Skip to main content
Erschienen in: Current Hematologic Malignancy Reports 6/2016

05.08.2016 | Myelodysplastic Syndromes (D Steensma, Section Editor)

Targeting Splicing in the Treatment of Myelodysplastic Syndromes and Other Myeloid Neoplasms

verfasst von: Charlotte K. Brierley, David P. Steensma

Erschienen in: Current Hematologic Malignancy Reports | Ausgabe 6/2016

Einloggen, um Zugang zu erhalten

Abstract

Genome sequencing of primary cells from patients with myelodysplastic syndromes (MDS) led to the identification of recurrent heterozygous mutations in gene encoding components of the spliceosome, the cellular machinery which processes pre-messenger RNA (mRNA) to mature mRNA during gene transcription. Splicing mutations are mutually exclusive with one another and collectively represent the most common mutation class in MDS, occurring in approximately 60 % of patients overall and more than 80 % of those with ring sideroblasts. Evidence from animal models suggests that homozygous splicing mutations are lethal, and that in heterozygously mutated models, any further disruption of splicing triggers apoptosis and cell death. MDS cells with spliceosome mutations are thus uniquely vulnerable to therapies targeting splicing, which may be tolerated by healthy cells. The spliceosome is emerging as a novel therapeutic target in MDS and related myeloid neoplasms, with the first clinical trial of a splicing modulator opening in 2016.
Literatur
1.
Zurück zum Zitat Cogle CR, Iannacone MR, Yu D, Cole AL, Imanirad I, Yan L, et al. High rate of uncaptured myelodysplastic syndrome cases and an improved method of case ascertainment. Leuk Res. 2014;38(1):71–5.CrossRefPubMed Cogle CR, Iannacone MR, Yu D, Cole AL, Imanirad I, Yan L, et al. High rate of uncaptured myelodysplastic syndrome cases and an improved method of case ascertainment. Leuk Res. 2014;38(1):71–5.CrossRefPubMed
2.
Zurück zum Zitat Ma X, Does M, Raza A, Mayne ST. Myelodysplastic syndromes: incidence and survival in the United States. Cancer. 2007;109(8):1536–42.CrossRefPubMed Ma X, Does M, Raza A, Mayne ST. Myelodysplastic syndromes: incidence and survival in the United States. Cancer. 2007;109(8):1536–42.CrossRefPubMed
4.
Zurück zum Zitat Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32.CrossRefPubMedPubMedCentral Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Steensma DP. Myelodysplastic syndromes: diagnosis and treatment. Mayo Clin Proc. 2015;90(7):969–83.CrossRefPubMed Steensma DP. Myelodysplastic syndromes: diagnosis and treatment. Mayo Clin Proc. 2015;90(7):969–83.CrossRefPubMed
6.
Zurück zum Zitat Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–7.CrossRefPubMed Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–7.CrossRefPubMed
7.
Zurück zum Zitat Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616–27.CrossRefPubMedPubMedCentral Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616–27.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(December 25):2488–98.CrossRefPubMedPubMedCentral Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(December 25):2488–98.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Genovese G, Kähler AK, Rose SA, Handsaker RE, Chambert K, Mick E, et al. Clonal hematopoiesis and cancer risk in blood derived DNA sequence. N Engl J Med. 2014;371(December 25):2477–87.CrossRefPubMedPubMedCentral Genovese G, Kähler AK, Rose SA, Handsaker RE, Chambert K, Mick E, et al. Clonal hematopoiesis and cancer risk in blood derived DNA sequence. N Engl J Med. 2014;371(December 25):2477–87.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9.CrossRefPubMed Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9.CrossRefPubMed
11.
Zurück zum Zitat Zhang J, Manley JL. Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov. 2013;3(2159-8290 (Electronic)):1228–37.CrossRefPubMed Zhang J, Manley JL. Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov. 2013;3(2159-8290 (Electronic)):1228–37.CrossRefPubMed
13.
Zurück zum Zitat Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5.CrossRefPubMed Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5.CrossRefPubMed
14.
Zurück zum Zitat Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–6.CrossRefPubMedPubMedCentral Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–6.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Pimentel H, Parra M, Gee SL, Mohandas N, Pachter L, Conboy JG. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis. Nucleic Acids Res. 2016;44(1362-4962 (Electronic)):838–51.CrossRefPubMed Pimentel H, Parra M, Gee SL, Mohandas N, Pachter L, Conboy JG. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis. Nucleic Acids Res. 2016;44(1362-4962 (Electronic)):838–51.CrossRefPubMed
16.
Zurück zum Zitat Chen L, Kostadima M, Martens JHA, Canu G, Garcia SP, Turro E, et al. Transcriptional diversity during lineage commitment of human blood progenitors. Science. 2014;345(6204):1251033.CrossRefPubMedPubMedCentral Chen L, Kostadima M, Martens JHA, Canu G, Garcia SP, Turro E, et al. Transcriptional diversity during lineage commitment of human blood progenitors. Science. 2014;345(6204):1251033.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364(26):2496–506.CrossRefPubMedPubMedCentral Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364(26):2496–506.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat He C, Zhou F, Zuo Z, Cheng H, Zhou R. A global view of cancer-specific transcript variants by subtractive transcriptome-wide analysis. PLoS ONE. 2009;4(3):e4732.CrossRefPubMedPubMedCentral He C, Zhou F, Zuo Z, Cheng H, Zhou R. A global view of cancer-specific transcript variants by subtractive transcriptome-wide analysis. PLoS ONE. 2009;4(3):e4732.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Kar SA, Jankowska A, Makishima H, Visconte V, Jerez A, Sugimoto Y, et al. Spliceosomal gene mutations are frequent events in the diverse mutational spectrum of chronic myelomonocytic leukemia but largely absent in juvenile myelomonocytic leukemia. Haematologica. 2013;98(1):107–13.CrossRefPubMedPubMedCentral Kar SA, Jankowska A, Makishima H, Visconte V, Jerez A, Sugimoto Y, et al. Spliceosomal gene mutations are frequent events in the diverse mutational spectrum of chronic myelomonocytic leukemia but largely absent in juvenile myelomonocytic leukemia. Haematologica. 2013;98(1):107–13.CrossRefPubMedPubMedCentral
20.••
Zurück zum Zitat Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21. Mutational analyses of 111 genes revealed 11 molecularly distinct AML subgroups, associated with different clinical outcomes and likely different pathogenetic mechanisms. Patients with chromatin-spliceosome mutations were in the same molecular subgroup as patients with sAML. CrossRefPubMedPubMedCentral Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21. Mutational analyses of 111 genes revealed 11 molecularly distinct AML subgroups, associated with different clinical outcomes and likely different pathogenetic mechanisms. Patients with chromatin-spliceosome mutations were in the same molecular subgroup as patients with sAML. CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125(1528-0020 (Electronic)):1367–76.CrossRefPubMedPubMedCentral Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125(1528-0020 (Electronic)):1367–76.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16.CrossRefPubMedPubMedCentral Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Graubert TA, Shen D, Ding L, Okeyo-Owuor T, Lunn CL, Shao J, et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet. 2012;44(1):53–7.CrossRef Graubert TA, Shen D, Ding L, Okeyo-Owuor T, Lunn CL, Shao J, et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet. 2012;44(1):53–7.CrossRef
24.
Zurück zum Zitat Visconte V, Rogers HJ, Singh J, Barnard J, Bupathi M, Traina F, et al. SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood. 2012;120(16):3173–86.CrossRefPubMedPubMedCentral Visconte V, Rogers HJ, Singh J, Barnard J, Bupathi M, Traina F, et al. SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood. 2012;120(16):3173–86.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(1476-4687 (Electronic)):64–9.CrossRefPubMed Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(1476-4687 (Electronic)):64–9.CrossRefPubMed
26.
Zurück zum Zitat Hicks MJ, Mueller WF, Shepard PJ, Hertel KJ. Competing upstream 5’ splice sites enhance the rate of proximal splicing. 2010. Hicks MJ, Mueller WF, Shepard PJ, Hertel KJ. Competing upstream 5’ splice sites enhance the rate of proximal splicing. 2010.
27.••
Zurück zum Zitat Jung H, Lee D, Lee J, Park D, Kim YJ, Park W-Y, et al. Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat Genet. 2015;47(11):1242–8. RNA sequencing and exome data from diverse cancers identified intron retention as a common mechanism of tumor suppressor gene inactivation. CrossRefPubMed Jung H, Lee D, Lee J, Park D, Kim YJ, Park W-Y, et al. Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat Genet. 2015;47(11):1242–8. RNA sequencing and exome data from diverse cancers identified intron retention as a common mechanism of tumor suppressor gene inactivation. CrossRefPubMed
28.
Zurück zum Zitat Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365(15):1384–95.CrossRefPubMedPubMedCentral Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365(15):1384–95.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Traina F, Visconte V, Elson P, Tabarroki A, Jankowska AM, Hasrouni E, et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia. 2014;28(1):78–87.CrossRefPubMed Traina F, Visconte V, Elson P, Tabarroki A, Jankowska AM, Hasrouni E, et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia. 2014;28(1):78–87.CrossRefPubMed
30.••
Zurück zum Zitat Alsafadi S, Houy A, Battistella A, Popova T, Wassef M, Henry E, et al. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat Commun. 2016;7:10615. This study identified that mutations in the spliceosome gene result in deregulated splicing by favoring the use of an alternative 3′ splice site. CrossRefPubMedPubMedCentral Alsafadi S, Houy A, Battistella A, Popova T, Wassef M, Henry E, et al. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat Commun. 2016;7:10615. This study identified that mutations in the spliceosome gene result in deregulated splicing by favoring the use of an alternative 3′ splice site. CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat DeBoever C, Ghia EM, Shepard PJ, Rassenti L, Barrett CL, Jepsen K, et al. Transcriptome sequencing reveals potential mechanism of cryptic 3′ splice site selection in SF3B1-mutated cancers. PLoS Comput Biol. 2015;11(3):e1004105. doi:10.1371/journal.pcbi.1004105. DeBoever C, Ghia EM, Shepard PJ, Rassenti L, Barrett CL, Jepsen K, et al. Transcriptome sequencing reveals potential mechanism of cryptic 3′ splice site selection in SF3B1-mutated cancers. PLoS Comput Biol. 2015;11(3):e1004105. doi:10.​1371/​journal.​pcbi.​1004105.
32.••
Zurück zum Zitat Dolatshad H, Pellagatti A, Liberante FG, Llorian M, Repapi E, Steeples V, et al. Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes. Leukemia. 2016. doi:10.1038/leu.2016.149. RNA sequencing data from patients with SF3B1 mutant MDS confirms cryptic 3′ splice site usage as a pathogenetic mechanism. The resultant nonsense mediated decay of the iron transporter ABCB7 may account for the mitochondrial iron overload noted in MDS patients with ring sideroblasts.PubMedPubMedCentral Dolatshad H, Pellagatti A, Liberante FG, Llorian M, Repapi E, Steeples V, et al. Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes. Leukemia. 2016. doi:10.​1038/​leu.​2016.​149. RNA sequencing data from patients with SF3B1 mutant MDS confirms cryptic 3′ splice site usage as a pathogenetic mechanism. The resultant nonsense mediated decay of the iron transporter ABCB7 may account for the mitochondrial iron overload noted in MDS patients with ring sideroblasts.PubMedPubMedCentral
33.
Zurück zum Zitat Zhang S-J, Rampal R, Manshouri T, Patel J, Mensah N, Kayserian A, et al. Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood. 2012;119(19):4480–5.CrossRefPubMedPubMedCentral Zhang S-J, Rampal R, Manshouri T, Patel J, Mensah N, Kayserian A, et al. Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood. 2012;119(19):4480–5.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Schaal TD, Maniatis T. Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol Cell Biol. 1999;19(1):261–73.CrossRefPubMedPubMedCentral Schaal TD, Maniatis T. Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol Cell Biol. 1999;19(1):261–73.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Thol F, Kade S, Schlarmann C, Löffeld P, Morgan M, Krauter J, et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 2012;119(15):3578–84.CrossRefPubMed Thol F, Kade S, Schlarmann C, Löffeld P, Morgan M, Krauter J, et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 2012;119(15):3578–84.CrossRefPubMed
36.
Zurück zum Zitat Park Sung M, Ou J, Chamberlain L, Simone Tessa M, Yang H, Virbasius C-M, et al. U2AF35(S34F) promotes transformation by directing aberrant pre-mRNA formation. Mol Cell. 2016;62(4):479–90.CrossRefPubMed Park Sung M, Ou J, Chamberlain L, Simone Tessa M, Yang H, Virbasius C-M, et al. U2AF35(S34F) promotes transformation by directing aberrant pre-mRNA formation. Mol Cell. 2016;62(4):479–90.CrossRefPubMed
37.••
Zurück zum Zitat Kim E, Ilagan Janine O, Liang Y, Daubner Gerrit M, Lee Stanley CW, Ramakrishnan A, et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell. 2015;27(5):617–30. In a mouse model of the most common SRSF2 mutation, induction of SRSF2(P95H) led to mis-splicing by altering SRSF2’s selection of exonic splicing enhancer motifs, resulting in leukopenia, anemia and dysplasia. CrossRefPubMedPubMedCentral Kim E, Ilagan Janine O, Liang Y, Daubner Gerrit M, Lee Stanley CW, Ramakrishnan A, et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell. 2015;27(5):617–30. In a mouse model of the most common SRSF2 mutation, induction of SRSF2(P95H) led to mis-splicing by altering SRSF2’s selection of exonic splicing enhancer motifs, resulting in leukopenia, anemia and dysplasia. CrossRefPubMedPubMedCentral
38.••
Zurück zum Zitat Shirai CL, Ley JN, White BS, Kim S, Tibbitts J, Shao J, et al. Mutant U2AF1 expression alters hematopoiesis and pre-mrna splicing in vivo. Cancer Cell. 2015;27(5):631–43. In this doxycycline-inducible mouse model of the most common U2AF1 mutation, U2AF1(S34F) altered splicing of RNA processing and known recurrently mutated MDS/AML genes. Mice developed hematopoietic progenitor cell expansion and leukopenia. CrossRefPubMedPubMedCentral Shirai CL, Ley JN, White BS, Kim S, Tibbitts J, Shao J, et al. Mutant U2AF1 expression alters hematopoiesis and pre-mrna splicing in vivo. Cancer Cell. 2015;27(5):631–43. In this doxycycline-inducible mouse model of the most common U2AF1 mutation, U2AF1(S34F) altered splicing of RNA processing and known recurrently mutated MDS/AML genes. Mice developed hematopoietic progenitor cell expansion and leukopenia. CrossRefPubMedPubMedCentral
39.••
Zurück zum Zitat Colla S, Ong DS, Ogoti Y, Marchesini M, Mistry NA, Clise-Dwyer K, et al. Telomere dysfunction drives aberrant hematopoietic differentiation and myelodysplastic syndrome. Cancer Cell. 2015;27(5):644–57. In a mouse model of telomere dysfunction, mice demonstrated reduced expression of genes required for 3′ mRNA splice site recognition and aberrant splicing. Mice developed leukopenia, dysplasia and 5 % progressed to AML. CrossRefPubMedPubMedCentral Colla S, Ong DS, Ogoti Y, Marchesini M, Mistry NA, Clise-Dwyer K, et al. Telomere dysfunction drives aberrant hematopoietic differentiation and myelodysplastic syndrome. Cancer Cell. 2015;27(5):644–57. In a mouse model of telomere dysfunction, mice demonstrated reduced expression of genes required for 3′ mRNA splice site recognition and aberrant splicing. Mice developed leukopenia, dysplasia and 5 % progressed to AML. CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, et al. The evolutionary landscape of alternative splicing in vertebrate species. Science. 2012;338(6114):1587–93.CrossRefPubMed Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, et al. The evolutionary landscape of alternative splicing in vertebrate species. Science. 2012;338(6114):1587–93.CrossRefPubMed
41.
Zurück zum Zitat Bonnal S, Vigevani L, Valcarcel J. The spliceosome as a target of novel antitumour drugs. Nat Rev Drug Discov. 2012;11(11):847–59.CrossRefPubMed Bonnal S, Vigevani L, Valcarcel J. The spliceosome as a target of novel antitumour drugs. Nat Rev Drug Discov. 2012;11(11):847–59.CrossRefPubMed
42.
Zurück zum Zitat Pawellek A, McElroy S, Samatov T, Mitchell L, Woodland A, Ryder U, et al. Identification of small molecule inhibitors of pre-mRNA splicing. J Biol Chem. 2014;289(50):34683–98.CrossRefPubMedPubMedCentral Pawellek A, McElroy S, Samatov T, Mitchell L, Woodland A, Ryder U, et al. Identification of small molecule inhibitors of pre-mRNA splicing. J Biol Chem. 2014;289(50):34683–98.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Kaida D, Motoyoshi H, Tashiro E, Nojima T, Hagiwara M, Ishigami K, et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol. 2007;3:576–83.CrossRefPubMed Kaida D, Motoyoshi H, Tashiro E, Nojima T, Hagiwara M, Ishigami K, et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol. 2007;3:576–83.CrossRefPubMed
44.
Zurück zum Zitat Kotake Y, Sagane K, Owa T, Mimori-Kiyosue Y, Shimizu H, Uesugi M, et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol. 2007;3(1552-4450 (Print)):570–5.CrossRefPubMed Kotake Y, Sagane K, Owa T, Mimori-Kiyosue Y, Shimizu H, Uesugi M, et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol. 2007;3(1552-4450 (Print)):570–5.CrossRefPubMed
45.
Zurück zum Zitat Corrionero A, Minana B, Valcarcel J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 2011;25(1549-5477 (Electronic)):445–59.CrossRefPubMedPubMedCentral Corrionero A, Minana B, Valcarcel J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 2011;25(1549-5477 (Electronic)):445–59.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Yokoi A, Kotake Y, Takahashi K, Kadowaki T, Matsumoto Y, Minoshima Y, et al. Biological validation that SF3b is a target of the antitumor macrolide pladienolide. FEBS J. 2011;278(24):4870–80.CrossRefPubMed Yokoi A, Kotake Y, Takahashi K, Kadowaki T, Matsumoto Y, Minoshima Y, et al. Biological validation that SF3b is a target of the antitumor macrolide pladienolide. FEBS J. 2011;278(24):4870–80.CrossRefPubMed
47.
Zurück zum Zitat Fan L, Lagisetti C, Edwards CC, Webb TR, Potter PM. Sudemycins, novel small molecule analogues of FR901464, induce alternative gene splicing. ACS Chem Biol. 2011;6(6):582–9.CrossRefPubMedPubMedCentral Fan L, Lagisetti C, Edwards CC, Webb TR, Potter PM. Sudemycins, novel small molecule analogues of FR901464, induce alternative gene splicing. ACS Chem Biol. 2011;6(6):582–9.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Mizui Y, Sakai T, Iwata M, Uenaka T, Okamoto K, Shimizu H, et al. Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. III. In vitro and in vivo antitumor activities. J Antibiot (Tokyo). 2004;57(0021-8820 (Print)):188–96.CrossRef Mizui Y, Sakai T, Iwata M, Uenaka T, Okamoto K, Shimizu H, et al. Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. III. In vitro and in vivo antitumor activities. J Antibiot (Tokyo). 2004;57(0021-8820 (Print)):188–96.CrossRef
49.
Zurück zum Zitat Albert BJ, McPherson P, O’Brien K, Czaicki NL, Destefino V, Osman S, et al. Meayamycin inhibits pre-messenger RNA splicing and exhibits picomolar activity against multidrug-resistant cells. Mol Cancer Ther. 2009;8(1538-8514 (Electronic)):2308–18.CrossRefPubMedPubMedCentral Albert BJ, McPherson P, O’Brien K, Czaicki NL, Destefino V, Osman S, et al. Meayamycin inhibits pre-messenger RNA splicing and exhibits picomolar activity against multidrug-resistant cells. Mol Cancer Ther. 2009;8(1538-8514 (Electronic)):2308–18.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Soret J, Bakkour N, Maire S, Durand S, Zekri L, Gabut M, et al. Selective modification of alternative splicing by indole derivatives that target serine-arginine-rich protein splicing factors. Proc Natl Acad Sci U S A. 2005;102(24):8764–9.CrossRefPubMedPubMedCentral Soret J, Bakkour N, Maire S, Durand S, Zekri L, Gabut M, et al. Selective modification of alternative splicing by indole derivatives that target serine-arginine-rich protein splicing factors. Proc Natl Acad Sci U S A. 2005;102(24):8764–9.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Stamm S. Regulation of alternative splicing by reversible protein phosphorylation. J Biol Chem. 2008;283(3):1223–7.CrossRefPubMed Stamm S. Regulation of alternative splicing by reversible protein phosphorylation. J Biol Chem. 2008;283(3):1223–7.CrossRefPubMed
52.
Zurück zum Zitat Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen G-J, et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat. 2009;30(3):293–9.CrossRefPubMed Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen G-J, et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat. 2009;30(3):293–9.CrossRefPubMed
53.
Zurück zum Zitat Passini MA, Bu J, Richards AM, Kinnecom C, Sardi SP, Stanek LM, et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med. 2011;3(72):72ra18.CrossRefPubMedPubMedCentral Passini MA, Bu J, Richards AM, Kinnecom C, Sardi SP, Stanek LM, et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med. 2011;3(72):72ra18.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Frei 3rd E. Gene deletion: a new target for cancer chemotherapy. Lancet. 1993;342(8872):662–4.CrossRefPubMed Frei 3rd E. Gene deletion: a new target for cancer chemotherapy. Lancet. 1993;342(8872):662–4.CrossRefPubMed
55.
Zurück zum Zitat Nijhawan D, Zack TI, Ren Y, Strickland MR, Lamothe R, Schumacher SE, et al. Cancer vulnerabilities unveiled by genomic loss. Cell. 2012;150(4):842–54.CrossRefPubMedPubMedCentral Nijhawan D, Zack TI, Ren Y, Strickland MR, Lamothe R, Schumacher SE, et al. Cancer vulnerabilities unveiled by genomic loss. Cell. 2012;150(4):842–54.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343(6168):301–5.CrossRefPubMed Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343(6168):301–5.CrossRefPubMed
57.
Zurück zum Zitat Folco EG, Coil KE, Reed R. The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. Genes Dev. 2011;25(5):440–4.CrossRefPubMedPubMedCentral Folco EG, Coil KE, Reed R. The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. Genes Dev. 2011;25(5):440–4.CrossRefPubMedPubMedCentral
58.••
Zurück zum Zitat Lee SC-W, Dvinge H, Kim E, Cho H, Micol J-B, Chung YR, et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med. 2016;22(6):672–8. In mice with SRSF2-mutant leukemias, the splicing inibitor E7107 prolonged survival and reduced leukemic burden. E7107 resulted in greater splicing inhibition in SRSF2-mutated than wild-type leukemia. CrossRefPubMedPubMedCentral Lee SC-W, Dvinge H, Kim E, Cho H, Micol J-B, Chung YR, et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med. 2016;22(6):672–8. In mice with SRSF2-mutant leukemias, the splicing inibitor E7107 prolonged survival and reduced leukemic burden. E7107 resulted in greater splicing inhibition in SRSF2-mutated than wild-type leukemia. CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Tripathi M, Lunn CL, Okeyo-Owuor T, Walter MJ, Webb TR, Graubert T. Sudemycin selectively inhibits growth of primary murine hematopoietic cells expressing mutant U2AF1. Blood. 2015;120(21):554. Tripathi M, Lunn CL, Okeyo-Owuor T, Walter MJ, Webb TR, Graubert T. Sudemycin selectively inhibits growth of primary murine hematopoietic cells expressing mutant U2AF1. Blood. 2015;120(21):554.
61.
Zurück zum Zitat Xargay-Torrent S, López-Guerra M, Rosich L, Montraveta A, Roldán J, Rodríguez V, et al. The splicing modulator sudemycin induces a specific antitumor response and cooperates with ibrutinib in chronic lymphocytic leukemia. Oncotarget. 2015;6(26):22734.CrossRefPubMedPubMedCentral Xargay-Torrent S, López-Guerra M, Rosich L, Montraveta A, Roldán J, Rodríguez V, et al. The splicing modulator sudemycin induces a specific antitumor response and cooperates with ibrutinib in chronic lymphocytic leukemia. Oncotarget. 2015;6(26):22734.CrossRefPubMedPubMedCentral
62.••
Zurück zum Zitat Eskens FA, Ramos FJ, Burger H, O’Brien JP, Piera A, de Jonge MJ, et al. Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin Cancer Res. 2013;19(22):6296–304. The first-in-man trial of E7107, a pladienolide derivative targeting SF3B1, in patients with advanced solid tumors demonstrated in vivo evidence of splicing inhibition. The trial was halted due to the development of bilateral optic neuritis in one patient. CrossRefPubMed Eskens FA, Ramos FJ, Burger H, O’Brien JP, Piera A, de Jonge MJ, et al. Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin Cancer Res. 2013;19(22):6296–304. The first-in-man trial of E7107, a pladienolide derivative targeting SF3B1, in patients with advanced solid tumors demonstrated in vivo evidence of splicing inhibition. The trial was halted due to the development of bilateral optic neuritis in one patient. CrossRefPubMed
63.
Zurück zum Zitat Hong DS, Kurzrock R, Naing A, Wheler JJ, Falchook GS, Schiffman JS, et al. A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Investig New Drugs. 2014;32(3):436–44.CrossRef Hong DS, Kurzrock R, Naing A, Wheler JJ, Falchook GS, Schiffman JS, et al. A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Investig New Drugs. 2014;32(3):436–44.CrossRef
Metadaten
Titel
Targeting Splicing in the Treatment of Myelodysplastic Syndromes and Other Myeloid Neoplasms
verfasst von
Charlotte K. Brierley
David P. Steensma
Publikationsdatum
05.08.2016
Verlag
Springer US
Erschienen in
Current Hematologic Malignancy Reports / Ausgabe 6/2016
Print ISSN: 1558-8211
Elektronische ISSN: 1558-822X
DOI
https://doi.org/10.1007/s11899-016-0344-z

Weitere Artikel der Ausgabe 6/2016

Current Hematologic Malignancy Reports 6/2016 Zur Ausgabe

T-Cell and Other Lymphoproliferative Malignancies (P Porcu, Section Editor)

Sézary Syndrome: Clinical and Biological Aspects

T-Cell and Other Lymphoproliferative Malignancies (P Porcu, Section Editor)

T-cell Lymphoma Epidemiology: the Known and Unknown

Myelodysplastic Syndromes (D Steensma, Section Editor)

Palliative and End-of-Life Care in Myelodysplastic Syndromes

Myelodysplastic Syndromes (D Steensma, Section Editor)

Improving Prognostic Modeling in Myelodysplastic Syndromes

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.