increased integrin β3 protein levels and tyrosine phosphorylation. Moreover, in vivo analysis revealed that Spry4 regulated integrin β3 levels in murine embryos and yolk sacs. Our findings identify an unanticipated role for Spry4 in regulating c-Src activity and integrin β3 protein levels, which contributes to the regulation of migration and adhesion of endothelial cells. Thus, targeting Spry4 may be exploited as a target in anti-angiogenesis therapies.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Semenza GL (2007) Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem 102:840–847CrossRefPubMed Semenza GL (2007) Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem 102:840–847CrossRefPubMed
4.
Zurück zum Zitat Ravelli C, Mitola S, Corsini M, Presta M (2013) Involvement of αvβ3 integrin in gremlin-induced angiogenesis. Angiogenesis 16:235–243CrossRefPubMed Ravelli C, Mitola S, Corsini M, Presta M (2013) Involvement of αvβ3 integrin in gremlin-induced angiogenesis. Angiogenesis 16:235–243CrossRefPubMed
5.
Zurück zum Zitat Silva R, D’Amico G, Hodivala-Dilke KM, Reynolds LE (2008) Integrins: the keys to unlocking angiogenesis. Arterioscler Thromb Vasc Biol 28:1703–1713CrossRefPubMed Silva R, D’Amico G, Hodivala-Dilke KM, Reynolds LE (2008) Integrins: the keys to unlocking angiogenesis. Arterioscler Thromb Vasc Biol 28:1703–1713CrossRefPubMed
6.
Zurück zum Zitat Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286CrossRefPubMed Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286CrossRefPubMed
7.
Zurück zum Zitat Glade-Bender J, Kandel JJ, Yamashiro DJ (2003) VEGF blocking therapy in the treatment of cancer. Expert Opin Biol Ther 3:263–276CrossRefPubMed Glade-Bender J, Kandel JJ, Yamashiro DJ (2003) VEGF blocking therapy in the treatment of cancer. Expert Opin Biol Ther 3:263–276CrossRefPubMed
8.
Zurück zum Zitat Andreoli CM, Miller JW (2007) Anti-vascular endothelial growth factor therapy for ocular neovascular disease. Curr Opin Ophthalmol 18:502–508CrossRefPubMed Andreoli CM, Miller JW (2007) Anti-vascular endothelial growth factor therapy for ocular neovascular disease. Curr Opin Ophthalmol 18:502–508CrossRefPubMed
9.
Zurück zum Zitat Simo R, Carrasco E, Garcia-Ramirez M, Hernandez C (2006) Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev 2:71–98CrossRefPubMed Simo R, Carrasco E, Garcia-Ramirez M, Hernandez C (2006) Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev 2:71–98CrossRefPubMed
10.
Zurück zum Zitat Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571CrossRefPubMed Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571CrossRefPubMed
11.
Zurück zum Zitat Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T et al (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164CrossRefPubMed Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T et al (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164CrossRefPubMed
12.
Zurück zum Zitat Serini G, Napione L, Bussolino F (2008) Integrins team up with tyrosine kinase receptors and plexins to control angiogenesis. Curr Opin Hematol 15:235–242CrossRefPubMed Serini G, Napione L, Bussolino F (2008) Integrins team up with tyrosine kinase receptors and plexins to control angiogenesis. Curr Opin Hematol 15:235–242CrossRefPubMed
13.
Zurück zum Zitat Weis SM, Lindquist JN, Barnes LA, Lutu-Fuga KM, Cui J et al (2007) Cooperation between VEGF and β3 integrin during cardiac vascular development. Blood 109:1962–1970CrossRefPubMed Weis SM, Lindquist JN, Barnes LA, Lutu-Fuga KM, Cui J et al (2007) Cooperation between VEGF and β3 integrin during cardiac vascular development. Blood 109:1962–1970CrossRefPubMed
14.
Zurück zum Zitat Mahabeleshwar GH, Feng W, Phillips DR, Byzova TV (2006) Integrin signaling is critical for pathological angiogenesis. J Exp Med 203:2495–2507CrossRefPubMed Mahabeleshwar GH, Feng W, Phillips DR, Byzova TV (2006) Integrin signaling is critical for pathological angiogenesis. J Exp Med 203:2495–2507CrossRefPubMed
15.
Zurück zum Zitat Mahabeleshwar GH, Feng W, Reddy K, Plow EF, Byzova TV (2007) Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ Res 101:570–580CrossRefPubMed Mahabeleshwar GH, Feng W, Reddy K, Plow EF, Byzova TV (2007) Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ Res 101:570–580CrossRefPubMed
16.
Zurück zum Zitat Jang YC, Tsou R, Gibran NS, Isik FF (2000) Vitronectin deficiency is associated with increased wound fibrinolysis and decreased microvascular angiogenesis in mice. Surgery 127:696–704CrossRefPubMed Jang YC, Tsou R, Gibran NS, Isik FF (2000) Vitronectin deficiency is associated with increased wound fibrinolysis and decreased microvascular angiogenesis in mice. Surgery 127:696–704CrossRefPubMed
17.
Zurück zum Zitat Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA (1998) Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92:253–263CrossRefPubMed Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA (1998) Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92:253–263CrossRefPubMed
18.
Zurück zum Zitat Minowada G, Jarvis LA, Chi CL, Neubuser A, Sun X et al (1999) Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126:4465–4475PubMed Minowada G, Jarvis LA, Chi CL, Neubuser A, Sun X et al (1999) Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126:4465–4475PubMed
19.
Zurück zum Zitat Yang X, Webster JB, Kovalenko D, Nadeau RJ, Zubanova O et al (2006) Sprouty genes are expressed in osteoblasts and inhibit fibroblast growth factor-mediated osteoblast responses. Calcif Tissue Int 78:233–240CrossRefPubMed Yang X, Webster JB, Kovalenko D, Nadeau RJ, Zubanova O et al (2006) Sprouty genes are expressed in osteoblasts and inhibit fibroblast growth factor-mediated osteoblast responses. Calcif Tissue Int 78:233–240CrossRefPubMed
20.
Zurück zum Zitat Cabrita MA, Christofori G (2008) Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis 11:53–62CrossRefPubMed Cabrita MA, Christofori G (2008) Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis 11:53–62CrossRefPubMed
21.
Zurück zum Zitat Edwin F, Anderson K, Ying C, Patel TB (2009) Intermolecular interactions of Sprouty proteins and their implications in development and disease. Mol Pharmacol 76:679–691CrossRefPubMed Edwin F, Anderson K, Ying C, Patel TB (2009) Intermolecular interactions of Sprouty proteins and their implications in development and disease. Mol Pharmacol 76:679–691CrossRefPubMed
22.
Zurück zum Zitat Guy GR, Jackson RA, Yusoff P, Chow SY (2009) Sprouty proteins: modified modulators, matchmakers or missing links? J Endocrinol 203:191–202CrossRefPubMed Guy GR, Jackson RA, Yusoff P, Chow SY (2009) Sprouty proteins: modified modulators, matchmakers or missing links? J Endocrinol 203:191–202CrossRefPubMed
23.
Zurück zum Zitat Impagnatiello MA, Weitzer S, Gannon G, Compagni A, Cotten M et al (2001) Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol 152:1087–1098CrossRefPubMed Impagnatiello MA, Weitzer S, Gannon G, Compagni A, Cotten M et al (2001) Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol 152:1087–1098CrossRefPubMed
24.
Zurück zum Zitat Lee SH, Schloss DJ, Jarvis L, Krasnow MA, Swain JL (2001) Inhibition of angiogenesis by a mouse sprouty protein. J Biol Chem 276:4128–4133CrossRefPubMed Lee SH, Schloss DJ, Jarvis L, Krasnow MA, Swain JL (2001) Inhibition of angiogenesis by a mouse sprouty protein. J Biol Chem 276:4128–4133CrossRefPubMed
25.
Zurück zum Zitat Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ et al (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239CrossRefPubMed Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ et al (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239CrossRefPubMed
26.
Zurück zum Zitat Sasaki A, Taketomi T, Kato R, Saeki K, Nonami A et al (2003) Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Cell Cycle 2:281–282CrossRefPubMed Sasaki A, Taketomi T, Kato R, Saeki K, Nonami A et al (2003) Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Cell Cycle 2:281–282CrossRefPubMed
27.
Zurück zum Zitat Taniguchi K, Ayada T, Ichiyama K, Kohno R, Yonemitsu Y et al (2007) Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling. Biochem Biophys Res Commun 352:896–902CrossRefPubMed Taniguchi K, Ayada T, Ichiyama K, Kohno R, Yonemitsu Y et al (2007) Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling. Biochem Biophys Res Commun 352:896–902CrossRefPubMed
28.
Zurück zum Zitat Taniguchi K, Ishizaki T, Ayada T, Sugiyama Y, Wakabayashi Y et al (2009) Sprouty4 deficiency potentiates Ras-independent angiogenic signals and tumor growth. Cancer Sci 100:1648–1654CrossRefPubMed Taniguchi K, Ishizaki T, Ayada T, Sugiyama Y, Wakabayashi Y et al (2009) Sprouty4 deficiency potentiates Ras-independent angiogenic signals and tumor growth. Cancer Sci 100:1648–1654CrossRefPubMed
29.
Zurück zum Zitat Taniguchi K, Sasaki K, Watari K, Yasukawa H, Imaizumi T et al (2009) Suppression of Sproutys has a therapeutic effect for a mouse model of ischemia by enhancing angiogenesis. PLoS One 4:e5467CrossRefPubMed Taniguchi K, Sasaki K, Watari K, Yasukawa H, Imaizumi T et al (2009) Suppression of Sproutys has a therapeutic effect for a mouse model of ischemia by enhancing angiogenesis. PLoS One 4:e5467CrossRefPubMed
30.
Zurück zum Zitat Yang X, Harkins LK, Zubanova O, Harrington A, Kovalenko D et al (2008) Overexpression of Spry1 in chondrocytes causes attenuated FGFR ubiquitination and sustained ERK activation resulting in chondrodysplasia. Dev Biol 321:64–76CrossRefPubMed Yang X, Harkins LK, Zubanova O, Harrington A, Kovalenko D et al (2008) Overexpression of Spry1 in chondrocytes causes attenuated FGFR ubiquitination and sustained ERK activation resulting in chondrodysplasia. Dev Biol 321:64–76CrossRefPubMed
31.
Zurück zum Zitat Yang X, Gong Y, Friesel R (2011) Spry1 is expressed in hemangioblasts and negatively regulates primitive hematopoiesis and endothelial cell function. PLoS One 6:e18374CrossRefPubMed Yang X, Gong Y, Friesel R (2011) Spry1 is expressed in hemangioblasts and negatively regulates primitive hematopoiesis and endothelial cell function. PLoS One 6:e18374CrossRefPubMed
32.
Zurück zum Zitat Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD et al (2006) Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell 11:181–190CrossRefPubMed Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD et al (2006) Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell 11:181–190CrossRefPubMed
33.
Zurück zum Zitat Kovalenko D, Yang X, Chen PY, Nadeau RJ, Zubanova O et al (2006) A role for extracellular and transmembrane domains of Sef in Sef-mediated inhibition of FGF signaling. Cell Signal 18:1958–1966CrossRefPubMed Kovalenko D, Yang X, Chen PY, Nadeau RJ, Zubanova O et al (2006) A role for extracellular and transmembrane domains of Sef in Sef-mediated inhibition of FGF signaling. Cell Signal 18:1958–1966CrossRefPubMed
34.
Zurück zum Zitat Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100:782–794CrossRefPubMed Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100:782–794CrossRefPubMed
35.
Zurück zum Zitat Tsumura Y, Toshima J, Leeksma OC, Ohashi K, Mizuno K (2005) Sprouty-4 negatively regulates cell spreading by inhibiting the kinase activity of testicular protein kinase. Biochem J 387:627–637CrossRefPubMed Tsumura Y, Toshima J, Leeksma OC, Ohashi K, Mizuno K (2005) Sprouty-4 negatively regulates cell spreading by inhibiting the kinase activity of testicular protein kinase. Biochem J 387:627–637CrossRefPubMed
36.
Zurück zum Zitat Byzova TV, Goldman CK, Pampori N, Thomas KA, Bett A et al (2000) A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol Cell 6:851–860PubMed Byzova TV, Goldman CK, Pampori N, Thomas KA, Bett A et al (2000) A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol Cell 6:851–860PubMed
37.
Zurück zum Zitat Somanath PR, Malinin NL, Byzova TV (2009) Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 12:177–185CrossRefPubMed Somanath PR, Malinin NL, Byzova TV (2009) Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 12:177–185CrossRefPubMed
38.
Zurück zum Zitat Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439CrossRefPubMed Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439CrossRefPubMed
39.
Zurück zum Zitat Tefft D, Lee M, Smith S, Crowe DL, Bellusci S et al (2002) mSprouty2 inhibits FGF10-activated MAP kinase by differentially binding to upstream target proteins. Am J Physiol Lung Cell Mol Physiol 283:L700–L706PubMed Tefft D, Lee M, Smith S, Crowe DL, Bellusci S et al (2002) mSprouty2 inhibits FGF10-activated MAP kinase by differentially binding to upstream target proteins. Am J Physiol Lung Cell Mol Physiol 283:L700–L706PubMed
40.
Zurück zum Zitat Caswell PT, Vadrevu S, Norman JC (2009) Integrins: masters and slaves of endocytic transport. Nat Rev Mol Cell Biol 10:843–853CrossRefPubMed Caswell PT, Vadrevu S, Norman JC (2009) Integrins: masters and slaves of endocytic transport. Nat Rev Mol Cell Biol 10:843–853CrossRefPubMed
41.
Zurück zum Zitat Kaabeche K, Guenou H, Bouvard D, Didelot N, Listrat A et al (2005) Cbl-mediated ubiquitination of alpha5 integrin subunit mediates fibronectin-dependent osteoblast detachment and apoptosis induced by FGFR2 activation. J Cell Sci 118:1223–1232CrossRefPubMed Kaabeche K, Guenou H, Bouvard D, Didelot N, Listrat A et al (2005) Cbl-mediated ubiquitination of alpha5 integrin subunit mediates fibronectin-dependent osteoblast detachment and apoptosis induced by FGFR2 activation. J Cell Sci 118:1223–1232CrossRefPubMed
42.
Zurück zum Zitat Lobert VH, Brech A, Pedersen NM, Wesche J, Oppelt A et al (2010) Ubiquitination of alpha 5 beta 1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. Dev Cell 19:148–159CrossRefPubMed Lobert VH, Brech A, Pedersen NM, Wesche J, Oppelt A et al (2010) Ubiquitination of alpha 5 beta 1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. Dev Cell 19:148–159CrossRefPubMed
43.
Zurück zum Zitat Egan JE, Hall AB, Yatsula BA, Bar-Sagi D (2002) The bimodal regulation of epidermal growth factor signaling by human Sprouty proteins. Proc Natl Acad Sci USA 99:6041–6046CrossRefPubMed Egan JE, Hall AB, Yatsula BA, Bar-Sagi D (2002) The bimodal regulation of epidermal growth factor signaling by human Sprouty proteins. Proc Natl Acad Sci USA 99:6041–6046CrossRefPubMed
44.
Zurück zum Zitat Fong CW, Leong HF, Wong ES, Lim J, Yusoff P et al (2003) Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function. J Biol Chem 278:33456–33464CrossRefPubMed Fong CW, Leong HF, Wong ES, Lim J, Yusoff P et al (2003) Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function. J Biol Chem 278:33456–33464CrossRefPubMed
45.
Zurück zum Zitat Hall AB, Jura N, DaSilva J, Jang YJ, Gong D et al (2003) hSpry2 is targeted to the ubiquitin-dependent proteasome pathway by c-Cbl. Curr Biol 13:308–314CrossRefPubMed Hall AB, Jura N, DaSilva J, Jang YJ, Gong D et al (2003) hSpry2 is targeted to the ubiquitin-dependent proteasome pathway by c-Cbl. Curr Biol 13:308–314CrossRefPubMed
46.
Zurück zum Zitat Wong ES, Fong CW, Lim J, Yusoff P, Low BC et al (2002) Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO J 21:4796–4808CrossRefPubMed Wong ES, Fong CW, Lim J, Yusoff P, Low BC et al (2002) Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO J 21:4796–4808CrossRefPubMed
47.
Zurück zum Zitat Nadeau RJ, Toher JL, Yang X, Kovalenko D, Friesel R (2007) Regulation of Sprouty2 stability by mammalian Seven-in-Absentia homolog 2. J Cell Biochem 100:151–160CrossRefPubMed Nadeau RJ, Toher JL, Yang X, Kovalenko D, Friesel R (2007) Regulation of Sprouty2 stability by mammalian Seven-in-Absentia homolog 2. J Cell Biochem 100:151–160CrossRefPubMed
48.
Zurück zum Zitat Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J et al (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4:915–924CrossRefPubMed Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J et al (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4:915–924CrossRefPubMed
49.
Zurück zum Zitat Eliceiri BP, Cheresh DA (1999) The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 103:1227–1230CrossRefPubMed Eliceiri BP, Cheresh DA (1999) The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 103:1227–1230CrossRefPubMed
Metadaten
Titel
Sprouty4 regulates endothelial cell migration via modulating integrin β3 stability through c-Src
verfasst von
Yan Gong
Xuehui Yang
Qing He
Lindsey Gower
Igor Prudovsky
Calvin P. H. Vary
Peter C. Brooks
Robert E. Friesel
Publikationsdatum
01.10.2013
Verlag
Springer Netherlands
Erschienen in
Angiogenesis / Ausgabe 4/2013
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-013-9361-x

Weitere Artikel der Ausgabe 4/2013

Angiogenesis 4/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.