Skip to main content
Erschienen in: Brain Structure and Function 7/2019

27.06.2019 | Original Article

Structural brain network of gifted children has a more integrated and versatile topology

verfasst von: Jordi Solé-Casals, Josep M. Serra-Grabulosa, Rafael Romero-Garcia, Gemma Vilaseca, Ana Adan, Núria Vilaró, Núria Bargalló, Edward T. Bullmore

Erschienen in: Brain Structure and Function | Ausgabe 7/2019

Einloggen, um Zugang zu erhalten

Abstract

Gifted children learn more rapidly and effectively than others, presumably due to neurophysiological differences that affect efficiency in neuronal communication. Identifying the topological features that support its capabilities is relevant to understanding how the brain structure is related to intelligence. We proposed the analysis of the structural covariance network to assess which organizational patterns are characteristic of gifted children. The graph theory was used to analyse topological properties of structural covariance across a group of gifted children. The analysis was focused on measures of brain network integration, such as, participation coefficient and versatility, which quantifies the strength of specific modular affiliation of each regional node. We found that the gifted group network was more integrated (and less segregated) than the control group network. Brain regional nodes in the gifted group network had higher versatility and participation coefficient, indicating greater inter-modular communication mediated by connector hubs with links to many modules. Connector hubs of the networks of both groups were located mainly in association with neocortical areas (which had thicker cortex), with fewer hubs in primary or secondary neocortical areas (which had thinner cortex), as well as a few connector hubs in limbic cortex and insula. In the group of gifted children, a larger proportion of connector hubs were located in association cortex. In conclusion, gifted children have a more integrated and versatile brain network topology. This is compatible with the global workspace theory and other data linking integrative network topology to cognitive performance.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14(5):322–336PubMedPubMedCentral Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14(5):322–336PubMedPubMedCentral
Zurück zum Zitat Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28(37):9239–9248PubMedPubMedCentral Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28(37):9239–9248PubMedPubMedCentral
Zurück zum Zitat Bethlehem RAI, Romero-Garcia R, Mak E, Bullmore ET, Baron-Cohen S (2017) Structural covariance networks in children with autism or ADHD. Cereb Cortex 27(8):4267–4276PubMedPubMedCentral Bethlehem RAI, Romero-Garcia R, Mak E, Bullmore ET, Baron-Cohen S (2017) Structural covariance networks in children with autism or ADHD. Cereb Cortex 27(8):4267–4276PubMedPubMedCentral
Zurück zum Zitat Binet A, Simon T (1916) The development of intelligence in children (The Binet–Simon Scale). Psychol Sci 11:175 Binet A, Simon T (1916) The development of intelligence in children (The Binet–Simon Scale). Psychol Sci 11:175
Zurück zum Zitat Binet A, Simon T (1948) The development of the Binet–Simon Scale, 1905–1908. In: Readings in the history of psychology, pp 412–424 Binet A, Simon T (1948) The development of the Binet–Simon Scale, 1905–1908. In: Readings in the history of psychology, pp 412–424
Zurück zum Zitat Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349PubMed Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349PubMed
Zurück zum Zitat Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12(1):1–47PubMed Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12(1):1–47PubMed
Zurück zum Zitat Chabris CF (2007) Cognitive and neurobiological mechanisms of the law of general intelligence. In: Integrating the mind: domain general versus domain specific processes in higher cognition, pp 449–491 Chabris CF (2007) Cognitive and neurobiological mechanisms of the law of general intelligence. In: Integrating the mind: domain general versus domain specific processes in higher cognition, pp 449–491
Zurück zum Zitat Chevalier N, Kurth S, Doucette MR, Wiseheart M, Deoni SCL, Dean DC et al (2015) Myelination is associated with processing speed in early childhood: preliminary insights. PLoS ONE 10(10):e0139897PubMedPubMedCentral Chevalier N, Kurth S, Doucette MR, Wiseheart M, Deoni SCL, Dean DC et al (2015) Myelination is associated with processing speed in early childhood: preliminary insights. PLoS ONE 10(10):e0139897PubMedPubMedCentral
Zurück zum Zitat Colom R, Karama S, Jung RE, Haier RJ (2010) Human intelligence and brain networks. Dialogues Clin Neurosci 12(4):489–501PubMedPubMedCentral Colom R, Karama S, Jung RE, Haier RJ (2010) Human intelligence and brain networks. Dialogues Clin Neurosci 12(4):489–501PubMedPubMedCentral
Zurück zum Zitat Davies G, Tenesa A, Payton A, Yang J, Harris SE, Liewald D et al (2011) Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry 16(10):996–1005PubMedPubMedCentral Davies G, Tenesa A, Payton A, Yang J, Harris SE, Liewald D et al (2011) Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry 16(10):996–1005PubMedPubMedCentral
Zurück zum Zitat Dehaene S, Changeux JP (2011) Experimental and theoretical approaches to conscious processing. Neuron 70(2):200–227 Dehaene S, Changeux JP (2011) Experimental and theoretical approaches to conscious processing. Neuron 70(2):200–227
Zurück zum Zitat Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 3:968–980 Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 3:968–980
Zurück zum Zitat Evans AC (2013) Networks of anatomical covariance. Neuroimage 80:489–504PubMed Evans AC (2013) Networks of anatomical covariance. Neuroimage 80:489–504PubMed
Zurück zum Zitat Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055PubMed Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055PubMed
Zurück zum Zitat Fornito A, Zalesky A, Bullmore ET (2016) Fundamentals of brain network analysis. Academic Press, San Diego Fornito A, Zalesky A, Bullmore ET (2016) Fundamentals of brain network analysis. Academic Press, San Diego
Zurück zum Zitat Geake JG (2008) The neurobiology of giftedness. In: Wystąpienie na konferencji 10th Asia-Pacific conference on giftedness, Singapore Geake JG (2008) The neurobiology of giftedness. In: Wystąpienie na konferencji 10th Asia-Pacific conference on giftedness, Singapore
Zurück zum Zitat Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, Beaulieu C (2009) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19(3):524–536PubMed Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, Beaulieu C (2009) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19(3):524–536PubMed
Zurück zum Zitat Gross MUM (2006) Exceptionally gifted children: long-term outcomes of academic acceleration and nonacceleration. J Educ Gifted 29(4):404–429 Gross MUM (2006) Exceptionally gifted children: long-term outcomes of academic acceleration and nonacceleration. J Educ Gifted 29(4):404–429
Zurück zum Zitat He Y, Chen Z, Gong G, Evans A (2009) Neuronal networks in Alzheimer’s disease. The Neuroscientist 15(4):333–350PubMed He Y, Chen Z, Gong G, Evans A (2009) Neuronal networks in Alzheimer’s disease. The Neuroscientist 15(4):333–350PubMed
Zurück zum Zitat Irimia A, Van Horn JD (2013) The structural, connectomic and network covariance of the human brain. Neuroimage 66:489–499PubMed Irimia A, Van Horn JD (2013) The structural, connectomic and network covariance of the human brain. Neuroimage 66:489–499PubMed
Zurück zum Zitat Jung RE, Haier RJ (2007) The Parieto-Frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci 30(02):135–154PubMed Jung RE, Haier RJ (2007) The Parieto-Frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci 30(02):135–154PubMed
Zurück zum Zitat Karama S, Colom R, Johnson W, Deary IJ, Haier R, Waber DP et al (2011) Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18. Neuroimage 55(4):1443–1453PubMedPubMedCentral Karama S, Colom R, Johnson W, Deary IJ, Haier R, Waber DP et al (2011) Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18. Neuroimage 55(4):1443–1453PubMedPubMedCentral
Zurück zum Zitat Khundrakpam BS, Reid A, Brauer J, Carbonell F, Lewis J, Ameis S et al (2013) Developmental changes in organization of structural brain networks. Cereb Cortex 23(9):2072–2085PubMed Khundrakpam BS, Reid A, Brauer J, Carbonell F, Lewis J, Ameis S et al (2013) Developmental changes in organization of structural brain networks. Cereb Cortex 23(9):2072–2085PubMed
Zurück zum Zitat Khundrakpam BS, Lewis JD, Reid A, Karama S, Zhao L, Chouinard-Decorte F, Evans AC (2016) Imaging structural covariance in the development of intelligence. Neuroimage 144(Pt A):227–240PubMed Khundrakpam BS, Lewis JD, Reid A, Karama S, Zhao L, Chouinard-Decorte F, Evans AC (2016) Imaging structural covariance in the development of intelligence. Neuroimage 144(Pt A):227–240PubMed
Zurück zum Zitat Kim DJ, Davis EP, Sandman CA, Sporns O, O’Donnell BF, Buss C, Hetrick WP (2016) Children’s intellectual ability is associated with structural network integrity. Neuroimage 124:550–556PubMed Kim DJ, Davis EP, Sandman CA, Sporns O, O’Donnell BF, Buss C, Hetrick WP (2016) Children’s intellectual ability is associated with structural network integrity. Neuroimage 124:550–556PubMed
Zurück zum Zitat Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296(5569):910–913PubMed Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296(5569):910–913PubMed
Zurück zum Zitat Menary K, Collins PF, Porter JN, Muetzel R, Olson EA, Kumar V et al (2013) Associations between cortical thickness and general intelligence in children, adolescents and young adults. Intelligence 41(5):597–606PubMedPubMedCentral Menary K, Collins PF, Porter JN, Muetzel R, Olson EA, Kumar V et al (2013) Associations between cortical thickness and general intelligence in children, adolescents and young adults. Intelligence 41(5):597–606PubMedPubMedCentral
Zurück zum Zitat Naghavi HR, Nyberg L (2005) Common fronto-parietal activity in attention, memory, and consciousness: shared demands on integration? Conscious Cogn 14(2):390–425PubMed Naghavi HR, Nyberg L (2005) Common fronto-parietal activity in attention, memory, and consciousness: shared demands on integration? Conscious Cogn 14(2):390–425PubMed
Zurück zum Zitat Navas-Sánchez FJ, Alemán-Gómez Y, Sánchez-Gonzalez J, Guzmán-De-Villoria JA, Franco C, Robles O et al (2014) White matter microstructure correlates of mathematical giftedness and intelligence quotient. Hum Brain Mapp 35(6):2619–2631PubMed Navas-Sánchez FJ, Alemán-Gómez Y, Sánchez-Gonzalez J, Guzmán-De-Villoria JA, Franco C, Robles O et al (2014) White matter microstructure correlates of mathematical giftedness and intelligence quotient. Hum Brain Mapp 35(6):2619–2631PubMed
Zurück zum Zitat Navas-Sánchez FJ, Carmona S, Alemán-Gómez Y, Sánchez-González J, Guzmán-de-Villoria J, Franco C et al (2016) Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents. Hum Brain Mapp 37(5):1893–1902PubMed Navas-Sánchez FJ, Carmona S, Alemán-Gómez Y, Sánchez-González J, Guzmán-de-Villoria J, Franco C et al (2016) Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents. Hum Brain Mapp 37(5):1893–1902PubMed
Zurück zum Zitat Romero-Garcia R, Atienza M, Clemmensen LH, Cantero JL (2012) Effects of network resolution on topological properties of human neocortex. Neuroimage 59(4):3522–3532PubMed Romero-Garcia R, Atienza M, Clemmensen LH, Cantero JL (2012) Effects of network resolution on topological properties of human neocortex. Neuroimage 59(4):3522–3532PubMed
Zurück zum Zitat Romero-Garcia R, Whitaker KJ, Váša F, Seidlitz J, Shinn M, Fonagy P et al (2018) Structural covariance networks are coupled to expression of genes enriched in supragranular layers of the human cortex. Neuroimage 171:256–267PubMedPubMedCentral Romero-Garcia R, Whitaker KJ, Váša F, Seidlitz J, Shinn M, Fonagy P et al (2018) Structural covariance networks are coupled to expression of genes enriched in supragranular layers of the human cortex. Neuroimage 171:256–267PubMedPubMedCentral
Zurück zum Zitat Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069PubMed Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069PubMed
Zurück zum Zitat Santamaría P, Arribas D, Pereña J, Seisdedos N (2005) EFAI, Evaluación Factorial de las Aptitudes Intelectuales. Departamento I + D TEA Ediciones, Madrid Santamaría P, Arribas D, Pereña J, Seisdedos N (2005) EFAI, Evaluación Factorial de las Aptitudes Intelectuales. Departamento I + D TEA Ediciones, Madrid
Zurück zum Zitat Schnack HG, van Haren NEM, Brouwer RM, Evans A, Durston S, Boomsma DI et al (2014) Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cereb Cortex (New York, N.Y. : 1991) 10:1608–1617 Schnack HG, van Haren NEM, Brouwer RM, Evans A, Durston S, Boomsma DI et al (2014) Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cereb Cortex (New York, N.Y. : 1991) 10:1608–1617
Zurück zum Zitat Seidlitz J, Váša F, Shinn M, Romero-Garcia R, Whitaker KJ, Vértes PE et al (2018) Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 97(1):231–247PubMed Seidlitz J, Váša F, Shinn M, Romero-Garcia R, Whitaker KJ, Vértes PE et al (2018) Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 97(1):231–247PubMed
Zurück zum Zitat Sharda M, Khundrakpam BS, Evans AC, Singh NC (2016) Disruption of structural covariance networks for language in autism is modulated by verbal ability. Brain Struct Funct 221(2):1017–1032PubMed Sharda M, Khundrakpam BS, Evans AC, Singh NC (2016) Disruption of structural covariance networks for language in autism is modulated by verbal ability. Brain Struct Funct 221(2):1017–1032PubMed
Zurück zum Zitat Shinn M, Romero-Garcia R, Seidlitz J, Váša F, Vértes PE, Bullmore E (2017) Versatility of nodal affiliation to communities. Sci Rep 7(1):4273PubMedPubMedCentral Shinn M, Romero-Garcia R, Seidlitz J, Váša F, Vértes PE, Bullmore E (2017) Versatility of nodal affiliation to communities. Sci Rep 7(1):4273PubMedPubMedCentral
Zurück zum Zitat van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE (2009) Efficiency of functional brain networks and intellectual performance. J Neurosci Off J Soc Neurosci 29(23):7619–7624 van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE (2009) Efficiency of functional brain networks and intellectual performance. J Neurosci Off J Soc Neurosci 29(23):7619–7624
Zurück zum Zitat Vértes PE, Rittman T, Whitaker KJ, Romero-Garcia R, Váša F, Kitzbichler MG et al (2016) Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks. Philos Trans R Soc B Biol Sci 371(1705):5. https://doi.org/10.1098/rstb.2015.0362 CrossRef Vértes PE, Rittman T, Whitaker KJ, Romero-Garcia R, Váša F, Kitzbichler MG et al (2016) Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks. Philos Trans R Soc B Biol Sci 371(1705):5. https://​doi.​org/​10.​1098/​rstb.​2015.​0362 CrossRef
Zurück zum Zitat von Economo C (1929) The cytoarchitectonics of the human cerebral cortex. Oxford University Press, Oxford von Economo C (1929) The cytoarchitectonics of the human cerebral cortex. Oxford University Press, Oxford
Zurück zum Zitat Vuoksimaa E, Panizzon MS, Chen CH, Fiecas M, Eyler LT, Fennema-Notestine C et al (2016) Is bigger always better? The importance of cortical configuration with respect to cognitive ability. Neuroimage 129:356–366PubMedPubMedCentral Vuoksimaa E, Panizzon MS, Chen CH, Fiecas M, Eyler LT, Fennema-Notestine C et al (2016) Is bigger always better? The importance of cortical configuration with respect to cognitive ability. Neuroimage 129:356–366PubMedPubMedCentral
Zurück zum Zitat Wang L, Song M, Jiang T, Zhang Y, Yu C (2011) Regional homogeneity of the resting-state brain activity correlates with individual intelligence. Neurosci Lett 488(3):275–278PubMed Wang L, Song M, Jiang T, Zhang Y, Yu C (2011) Regional homogeneity of the resting-state brain activity correlates with individual intelligence. Neurosci Lett 488(3):275–278PubMed
Zurück zum Zitat Wechsler D (1939) The measurement of adult intelligence. Williams & Wilkins Co, Baltimore Wechsler D (1939) The measurement of adult intelligence. Williams & Wilkins Co, Baltimore
Zurück zum Zitat Whitaker KJ, Vértes PE, Romero-Garcia R, Váša F, Moutoussis M, Prabhu G et al (2016) Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc Natl Acad Sci 113(32):9105–9110PubMed Whitaker KJ, Vértes PE, Romero-Garcia R, Váša F, Moutoussis M, Prabhu G et al (2016) Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc Natl Acad Sci 113(32):9105–9110PubMed
Zurück zum Zitat Yang JJ, Yoon U, Yun HJ, Im K, Choi YY, Lee KH et al (2013) Prediction for human intelligence using morphometric characteristics of cortical surface: partial least square analysis. Neuroscience 246:351–361PubMed Yang JJ, Yoon U, Yun HJ, Im K, Choi YY, Lee KH et al (2013) Prediction for human intelligence using morphometric characteristics of cortical surface: partial least square analysis. Neuroscience 246:351–361PubMed
Zurück zum Zitat Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15(4):528–536PubMedPubMedCentral Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15(4):528–536PubMedPubMedCentral
Zurück zum Zitat Zielinski BA, Gennatas ED, Zhou J, Seeley WW (2010) Network-level structural covariance in the developing brain. Proc Natl Acad Sci USA 107(42):18191–18196PubMed Zielinski BA, Gennatas ED, Zhou J, Seeley WW (2010) Network-level structural covariance in the developing brain. Proc Natl Acad Sci USA 107(42):18191–18196PubMed
Metadaten
Titel
Structural brain network of gifted children has a more integrated and versatile topology
verfasst von
Jordi Solé-Casals
Josep M. Serra-Grabulosa
Rafael Romero-Garcia
Gemma Vilaseca
Ana Adan
Núria Vilaró
Núria Bargalló
Edward T. Bullmore
Publikationsdatum
27.06.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 7/2019
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-019-01914-9

Weitere Artikel der Ausgabe 7/2019

Brain Structure and Function 7/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.