Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2018

Open Access 01.12.2018 | Review

T cell senescence and CAR-T cell exhaustion in hematological malignancies

verfasst von: Dimitri Kasakovski, Ling Xu, Yangqiu Li

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2018

Abstract

T cell senescence has been recognized to play an immunosuppressive role in the aging population and cancer patients. Strategies dedicated to preventing or reversing replicative and premature T cell senescence are required to increase the lifespan of human beings and to reduce the morbidity from cancer. In addition, overcoming the T cell terminal differentiation or senescence from lymphoma and leukemia patients is a promising approach to enhance the effectiveness of adoptive cellular immunotherapy (ACT). Chimeric antigen receptor T (CAR-T) cell and T cell receptor-engineered T (TCR-T) cell therapy highly rely on functionally active T cells. However, the mechanisms which drive T cell senescence remain unclear and controversial. In this review, we describe recent progress for restoration of T cell homeostasis from age-related senescence as well as recovery of T cell activation in hematological malignancies.
Abkürzungen
ACT
Adoptive cellular immunotherapy
ALL
Acute lymphoblastic leukemia
AML
Acute myeloid leukemia
ASCT
Autologous stem cell transplantation
Blimp-1
B lymphocyte-induced maturation protein 1
cAMP
Cyclin adenosine monophosphate
CAR-T
Chimeric antigen receptor expressing T cell
CD
Cluster of differentiation
CLL
Chronic lymphocytic leukemia
CTLA4
Cytotoxic T-lymphocyte-associated protein 4
FOXO4
Forkhead box protein O4
HCMV
Human cytomegalovirus
hTERC
Human telomerase RNA component
IDO
Indoleamine-pyrrole 2,3-dioxygenase
IL-10
Interleukin-10
ITIM
Immunoreceptor tyrosine-based inhibitory motif
KLRG-1
Killer cell lectin-like receptor sub family G
LAG3
Lymphocyte-activation protein 3
LFS
Leukemia-free survival
MAPK
Mitogen-activated protein kinase
MM
Multiple myeloma
PD-L1
Programmed cell death ligand 1
PKA
Protein kinase A
poly-G3
Third-generation poly amidoamine dendrimers
TCR
T cell receptor
TGF-β
Transforming growth factor beta
TIGIT
T cell immunoreceptor with Ig and tyrosine-based inhibitory motif (ITIM) domains
TIM3
T cell immunoglobulin domain and mucin domain-containing protein3
T-IPSCs
T-induced pluripotent stem cells
TLR8
Toll-like receptor 8
Treg
Regulatory T

Background

The immune system plays a crucial role in the protection and fight against hematological malignancies and cancer [13]. Impairment of the immune system due to a decrease in immunological diversity of naïve T cells and an increasing number of senescent T cells with age leads to a higher susceptibility to disease and potentially promotes progression of malignant tumor in elderly [4, 5]. Moreover, human cytomegalovirus (HCMV) persistence occurs upon repeated T cell activation due to chronic infections with CMV and is considered a driver of immune senescence in humans, starting from puberty after thymic involution [6]. Nevertheless, cellular senescence can also act as a protective mechanism of the immune system against cancer by deactivating T cells which show excessive or aberrant proliferation [79]. T cell senescence is triggered in a variety of biological processes including tumor prevention, immune response to infections, and aging. It leads to distinctive phenotypic and functional alteration and can be caused by tumor-associated stresses, telomere damage, and regulatory T (Treg) cells [4, 10]. Here, we summarize recent findings of the role of senescent T cells in hematological malignancies as well as possibilities to restore function of senescent and exhausted T cells for immunotherapies, such as CAR-T cell therapy.

Discovery and concept of T cell senescence

Cellular immune senescence was firstly described in the late 70s and was mainly focused on age-dependent changes in macrophages and lymphocytes in mice. Previous findings show less influence of aging on macrophages, while lymphocytes show considerable changes during aging. Especially, T cells due to their relatively long lifespan of 4–6 months have time to mature and express different functions with age [11, 12]. Recently, immunosenescence and T cell senescence are described as the degeneration of innate and adaptive immunity and specifically as a depletion of naïve and effector T cells during aging. Nearing the end of their lifespan, T cells can become senescent, characteristically leading to a cell-cycle arrest while staying viable and metabolically active [13]. T cell senescence can be distinguished from T cell anergy and T cell exhaustion which share similar characteristics but have different origins. T cell anergy is a hyporesponsive state in T cells which is triggered by excessive activation of the T cell receptor (TCR) and either strong co-inhibitory molecule signaling or limited presence of concomitant co-stimulation through CD28. T cell exhaustion occurs after repeated activation of T cells during chronic infection or tumor progression. In acutely cleared infections, a part of activated T cells develops into highly functional memory T cells, while in chronic infections and the tumor microenvironment, the persistent activation of T cells can lead to a gradual development into an exhausted phenotype. This phenotype is defined by poor effector function and sustained expression of inhibitory receptors [14]. While both T cell anergy and T cell exhaustion in natural occurrence are considered reversible, T cell senescence until recently was considered irreversible [1518]. Recent studies challenge this distinction by showing that senescent T cells are in fact able to regain function by inhibiting the p38 mitogen-activated protein kinase (MAPK) pathway and show relationships between T cell exhaustion and senescence [19, 20].

Mechanisms of T cell senescence

T cell senescence can be triggered by two major cellular mechanisms: replicative and premature senescence. Replicative senescence is the natural age-related process that occurs after several rounds of proliferation leading to a shortening of telomeric ends. The cell is then put into a senescent state to prevent a potential degeneracy into a cancerous cell. The second mechanism is premature senescence which is a telomere-independent senescence induced by outside factors such as cellular stress [2123]. For example, effector T cells, CD4+ helper, and CD8+ cytotoxic T cells can be forced by Treg cells into senescence, by inducing DNA damage using metabolic competition during cross-talk [22].

Biomarkers for T cell senescence and T cell exhaustion

Although in recent years molecular and cellular biomarkers of effector T cell differentiation have been studied extensively, many of the molecular and signaling pathways related to maturation and senescence of effector T cells are still unknown. T cells in replicative senescence tend to lose co-stimulatory molecules such as CD27 and CD28 while expressing killer cell lectin-like receptor subfamily G (KLRG-1) and CD57. Interfering with the ligation of KLRG-1 on T cells has shown enhanced proliferation capability. CD57 was shown to be associated with severe proliferation impairment and thus is considered the most reliable surface marker for T cell senescence. Furthermore, G1-regulating proteins such as p15, p16, and p21 which are involved in cell cycle regulation and are associated with cellular stress response are upregulated in senescent T cells, with evidence of increased levels of bound p16/Cdk6 and p21/WAF, downregulation of Cdk2 and cyclinD3 expression, and decreased Cdk2 and Cdk6 kinase activity. These molecules inhibit the transition from G1 to S phase forcing cells into a replicative senescence [2429]. Additionally, CD27 and CD28 downregulation is associated with loss of human telomerase RNA component (hTERC) expression, leading to a decrease in telomerase activity and subsequent impaired buildup of telomeric ends [29, 30]. In a recent study, the T cell immunoreceptor with Ig and tyrosine-based inhibitory motif (ITIM) domains (TIGIT) was suggested to be a novel T cell senescence marker. TIGIT was shown to be upregulated in CD8+ T cells of elderly in comparison to young individuals. Moreover, TIGIT+CD8+ T cells exhibited a senescence immunophenotype including high expression of KLRG1 and CD57 while retaining cytotoxicity and function, thus linking the mechanisms of T cell senescence to previous findings pertaining to the role of TIGIT in the mechanism of T cell exhaustion [31, 32]. Furthermore, the negative checkpoint receptor TIGIT was described as a novel marker in exhausted CD4+ and CD8+ T cells after HIV infection [33, 34]. Exhausted T cells hierarchically lose the production of IL-2, their high proliferative capacity and ability for ex vivo killing, followed by loss of production of tumor necrosis factor (TNF), and in the last stage, partial or complete loss of the ability to produce large amounts of interferon-γ which ultimately leads to physical deletion. This decline of effector function is accompanied by a progressive loss of CD4+ T cell help and increased expression of inhibitory receptors, e.g., PD1, CTLA4, TIGIT, LAG-3, CD244, CD160, or TIM3 [35, 36].

T cell senescence progression in aging healthy individuals

Many countries face demographic changes in their population with an over-proportional increase in the elderly in comparison to the young. T cell senescence impairs life-long immune protection and effective vaccination by limiting variability. T cell composition is shifted from undifferentiated naïve T cells to determined memory T cells and further to senescent T cells [4, 13]. The output of naïve T cells decreases after puberty and thymic involution, leading the remaining naïve T cells to progressively become determined and differentiated during lifetime. While the proportion of naïve T cells decreases in early life, the proportion of differentiated memory T cells increase until it reaches a stable plateau during adulthood. After the age of 65, a shift to senescence and an accumulation of highly differentiated CD28 T cells are observed [37]. This accumulation occurs especially strong with respect to the CD8+CD28 T cell subset which expresses enhanced cytotoxicity and regulatory functions while having a shorter replicative lifespan and defective antigen-induced proliferation [28, 37]. There is a growing body of evidence that age-related T cell senescence is not only caused by thymic involution but is also accelerated by memory inflation caused by HCMV infection. HCMV infection is significantly associated with changes in both naïve CD4+ T cell composition as well as memory T cells of the CD8+ subset. Memory inflation leads to an accumulation of HCMV-specific CD8+CD28 T cells which also express typical senescence marker such as KRLG1 and CD57 while remaining highly cytotoxic. This excess expansion of a single HCMV-specific repertoire can occupy up to 50% of the entire CD8+ T cell and 30% of CD4+ T cell compartment of the peripheral blood in HCMV-infected elderly individuals [3840]. This might indicate a joint responsibility of age-related and HCMV-related T cell senescence in the impaired immune response to vaccination as well as an increased susceptibility towards disease and hematological malignancies in elderly individuals. Factors which contribute to T cell senescence and altered T cell subset distribution from young to elderly individuals are shown in Fig. 1.

T cell senescence in hematological malignancies

Malignant tumors utilize many different strategies to evade anti-tumor immunity of the adaptive immune system by creating immunosuppressive microenvironments [39, 40]. Mechanisms of immune evasion include alteration of G1-regulating protein expression, production of suppressive factors like interleukin-10 (IL-10), transforming growth factor beta (TGF-β), and indoleamine-pyrrole 2,3-dioxygenase (IDO) as well as expression of immune inhibitory receptors, e.g., programmed cell death ligand 1 (PD-L1) and recruitment of Treg cells [4143]. An accumulation of senescent CD8+CD28 T cells was observed in several solid tumors, indicating the use of the suppressive activity of senescent T cells as a strategy for immune evasion [4447]. Tumor-derived cAMP was shown to be responsible for the direct induction of senescence in T cells and is also a key component of the Treg cell mechanism of forcing T cells into senescence [48]. These findings correlate with re-occurring observations of Treg cell accumulations in hematological malignancies such as acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), multiple myeloma (MM), and B cell lymphomas [4952]. Conclusively, reduced Treg cell accumulation significantly prognosticated low relapse risk and leukemia-free survival (LFS) in AML patients [48, 49]. Recently, senescent T cells including clonally expanded CD8+T cells with a CD28KLRG1+CD57+ or CD28CD57+PD-1+phenotype were characterized in MM patients. Remarkably, these T cell clones showed telomere-independent senescence with upregulated telomerase activity indicating reversibility of senescence [50, 51]. Moreover, higher numbers of CD28CD57+PD-1+T cells were associated with early relapse in patients with MM after autologous stem cell transplantation (ASCT) [50]. In addition, senescent and exhausted T cells in patients negatively affect T cell immunotherapy.

Senescence and exhaustion of CAR-T cells

Currently, ACT is emerging as a potentially curative therapy for patients with advanced hematological malignancies. CAR-T and TCR-T cell therapy makes use of functionally active T cells isolated from patients. These T cells are reconstructed and expanded ex vivo to recognize specific antigens on target cells and are now widely trialed to treat leukemia, lymphoma, and several solid tumors [5258]. However, there are functional challenges of engineered T cell therapy in regard to T cell senescence and exhaustion. Firstly, the exposure of T cells from patients to the tumor microenvironment, thus acquiring a senescent and exhausted phenotype, can lead to a progression towards terminal differentiation [59, 60]. PD-1 upregulation within the tumor microenvironment was shown to significantly inhibit T cell function indicating that CAR-T cells, which are produced from T cells with impaired function, might show less effectiveness in targeting leukemia and tumor cells [6163]. Additionally, the endogenous TCR of T cells can have a negative influence on the persistence of CAR-T cells. Presence of TCR antigen when CAR is introduced into T cells with distinct TCR specificity was shown to provoke a loss in CD8+ CAR T cell efficacy associated with T cell exhaustion and apoptosis [64]. Lastly, as demonstrated by Long et al., some signaling from CAR can increase differentiation and exhaustion of T cells, in that tonic CAR CD3ζ phosphorylation, triggered by antigen-independent clustering of CAR single-chain variable fragments, will force early exhaustion of CAR-T cells [65, 66]. Overall, revision of the tumor-related T cell immune senescence and exhaustion are key points in enhancing anti-tumor function in genetically modified T cells.

Strategies to reverse T cell senescence and restore T cell homeostasis in response to aging

There are three main strategies to rejuvenate T cell pools including replacement, reprogramming, and restoration of senescent cells. (1) Replacement strategies include the physical removal of senescent cells from the circulation with the aim of homeostatic expansion of memory and effector T cells. A possible approach is to target and promote selective apoptosis in senescent T cells. In a recent study, an engineered peptide was used to interfere with FOXO4/p53 causing targeted apoptosis in senescent fibroblasts [67], whether this also can be used in inducing apoptosis of senescent T cell remains unknown. Nevertheless, homeostatic expansion in form of autologous stem cell transplantation (ASCT) was shown to successfully reconstitute functional naïve, memory, and effector T cell pools in autoimmune diseases and hematological malignancies [6871]. In addition, isolation and banking of cord blood HSCs has been used to reconstitute the immune system for treatment of hematological disorders and may provide hope for homeostatic expansion of functional T cells [7274]. (2) Reprogramming is a promising method to differentiate T cells away from exhausted and senescent states by redifferentiation from T-induced pluripotent stem cells (T-IPSCs) into naive and cytotoxic T cells or dedifferentiation within their own lineage [7577]. Although generation of T cells from human embryonic stem cells (hESCs) and iPSCs was shown to be possible, the TCR repertoire due to seemingly random VDJ gene rearrangements remains unpredictable. Nevertheless, human iPSC-derived T cells transduced with engineered TCRs and CARs specific for tumor antigens were able to infiltrate and delay tumor progression in xenograft models of solid tumors [78]. Moreover, reprogramming can potentially be used for reversion of replicative T cell senescence by enhancing telomerase activity and telomere-length restoration to extend cellular lifespan and prevent telomere-dependent T cell senescence [79, 80]. (3) Restoration strategies aim to restore and maintain the thymic environment thus reversing effects of thymic involution with help of bioengineered thymus organoids in combination with growth-promoting factors and cytokines such as IL-21, which recently was identified as a thymostimulatory cytokine and showed significant immunorestorative function and rejuvenation of the peripheral T cell pool by triggering de novo thymopoiesis in aged mice [81, 82]. Similarly, intrathymic injection of allogenic hematopoietic cells restored functional T cell development after the thymic reconstitution in a mouse model of severe combined immunodeficiency [83]. Preclinical studies have shown generation of thymic organoids from decellularized matrices as an effective approach to rejuvenate the function of T cells and the adaptive immune system. Yet, donor-specific immune tolerance, reproduction of the complex thymic extracellular matrix (ECM), and support of thymic epithelial cells, as well as T cell maturation, remain major challenges [84, 85]. Possible strategies for reversion of T cell senescence and exhaustion to restore T cell homeostasis in response to aging are summarized in Fig. 2.

Targets for recovery of T cell activation in hematological malignancies

Tumor sites in hematological malignancies were shown to recruit Treg cells and use direct and indirect induction of senescence in their tumor microenvironments as a mechanism of immune suppression [8689, 48, 49]. Therefore, one possible target of immunotherapy is the inhibition of tumor-related T cell senescence as well as the possible restoration of senescent T cell function. In cases of increased numbers of CD28CD57+PD-1+T cells in MM patients, PD-1 blockade was shown to restore proliferation and cytokine secretion in exhausted/senescent CD8+ T cells [87]. Elevated levels of transcription factor B lymphocyte-induced maturation protein 1 (Blimp-1) in patients suffering from AML correlated with upregulation of multiple inhibitory receptors including PD-1 and TIGIT on exhausted, functionally impaired T cells. More importantly, siRNA knockdown of Blimp-1 has shown to reverse the functional defect [90]. cAMP, which is also a key component of Treg cell suppression in aging, is accumulated in tumor sites creating hypoxic microenvironments. Treg and tumor cells in these microenvironments directly induced human naïve T cells and tumor-specific effector T cells to become senescent by increasing cAMP levels using transfer via gap junctions [91, 92]. Due to their inherent suppressive function, dysfunctional senescent T cells then can indirectly maintain the tumor microenvironment and amplify immunosuppression [93], thus indicating that regulation of cAMP level might be a potential approach to revise T cell senescence and disrupt the tumor microenvironment in patients. Recent studies implicate metabolic regulation of tumor cells by Toll-like receptor 8 (TLR8) signaling. Specifically, TLR8 ligands, such as third-generation polyamidoamine dendrimers (poly-G3) and ssRNA40, were shown to enhance antitumor immunity by modulation of endogenous cAMP in tumor cells through the activation of the protein kinase A (PKA) type I–COOH-terminal Src kinase (Csk)–LCK inhibitory pathway [94]. Moreover, ERK1/2 and P38 signaling was identified as regulators of Treg-induced senescent T cells [19, 25]. These results open a possibility to reverse the suppression by tumor microenvironments, creating effector microenvironments by modulation of specific factors in tumor-related T cell senescence. Interestingly, a common alteration in childhood T cell acute lymphoblastic leukemia (T-ALL) cells is the deletion of p16 and p15 and in some cases hypermethylation of a 5′ CpG island in the p15 gene. The accumulation of both proteins is strongly associated with T cell aging and senescence, and thus, their deletion might indicate a role in immortalization and the mechanism of senescence avoidance by some leukemic T cells [24]. Although this indicates that interference with the accumulation of p16 can possibly slow down aging or prevent senescence of T cells, it also potentially harbors an increased risk of provoking T cells to become cancerous and hence should be explored further. Mechanisms of T cell senescence induction in the tumor microenvironment and strategies for revision of T cell senescence for TCR- and CAR-T cell therapy are shown in Fig. 3.
To improve persistence and effectiveness of CAR-T cells, it is necessary to establish assays to characterize the T cell status in patients who are selected for CAR-T cell therapy. Next, depending on the immune alterations in these patients, different targeting approaches can be chosen to revise senescence and exhaustion as depicted in Figs. 2 and 3. Finally, therapies including PD-1 checkpoint blockade, which can overcome the immune evasion of tumor cells from CAR-T cells within the tumor microenvironment, and the use of apoptosis inhibitor blockade agents, to increase the effect of CAR-T cell therapy, can significantly improve CAR-T cell effectiveness [58, 61, 95, 96].

Conclusion

T cell senescence is playing a key role in immune suppression and evasion of both hematological and solid tumors. Understanding the underlying mechanisms of Treg cell recruitment as well as direct and indirect induction of T cell senescence by tumor microenvironments will open new immunotherapeutic strategies for restoration and recovery of TCR-T and CAR-T cell activation after senescence and exhaustion. Specifically, replacement, reprogramming, and restoration of the immune system as well as modulation of signaling in tumor sites, shifting immunosuppressive microenvironments to become effector microenvironments, are promising approaches. Further, occurrence of potentially reversible telomere-length independent senescent T cells in hematological malignancies has to be investigated more extensively. Understanding of its occurrence might potentially give insight into reversion of replicative T cell senescence for optimized CAR-T or TCR-T cell immunotherapy.

Acknowledgements

We thank Anusha Aravamudhan for additional proofreading of the manuscript.

Funding

This study was supported by grants from the National Natural Science Foundation of China (nos. 91642111, 81770152) and the Guangdong Provincial Basic Research Program (nos. 2015B020227003, 201807010004, 201803040017).

Availability of data and materials

The material supporting the conclusions of this review is included within the article.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
2.
3.
Zurück zum Zitat Candeias SM, Gaipl US. The immune system in cancer prevention, development and therapy. Anti Cancer Agents Med Chem. 2016;16:101–7.CrossRef Candeias SM, Gaipl US. The immune system in cancer prevention, development and therapy. Anti Cancer Agents Med Chem. 2016;16:101–7.CrossRef
5.
Zurück zum Zitat Vicente R, Mausset-Bonnefont A-L, Jorgensen C, Louis-Plence P, Brondello J-M. Cellular senescence impact on immune cell fate and function. Aging Cell. 2016;15:400–6.CrossRefPubMedPubMedCentral Vicente R, Mausset-Bonnefont A-L, Jorgensen C, Louis-Plence P, Brondello J-M. Cellular senescence impact on immune cell fate and function. Aging Cell. 2016;15:400–6.CrossRefPubMedPubMedCentral
6.
7.
Zurück zum Zitat Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130:223–33.CrossRefPubMed Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130:223–33.CrossRefPubMed
8.
Zurück zum Zitat Lindqvist CA, Christiansson LH, Thörn I, Mangsbo S, Paul-Wetterberg G, Sundström C, et al. Both CD4+ FoxP3+ and CD4+ FoxP3– T cells from patients with B-cell malignancy express cytolytic markers and kill autologous leukaemic B cells in vitro. Immunology. 2011;133:296–306.CrossRefPubMedPubMedCentral Lindqvist CA, Christiansson LH, Thörn I, Mangsbo S, Paul-Wetterberg G, Sundström C, et al. Both CD4+ FoxP3+ and CD4+ FoxP3– T cells from patients with B-cell malignancy express cytolytic markers and kill autologous leukaemic B cells in vitro. Immunology. 2011;133:296–306.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Schosserer M, Grillari J, Breitenbach M. The dual role of cellular senescence in developing tumors and their response to cancer therapy. Front Oncol. 2017;7:278.CrossRefPubMedPubMedCentral Schosserer M, Grillari J, Breitenbach M. The dual role of cellular senescence in developing tumors and their response to cancer therapy. Front Oncol. 2017;7:278.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Singhal SK, Roder JC, Duwe AK. Suppressor cells in immunosenescence. Fed Proc. 1978;37:1245–52.PubMed Singhal SK, Roder JC, Duwe AK. Suppressor cells in immunosenescence. Fed Proc. 1978;37:1245–52.PubMed
15.
Zurück zum Zitat Vallejo AN, Weyand CM, Goronzy JJ. T-cell senescence: a culprit of immune abnormalities in chronic inflammation and persistent infection. Trends Mol Med. 2004;10:119–24.CrossRefPubMed Vallejo AN, Weyand CM, Goronzy JJ. T-cell senescence: a culprit of immune abnormalities in chronic inflammation and persistent infection. Trends Mol Med. 2004;10:119–24.CrossRefPubMed
16.
Zurück zum Zitat Chappert P, Schwartz RH. Induction of T cell anergy: integration of environmental cues and infectious tolerance. Curr Opin Immunol. 2010;22:552–9.CrossRefPubMedPubMedCentral Chappert P, Schwartz RH. Induction of T cell anergy: integration of environmental cues and infectious tolerance. Curr Opin Immunol. 2010;22:552–9.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Baitsch L, Fuertes-Marraco SA, Legat A, Meyer C, Speiser DE. The three main stumbling blocks for anticancer T cells. Trends Immunol. 2012;33:364–72.CrossRefPubMed Baitsch L, Fuertes-Marraco SA, Legat A, Meyer C, Speiser DE. The three main stumbling blocks for anticancer T cells. Trends Immunol. 2012;33:364–72.CrossRefPubMed
18.
Zurück zum Zitat Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 2013;25:214–21.CrossRefPubMedPubMedCentral Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 2013;25:214–21.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Lanna A, Henson SM, Escors D, Akbar AN. The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol. 2014;15:965–72.CrossRefPubMedPubMedCentral Lanna A, Henson SM, Escors D, Akbar AN. The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol. 2014;15:965–72.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Lanna A, Henson SM, Akbar A. The regulation of T cell senescence and metabolism by P38 mapkinase signaling. Innov Aging Oxford University Press. 2017;1:1254.CrossRef Lanna A, Henson SM, Akbar A. The regulation of T cell senescence and metabolism by P38 mapkinase signaling. Innov Aging Oxford University Press. 2017;1:1254.CrossRef
22.
Zurück zum Zitat Cristofalo VJ, Lorenzini A, Allen RG, Torres C, Tresini M. Replicative senescence: a critical review. Mech Ageing Dev. 2004;125:827–48.CrossRefPubMed Cristofalo VJ, Lorenzini A, Allen RG, Torres C, Tresini M. Replicative senescence: a critical review. Mech Ageing Dev. 2004;125:827–48.CrossRefPubMed
23.
Zurück zum Zitat Dock JN, Effros RB. Role of CD8 T cell replicative senescence in human aging and in HIV-mediated immunosenescence. Aging Dis. 2014;2:382–97. Dock JN, Effros RB. Role of CD8 T cell replicative senescence in human aging and in HIV-mediated immunosenescence. Aging Dis. 2014;2:382–97.
24.
Zurück zum Zitat Erickson S, Sangfelt O, Heyman M, Castro J, Einhorn S, Grandér D. Involvement of the Ink4 proteins p16 and p15 in T-lymphocyte senescence. Oncogene. 1998;17:595–602.CrossRefPubMed Erickson S, Sangfelt O, Heyman M, Castro J, Einhorn S, Grandér D. Involvement of the Ink4 proteins p16 and p15 in T-lymphocyte senescence. Oncogene. 1998;17:595–602.CrossRefPubMed
25.
Zurück zum Zitat Liu X, Mo W, Ye J, Li L, Zhang Y, Hsueh EC, et al. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat Commun. 2018;9:249.CrossRefPubMedPubMedCentral Liu X, Mo W, Ye J, Li L, Zhang Y, Hsueh EC, et al. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat Commun. 2018;9:249.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG, et al. Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell. 2009;8:439–48.CrossRefPubMedPubMedCentral Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG, et al. Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell. 2009;8:439–48.CrossRefPubMedPubMedCentral
27.
29.
Zurück zum Zitat Lanna A, Coutavas E, Levati L, Seidel J, Rustin MHA, Henson SM, et al. IFN-α inhibits telomerase in human CD8+ T cells by both hTERT downregulation and induction of p38 MAPK signaling. J Immunol. 2013;191:3744–52.CrossRefPubMed Lanna A, Coutavas E, Levati L, Seidel J, Rustin MHA, Henson SM, et al. IFN-α inhibits telomerase in human CD8+ T cells by both hTERT downregulation and induction of p38 MAPK signaling. J Immunol. 2013;191:3744–52.CrossRefPubMed
30.
Zurück zum Zitat Bernadotte A, Mikhelson VM, Spivak IM. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging. 2016;8:3–11.CrossRefPubMedPubMedCentral Bernadotte A, Mikhelson VM, Spivak IM. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging. 2016;8:3–11.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Song Y, Wang B, Song R, Hao Y, Wang D, Li Y, et al. T-cell immunoglobulin and ITIM domain contributes to CD8+T-cell immunosenescence. Aging Cell. 2018;17(2). Song Y, Wang B, Song R, Hao Y, Wang D, Li Y, et al. T-cell immunoglobulin and ITIM domain contributes to CD8+T-cell immunosenescence. Aging Cell. 2018;17(2).
32.
Zurück zum Zitat Yang Z-Z, Kim HJ, Price-Troska T, Jalali S, Villasboas JC, Novak AJ, et al. Constitutive expression of TIGIT defines a population of CD4+ regulatory T cells in B cell non-Hodgkin lymphoma. J Immunol. 2017;198:155.12.CrossRef Yang Z-Z, Kim HJ, Price-Troska T, Jalali S, Villasboas JC, Novak AJ, et al. Constitutive expression of TIGIT defines a population of CD4+ regulatory T cells in B cell non-Hodgkin lymphoma. J Immunol. 2017;198:155.12.CrossRef
33.
Zurück zum Zitat Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H-G, Sönnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354.CrossRefPubMedPubMedCentral Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H-G, Sönnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Chew GM, Fujita T, Webb GM, Burwitz BJ, Wu HL, Reed JS, et al. TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection. PLoS Pathog. 2016;12:e1005349.CrossRefPubMedPubMedCentral Chew GM, Fujita T, Webb GM, Burwitz BJ, Wu HL, Reed JS, et al. TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection. PLoS Pathog. 2016;12:e1005349.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Amezquita RA, Kaech SM. Immunology: the chronicles of T-cell exhaustion. Nature. 2017;543:190–1.CrossRefPubMed Amezquita RA, Kaech SM. Immunology: the chronicles of T-cell exhaustion. Nature. 2017;543:190–1.CrossRefPubMed
39.
Zurück zum Zitat Sansoni P, Vescovini R, Fagnoni FF, Akbar A, Arens R, Chiu Y-L, et al. New advances in CMV and immunosenescence. Exp Gerontol. 2014;55:54–62.CrossRefPubMed Sansoni P, Vescovini R, Fagnoni FF, Akbar A, Arens R, Chiu Y-L, et al. New advances in CMV and immunosenescence. Exp Gerontol. 2014;55:54–62.CrossRefPubMed
40.
Zurück zum Zitat Kim J, Kim A-R, Shin E-C. Cytomegalovirus infection and memory T cell inflation. Immune Netw 2015;15: 186–190. Kim J, Kim A-R, Shin E-C. Cytomegalovirus infection and memory T cell inflation. Immune Netw 2015;15: 186–190.
41.
Zurück zum Zitat Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC. Regulatory T cells in cancer. Adv Cancer Res. 2010;107:57–117.CrossRefPubMed Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC. Regulatory T cells in cancer. Adv Cancer Res. 2010;107:57–117.CrossRefPubMed
42.
44.
Zurück zum Zitat Syed Khaja AS, Toor SM, El Salhat H, Faour I, Ul Haq N, Ali BR, et al. Preferential accumulation of regulatory T cells with highly immunosuppressive characteristics in breast tumor microenvironment. Oncotarget. 2017;8:33159–71.PubMed Syed Khaja AS, Toor SM, El Salhat H, Faour I, Ul Haq N, Ali BR, et al. Preferential accumulation of regulatory T cells with highly immunosuppressive characteristics in breast tumor microenvironment. Oncotarget. 2017;8:33159–71.PubMed
45.
Zurück zum Zitat Zhang N-N, Chen J-N, Xiao L, Tang F, Zhang Z-G, Zhang Y-W, et al. Accumulation mechanisms of CD4(+) CD25(+) FOXP3(+) regulatory T cells in EBV-associated gastric carcinoma. Sci Rep. 2015;5:18057.CrossRefPubMedPubMedCentral Zhang N-N, Chen J-N, Xiao L, Tang F, Zhang Z-G, Zhang Y-W, et al. Accumulation mechanisms of CD4(+) CD25(+) FOXP3(+) regulatory T cells in EBV-associated gastric carcinoma. Sci Rep. 2015;5:18057.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Shang B, Liu Y, Jiang S-J, Liu Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep. 2015;5:15179.CrossRefPubMedPubMedCentral Shang B, Liu Y, Jiang S-J, Liu Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep. 2015;5:15179.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Zhang S, Ke X, Zeng S, Wu M, Lou J, Wu L, et al. Analysis of CD8+ Treg cells in patients with ovarian cancer: a possible mechanism for immune impairment. Cell Mol Immunol. 2015;12:580–91.CrossRefPubMedPubMedCentral Zhang S, Ke X, Zeng S, Wu M, Lou J, Wu L, et al. Analysis of CD8+ Treg cells in patients with ovarian cancer: a possible mechanism for immune impairment. Cell Mol Immunol. 2015;12:580–91.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Ustun C, Miller JS, Munn DH, Weisdorf DJ, Blazar BR. Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation? Blood. 2011;118:5084–95.CrossRefPubMedPubMedCentral Ustun C, Miller JS, Munn DH, Weisdorf DJ, Blazar BR. Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation? Blood. 2011;118:5084–95.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Sander FE, Nilsson M, Rydström A, Aurelius J, Riise RE, Movitz C, et al. Role of regulatory T cells in acute myeloid leukemia patients undergoing relapse-preventive immunotherapy. Cancer Immunol Immunother. 2017;66:1473–84.CrossRefPubMedPubMedCentral Sander FE, Nilsson M, Rydström A, Aurelius J, Riise RE, Movitz C, et al. Role of regulatory T cells in acute myeloid leukemia patients undergoing relapse-preventive immunotherapy. Cancer Immunol Immunother. 2017;66:1473–84.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Chung DJ, Pronschinske KB, Shyer JA, Sharma S, Leung S, Curran SA, et al. T-cell exhaustion in multiple myeloma relapse after autotransplant: optimal timing of immunotherapy. Cancer Immunol Res. 2016;4:61–71.CrossRefPubMed Chung DJ, Pronschinske KB, Shyer JA, Sharma S, Leung S, Curran SA, et al. T-cell exhaustion in multiple myeloma relapse after autotransplant: optimal timing of immunotherapy. Cancer Immunol Res. 2016;4:61–71.CrossRefPubMed
51.
Zurück zum Zitat Suen H, Brown R, Yang S, Weatherburn C, Ho PJ, Woodland N, et al. Multiple myeloma causes clonal T-cell immunosenescence: identification of potential novel targets for promoting tumour immunity and implications for checkpoint blockade. Leukemia. 2016;30:1716–24.CrossRefPubMed Suen H, Brown R, Yang S, Weatherburn C, Ho PJ, Woodland N, et al. Multiple myeloma causes clonal T-cell immunosenescence: identification of potential novel targets for promoting tumour immunity and implications for checkpoint blockade. Leukemia. 2016;30:1716–24.CrossRefPubMed
53.
Zurück zum Zitat Yu S, Li A, Liu Q, Li T, Yuan X, Han X, Wu K. Chimeric antigen receptor T cells: a novel therapy for solid tumors. J Hematol Oncol. 2017;10(1):78.CrossRefPubMedPubMedCentral Yu S, Li A, Liu Q, Li T, Yuan X, Han X, Wu K. Chimeric antigen receptor T cells: a novel therapy for solid tumors. J Hematol Oncol. 2017;10(1):78.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Lichtenegger FS, Krupka C, Haubner S, Köhnke T, Subklewe M. Recent developments in immunotherapy of acute myeloid leukemia. J Hematol Oncol. 2017;10:142.CrossRefPubMedPubMedCentral Lichtenegger FS, Krupka C, Haubner S, Köhnke T, Subklewe M. Recent developments in immunotherapy of acute myeloid leukemia. J Hematol Oncol. 2017;10:142.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Wei G, Ding L, Wang J, Hu Y, Huang H. Advances of CD19-directed chimeric antigen receptor-modified T cells in refractory/relapsed acute lymphoblastic leukemia. Exp Hematol Oncol. 2017;6:10.CrossRefPubMedPubMedCentral Wei G, Ding L, Wang J, Hu Y, Huang H. Advances of CD19-directed chimeric antigen receptor-modified T cells in refractory/relapsed acute lymphoblastic leukemia. Exp Hematol Oncol. 2017;6:10.CrossRefPubMedPubMedCentral
58.
59.
60.
Zurück zum Zitat Yao D, Xu L, Tan J, Zhang Y, Lu S, Li D, et al. Re-balance of memory T cell subsets in peripheral blood from patients with CML after TKI treatment. Oncotarget. 2017;8(47):81852–9.CrossRefPubMedPubMedCentral Yao D, Xu L, Tan J, Zhang Y, Lu S, Li D, et al. Re-balance of memory T cell subsets in peripheral blood from patients with CML after TKI treatment. Oncotarget. 2017;8(47):81852–9.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest. 2016;126(8):3130–44.CrossRefPubMedPubMedCentral Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest. 2016;126(8):3130–44.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Guha P, Cunetta M, Somasundar P, Espat NJ, Junghans RP, Frontline Science KSC. Functionally impaired geriatric CAR-T cells rescued by increased α5β1 integrin expression. J Leukoc Biol. 2017;102(2):201–8.CrossRefPubMed Guha P, Cunetta M, Somasundar P, Espat NJ, Junghans RP, Frontline Science KSC. Functionally impaired geriatric CAR-T cells rescued by increased α5β1 integrin expression. J Leukoc Biol. 2017;102(2):201–8.CrossRefPubMed
63.
Zurück zum Zitat Fan M, Li M, Gao L, Geng S, Wang J, Wang Y, et al. Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia. J Hematol Oncol. 2017;10:151.CrossRefPubMedPubMedCentral Fan M, Li M, Gao L, Geng S, Wang J, Wang Y, et al. Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia. J Hematol Oncol. 2017;10:151.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–90.CrossRefPubMedPubMedCentral Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–90.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Gomes-Silva D, Mukherjee M, Srinivasan M, Krenciute G, Dakhova O, Zheng Y, et al. Tonic 4-1BB costimulation in chimeric antigen receptors impedes T cell survival and is vector-dependent. Cell Rep. 2017;21(1):17–26.CrossRefPubMedPubMedCentral Gomes-Silva D, Mukherjee M, Srinivasan M, Krenciute G, Dakhova O, Zheng Y, et al. Tonic 4-1BB costimulation in chimeric antigen receptors impedes T cell survival and is vector-dependent. Cell Rep. 2017;21(1):17–26.CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ, Bourgeois BRM, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell. 2017;169:132–147.e16.CrossRefPubMedPubMedCentral Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ, Bourgeois BRM, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell. 2017;169:132–147.e16.CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Delemarre EM, van den Broek T, Mijnheer G, Meerding J, Wehrens EJ, Olek S, et al. Autologous stem cell transplantation aids autoimmune patients by functional renewal and TCR diversification of regulatory T cells. Blood. 2016;127:91–101.CrossRefPubMed Delemarre EM, van den Broek T, Mijnheer G, Meerding J, Wehrens EJ, Olek S, et al. Autologous stem cell transplantation aids autoimmune patients by functional renewal and TCR diversification of regulatory T cells. Blood. 2016;127:91–101.CrossRefPubMed
69.
Zurück zum Zitat Delemarre EM, Roord STA, van den Broek T, Zonneveld-Huijssoon E, de Jager W, Rozemuller H, et al. Brief report: Autologous stem cell transplantation restores immune tolerance in experimental arthritis by renewal and modulation of the Teff cell compartment. Arthritis Rheum. 2014;66:350–6.CrossRef Delemarre EM, Roord STA, van den Broek T, Zonneveld-Huijssoon E, de Jager W, Rozemuller H, et al. Brief report: Autologous stem cell transplantation restores immune tolerance in experimental arthritis by renewal and modulation of the Teff cell compartment. Arthritis Rheum. 2014;66:350–6.CrossRef
70.
Zurück zum Zitat Rueff J, Medinger M, Heim D, Passweg J, Stern M. Lymphocyte subset recovery and outcome after autologous hematopoietic stem cell transplantation for plasma cell myeloma. Biol Blood Marrow Transplant. 2014;20:896–9.CrossRefPubMed Rueff J, Medinger M, Heim D, Passweg J, Stern M. Lymphocyte subset recovery and outcome after autologous hematopoietic stem cell transplantation for plasma cell myeloma. Biol Blood Marrow Transplant. 2014;20:896–9.CrossRefPubMed
71.
Zurück zum Zitat Farge D, Arruda LCM, Brigant F, Clave E, Douay C, Marjanovic Z, et al. Long-term immune reconstitution and T cell repertoire analysis after autologous hematopoietic stem cell transplantation in systemic sclerosis patients. J Hematol Oncol. 2017;10:21.CrossRefPubMedPubMedCentral Farge D, Arruda LCM, Brigant F, Clave E, Douay C, Marjanovic Z, et al. Long-term immune reconstitution and T cell repertoire analysis after autologous hematopoietic stem cell transplantation in systemic sclerosis patients. J Hematol Oncol. 2017;10:21.CrossRefPubMedPubMedCentral
72.
Zurück zum Zitat Rizk M, Aziz J, Shorr R, Allan DS. Cell-based therapy using umbilical cord blood for novel indications in regenerative therapy and immune modulation: an updated systematic scoping review of the literature. Biol Blood Marrow Transplant. 2017;23:1607–13.CrossRefPubMed Rizk M, Aziz J, Shorr R, Allan DS. Cell-based therapy using umbilical cord blood for novel indications in regenerative therapy and immune modulation: an updated systematic scoping review of the literature. Biol Blood Marrow Transplant. 2017;23:1607–13.CrossRefPubMed
73.
Zurück zum Zitat Damien P, Allan DS. Regenerative therapy and immune modulation using umbilical cord blood–derived cells. Biol Blood Marrow Transplant bbmtorg. 2015;21(9):1545–54. Damien P, Allan DS. Regenerative therapy and immune modulation using umbilical cord blood–derived cells. Biol Blood Marrow Transplant bbmtorg. 2015;21(9):1545–54.
74.
Zurück zum Zitat Politikos I, Boussiotis VA. The role of the thymus in T-cell immune reconstitution after umbilical cord blood transplantation. Blood. 2014;124:3201–11.CrossRefPubMedPubMedCentral Politikos I, Boussiotis VA. The role of the thymus in T-cell immune reconstitution after umbilical cord blood transplantation. Blood. 2014;124:3201–11.CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Karagiannis P, Iriguchi S, Kaneko S. Reprogramming away from the exhausted T cell state. Semin Immunol. 2016;28:35–44.CrossRefPubMed Karagiannis P, Iriguchi S, Kaneko S. Reprogramming away from the exhausted T cell state. Semin Immunol. 2016;28:35–44.CrossRefPubMed
76.
Zurück zum Zitat Nishimura T, Kaneko S, Kawana-Tachikawa A, Tajima Y, Goto H, Zhu D, et al. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell. 2013;12:114–26.CrossRefPubMed Nishimura T, Kaneko S, Kawana-Tachikawa A, Tajima Y, Goto H, Zhu D, et al. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell. 2013;12:114–26.CrossRefPubMed
78.
Zurück zum Zitat Themeli M, Kloss CC, Ciriello G, Fedorov VD, Perna F, Gonen M, et al. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat Biotechnol. 2013;31:928–33.CrossRefPubMedPubMedCentral Themeli M, Kloss CC, Ciriello G, Fedorov VD, Perna F, Gonen M, et al. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat Biotechnol. 2013;31:928–33.CrossRefPubMedPubMedCentral
79.
Zurück zum Zitat Effros RB. Telomerase induction in T cells: a cure for aging and disease? Exp Gerontol. 2007;42:416–20.CrossRefPubMed Effros RB. Telomerase induction in T cells: a cure for aging and disease? Exp Gerontol. 2007;42:416–20.CrossRefPubMed
81.
Zurück zum Zitat Al-Chami E, Tormo A, Pasquin S, Kanjarawi R, Ziouani S, Rafei M. Interleukin-21 administration to aged mice rejuvenates their peripheral T-cell pool by triggering de novo thymopoiesis. Aging Cell. 2016;15:349–60.CrossRefPubMedPubMedCentral Al-Chami E, Tormo A, Pasquin S, Kanjarawi R, Ziouani S, Rafei M. Interleukin-21 administration to aged mice rejuvenates their peripheral T-cell pool by triggering de novo thymopoiesis. Aging Cell. 2016;15:349–60.CrossRefPubMedPubMedCentral
82.
Zurück zum Zitat Tormo A, Khodayarian F, Cui Y, Al-Chami E, Kanjarawi R, Noé B, et al. Interleukin-21 promotes thymopoiesis recovery following hematopoietic stem cell transplantation. J Hematol Oncol. 2017;10:120.CrossRefPubMedPubMedCentral Tormo A, Khodayarian F, Cui Y, Al-Chami E, Kanjarawi R, Noé B, et al. Interleukin-21 promotes thymopoiesis recovery following hematopoietic stem cell transplantation. J Hematol Oncol. 2017;10:120.CrossRefPubMedPubMedCentral
83.
Zurück zum Zitat Tuckett AZ, Thornton RH, O’Reilly RJ, den Brink MRM v, Zakrzewski JL. Intrathymic injection of hematopoietic progenitor cells establishes functional T cell development in a mouse model of severe combined immunodeficiency. J Hematol Oncol. 2017;10:109.CrossRefPubMedPubMedCentral Tuckett AZ, Thornton RH, O’Reilly RJ, den Brink MRM v, Zakrzewski JL. Intrathymic injection of hematopoietic progenitor cells establishes functional T cell development in a mouse model of severe combined immunodeficiency. J Hematol Oncol. 2017;10:109.CrossRefPubMedPubMedCentral
84.
85.
Zurück zum Zitat Fan Y, Tajima A, Goh SK, Geng X, Gualtierotti G, Grupillo M, et al. Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts. Mol Ther. 2015;23:1262–77.CrossRefPubMedPubMedCentral Fan Y, Tajima A, Goh SK, Geng X, Gualtierotti G, Grupillo M, et al. Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts. Mol Ther. 2015;23:1262–77.CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Wu C-P, Qing X, Wu C-Y, Zhu H, Zhou H-Y. Immunophenotype and increased presence of CD4(+) CD25(+) regulatory T cells in patients with acute lymphoblastic leukemia. Oncol Lett. 2012;3:421–4.CrossRefPubMed Wu C-P, Qing X, Wu C-Y, Zhu H, Zhou H-Y. Immunophenotype and increased presence of CD4(+) CD25(+) regulatory T cells in patients with acute lymphoblastic leukemia. Oncol Lett. 2012;3:421–4.CrossRefPubMed
87.
Zurück zum Zitat Idris S-Z, Hassan N, Lee L-J, Md Noor S, Osman R, Abdul-Jalil M, et al. Increased regulatory T cells in acute lymphoblastic leukemia patients. Hematology. 2015;20:523–9.CrossRefPubMed Idris S-Z, Hassan N, Lee L-J, Md Noor S, Osman R, Abdul-Jalil M, et al. Increased regulatory T cells in acute lymphoblastic leukemia patients. Hematology. 2015;20:523–9.CrossRefPubMed
88.
Zurück zum Zitat Zelle-Rieser C, Thangavadivel S, Biedermann R, Brunner A, Stoitzner P, Willenbacher E, et al. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. J Hematol Oncol. 2016;9:116.CrossRefPubMedPubMedCentral Zelle-Rieser C, Thangavadivel S, Biedermann R, Brunner A, Stoitzner P, Willenbacher E, et al. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. J Hematol Oncol. 2016;9:116.CrossRefPubMedPubMedCentral
89.
Zurück zum Zitat Serag El-Dien MM, Abdou AG, Asaad NY, Abd El-Wahed MM, Kora MAE-HM. Intratumoral FOXP3+ regulatory T cells in diffuse large B-cell lymphoma. Appl Immunohistochem Mol Morphol. 2017;25:534–42.CrossRefPubMed Serag El-Dien MM, Abdou AG, Asaad NY, Abd El-Wahed MM, Kora MAE-HM. Intratumoral FOXP3+ regulatory T cells in diffuse large B-cell lymphoma. Appl Immunohistochem Mol Morphol. 2017;25:534–42.CrossRefPubMed
90.
Zurück zum Zitat Zhu L, Kong Y, Zhang J, Claxton DF, Ehmann WC, Rybka WB, et al. Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia. J Hematol Oncol. 2017;10:124.CrossRefPubMedPubMedCentral Zhu L, Kong Y, Zhang J, Claxton DF, Ehmann WC, Rybka WB, et al. Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia. J Hematol Oncol. 2017;10:124.CrossRefPubMedPubMedCentral
91.
Zurück zum Zitat Lang PO, Govind S, Aspinall R. Reversing T cell immunosenescence: why, who, and how. Age. 2013;35:609–20.CrossRefPubMed Lang PO, Govind S, Aspinall R. Reversing T cell immunosenescence: why, who, and how. Age. 2013;35:609–20.CrossRefPubMed
92.
94.
Zurück zum Zitat Ye J, Ma C, Hsueh EC, Dou J, Mo W, Liu S, et al. TLR8 signaling enhances tumor immunity by preventing tumor-induced T-cell senescence. EMBO Mol Med. 2014;6:1294–311.CrossRefPubMedPubMedCentral Ye J, Ma C, Hsueh EC, Dou J, Mo W, Liu S, et al. TLR8 signaling enhances tumor immunity by preventing tumor-induced T-cell senescence. EMBO Mol Med. 2014;6:1294–311.CrossRefPubMedPubMedCentral
96.
Zurück zum Zitat Karlsson H. Approaches to augment CAR T-cell therapy by targeting the apoptotic machinery. Biochem Soc Trans. 2016;44:371–6.CrossRefPubMed Karlsson H. Approaches to augment CAR T-cell therapy by targeting the apoptotic machinery. Biochem Soc Trans. 2016;44:371–6.CrossRefPubMed
Metadaten
Titel
T cell senescence and CAR-T cell exhaustion in hematological malignancies
verfasst von
Dimitri Kasakovski
Ling Xu
Yangqiu Li
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2018
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-018-0629-x

Weitere Artikel der Ausgabe 1/2018

Journal of Hematology & Oncology 1/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.