Skip to main content
Erschienen in: Molecular Cancer 1/2021

Open Access 01.12.2021 | Letter to the Editor

Tetraspanin8 expression predicts an increased metastatic risk and is associated with cancer-related death in human cutaneous melanoma

verfasst von: Odile Berthier-Vergnes, Laetitia Barbollat-Boutrand, Roxane M. Pommier, Arnaud de la Fouchardière, Patrick Combemale, Maxime Grimont, Noémie Lopez-Ramirez, Julie Caramel, Stéphane Dalle, Jean-Luc Perrot, Caroline Gaudy-Marqueste, Nicolas Macagno, Sandrine Mansard, Fanny Bouquet, Ingrid Masse

Erschienen in: Molecular Cancer | Ausgabe 1/2021

Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12943-021-01429-0.
Laetitia Barbollat-Boutrand and Roxane M. Pommier contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BI
Breslow Index
CCLE
Cancer Cell Line Encyclopedia
CL
Clark Level
KIRREL
Kin of IRRE-like protein 1
PCR
Polymerase Chain Reaction
TCGA
The Cancer Genome Atlas
TSPAN8
Tetraspanin 8
Cutaneous malignant melanoma remains an aggressive cancer given its high metastatic proclivity. Numerous patients with newly diagnosed cutaneous melanoma have early lesions, which can be cured by surgery. When patients have to face advanced-stage melanomas with distant metastases, the mean survival time remains low, despite the development of recent therapies [1]. The conventional diagnostic and prognostic biomarkers (i.e. Clark Level (CL), Breslow Index (BI) or immunohistochemical markers [2]) seem insufficient to distinguish precisely primary epidermis-limited neoplasms from aggressive or advanced/metastatic melanomas, and to assess the outcome for individual patients. Thus, additional relevant biomarkers are needed to predict the individual risk of metastasis and monitor disease progression.
We previously showed that Tspan8, a known inducer of invasion in carcinomas, is sufficient to confer invasiveness to non-invasive melanoma cells [35]. We demonstrated that Tspan8 expression is sufficient to confer invasive properties to non-invasive melanoma cells in boyden assays in 2D-cultured cells [3, 4] but also in 3D skin-reconstructs models [5]. Moreover, we identified several Tspan8 transcriptional regulators whose deregulation leads to Tspan8 expression [3, 5, 6], which could help to design new therapeutic strategies targeting Tspan8. Indeed, Tspan8 emerges recently as a blood biomarker [7] but also as a promising therapeutic target in various carcinomas, since Tspan8 blocking antibodies decreased angiogenesis [8], cell motility [9], tumor growth in mice [10] and metastasis [11, 12]. We showed that early melanoma spreading in skin-reconstruct models was reduced by Tspan8-specific antibody [5]. Tspan8 could also be a relevant target for radio-immunotherapy [12]. In this context, we wondered whether Tspan8, whose expression is highly correlated with acquisition of invasiveness, could be a potential new biomarker for early detection prognosis which could help to predict metastasis risk in individual patients, including those bearing thin melanomas that, in some cases, can metastasize and cause patients deaths.
Here, we demonstrated that Tspan8 was more frequently expressed in metastatic samples and that Tspan8 expression was correlated with the presence of a BRAFV600E mutation, a higher propensity to give rise to distant metastases and an increased risk of death.

Results and discussion

High TSPAN8 mRNA expression is linked to metastatic dissemination in the TCGA cohort

We previously showed that Tspan8 expression is restricted to invasive melanoma cell lines [13]. However, when Tspan8 expression was studied in the sixty-three cell lines from the Cancer Cell Line Encyclopedia (CCLE), very low levels of TSPAN8 mRNA and protein were observed (sup. Figure 1a-c). Heterogeneous but easily detectable Tspan8 expression levels were observed in vitro only in short-term cultures derived from metastatic pleural effusions from patients developing a primary invasive melanoma [14] (unpublished results; sup. Figure 1d). We can surmise that classic establishment of cell lines, that favors cell proliferative capacities rather than invasiveness, leads to a low Tspan8 expression, which is not representative of Tspan8 expression observed in situ in primary melanoma samples [13]. To overcome this in vitro problem, we performed our studies in patient samples.
We first analyzed TSPAN8 mRNA expression in the data set from The Cancer Genome Atlas (TCGA; https://​cancergenome.​nih.​gov/​) and observed a heterogeneous expression. To decipher the inner structure of the TSPAN8 expression distribution across the cohort, we applied Gaussian finite mixture models (mclust R package) and highlighted 2 groups of tumors: 1/3 of samples showed absent/low (in black) TSPAN8 mRNA expression and 2/3 of samples displayed a higher one (in red) (Fig. 1a). These two groups have been used for further analyses.
No correlation was found with CL, neither on the totality of the 414 samples nor on the 100 primary samples only (Fig. 1b). However, BI analysis surprisingly revealed that melanoma samples displaying a high TSPAN8 expression were more frequently thin melanomas (Fig. 1c, left panel). This highly significant effect was completely lost when only primary melanomas were analyzed (Fig. 1c, right panel), that can be explain by the fact that, in the TCGA cohort, mRNA expression data from primary melanomas are available only for thick melanomas (sup. Figure 2a), probably due to the small amount of tumor material for thin melanomas. Nevertheless, in this cohort, all thin melanomas gave rise to metastases, which could link TSPAN8 mRNA expression to metastatic properties.
Accordingly, high TSPAN8 expression was observed in 44.4% of regional cutaneous tissues, 41.9% of regional lymph nodes and 42.1% of distant metastases, versus 26% for primary tumors (Fig. 1d). Overall, we observed that only 26% of primary melanomas displayed high TSPAN8 expression, whereas local or distant melanoma dissemination was significantly associated with a more frequent TSPAN8 expression (Fig. 1e), consistently with the correlation of Tspan8 expression with invasiveness previously demonstrated in vitro [3, 4, 6, 13].

Tspan8 protein expression in human primary melanomas was correlated with a higher propensity to give rise to distant metastases and an increased risk of death

To evaluate the impact of Tspan8 expression at the protein level, we performed Tspan8 immunohistochemical staining analysis in a cohort of 100 primary melanoma samples: 73% of primary melanomas were positive for Tspan8 protein expression (sup. Figure 2b), without any significant differences depending on patient age or gender (sup. Figure 2c,d). We analyzed Tspan8 immunostaining in details, and sections were scored positive if any reactive areas were seen in melanoma lesions with growing intensity from 0 (no staining) to 4 (strong staining) (Fig. 2a, four first panel). Tspan8 staining is often clonal with some positive clones neighboring some negative areas (Fig. 2a, third panel), but could also be detected in the invasive front of the tumor (Fig. 2a, fifth panel) and, even if the majority of melanoma cells harbored a cytoplasmic staining, some rare cells in some samples presented a stronger staining at the membrane (Fig. 2a, sixth panel).
In accordance with the TCGA cohort, no correlation with CL (sup. Figure 2e) or BI emerged (sup. Figure 2f,g). However, Tspan8 was more frequently expressed in samples from patients who died during the 5-year period after the melanoma diagnosis than in samples from patients who remained alive, and especially for thin melanomas, inferior to 1 mm (Fig. 2b). Tspan8 protein seemed more frequently expressed in the thinnest melanomas from patients dead during the 5-year period after diagnosis (92.3% of samples). Moreover, the thinnest primary melanomas seemed to express the highest levels of Tspan8 protein (immunointensity score 4 exclusively in < 1 mm samples), especially in patients’ dead 5-years after diagnosis (60% of immunointensity scores 3–4; Fig. 2c).
Besides, only 65% of primary tumors that did not give metastases expressed Tspan8 whereas in primary tumors that disseminated, 84.6% expressed Tspan8 (Fig. 2d), demonstrating that Tspan8 expression in primary tumors was significantly correlated with the propensity to metastasize. Interestingly, in thin melanomas (less than 1 mm) especially, 11 among 12 samples (91.7%) from patients who died during the 5 years after the melanoma diagnosis gave rise to metastasis and 10 of them (90.9%) expressed Tspan8 protein, strengthening the correlation between Tspan8 protein expression and metastatic dissemination in thin melanomas. These results are particularly interesting since it is known that patients bearing thinner melanomas with no deep cutaneous invasion have generally a better survival rate [15] but that some thin melanomas (< 0.75 – 1 mm) could acquire some aggressive properties and lead to patient death. Indeed, metastases in sentinel lymph node were detected in more than 5% of patients who had a sentinel lymph node biopsy after the detection of a thin melanoma (< 1 mm) [16]. Our data showed that Tspan8 immunostaining could thus be a biomarker to assess the individual risk of metastasis, especially for thin melanomas, and potentially linked with patient poor survival since Tspan8 expression seemed also correlated with the vital status of the patients. The proportion of Tspan8-expressing primary melanomas increased from 66.1% for alive patients to 82.9% for dead patients, 5 years after the diagnosis (Fig. 2e), and the 5-years overall survival curve (Fig. 2f) showed that the presence of Tspan8 protein in primary melanomas tended to represent an increase risk of death.

Tspan8 expression was correlated with the presence of a BRAF mutation in patient melanoma samples

In melanoma cell lines in vitro, we were not able to highlight a possible correlation between TSPAN8 mRNA expression and the presence of a BRAF or a NRAS mutation (sup. Fig. 3a), that are the most frequent genetic alterations detected in melanoma [17]. In the TCGA cohort as well, no statistical difference could be observed, neither for BRAF nor NRAS mutation (sup. Fig. 3b,c), but in our cohort of primary melanomas sample, a systematic screening of BRAFV600E mutation by immunohistochemistry (sup. Fig. 3d) revealed a significant correlation between Tspan8 protein expression and the presence of the BRAFV6OOE mutation (Fig. 2g). These data emphasize the functional interaction between Tspan8 and BRAF that we previously showed in vitro, suggesting that Tspan8 is a downstream effector of the RAF/MEK/ERK signaling pathway [3].

Conclusion

Overall, our findings suggest that Tspan8 protein detection could help the early identification of subgroups of patients bearing primary melanomas, preferentially BRAF-mutated, with high risk of developing metastatic disease and could possibly discriminate thin melanomas with poor outcome. Although further investigations in a larger patient cohort are needed, these findings could have potential clinical relevance since Tspan8 protein expression can be used to define subgroups of thin melanoma patients who have a worse prognosis. Moreover, they should have important implications for proposed populations screening programs and patients’ cure. Indeed, since one third (4/12) of patients with a thin melanoma that metastasized and led to the patient death have a Tspan8 staining associated with a BRAFV600E mutation, an anti-BRAF/MEK therapeutic strategy could be proposed.

Acknowledgements

We thank Claude Boucheix for the gift of TS29 monoclonal antibody, and Nicolas Gadot and Julie Valantin at the anatomopathological plateform of Cancer Reasearch Center of Lyon for technical assistance.

Declarations

This work has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving human samples. The research program, including studies on archival and stored materials, was approved by the research ethics committee of the Center Léon Bérard, Lyon, France.
Not applicable.

Competing interests

Conflict of interest disclosure statement: FB is a member of Institut Roche, an affiliate of Hoffman-La Roche that has funded this study. The other authors report no conflicts of interest in this work.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
5.
Zurück zum Zitat El Kharbili M, Cario M, Béchetoille N, Pain C, Boucheix C, Degoul F, et al. Tspan8 drives melanoma dermal invasion by promoting ProMMP-9 activation and basement membrane proteolysis in a keratinocyte-dependent manner. Cancers (Basel). 2020;12(5):1297.CrossRef El Kharbili M, Cario M, Béchetoille N, Pain C, Boucheix C, Degoul F, et al. Tspan8 drives melanoma dermal invasion by promoting ProMMP-9 activation and basement membrane proteolysis in a keratinocyte-dependent manner. Cancers (Basel). 2020;12(5):1297.CrossRef
Metadaten
Titel
Tetraspanin8 expression predicts an increased metastatic risk and is associated with cancer-related death in human cutaneous melanoma
verfasst von
Odile Berthier-Vergnes
Laetitia Barbollat-Boutrand
Roxane M. Pommier
Arnaud de la Fouchardière
Patrick Combemale
Maxime Grimont
Noémie Lopez-Ramirez
Julie Caramel
Stéphane Dalle
Jean-Luc Perrot
Caroline Gaudy-Marqueste
Nicolas Macagno
Sandrine Mansard
Fanny Bouquet
Ingrid Masse
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2021
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-021-01429-0

Weitere Artikel der Ausgabe 1/2021

Molecular Cancer 1/2021 Zur Ausgabe

NSCLC: Progressionsfreies Überleben unter Osimertinib fast versiebenfacht

06.06.2024 ASCO 2024 Kongressbericht

Erste Ergebnisse der Phase-III-Studie LAURA etablieren Osimertinib als neuen Therapiestandard für Menschen mit nicht-resezierbarem, EGFR-mutiertem, nicht-kleinzelligem Lungenkarzinom im Stadium III, die nach definitiver Radiochemotherapie progressionsfrei sind. Auf der ASCO-Tagung wurden diese beeindruckenden Ergebnisse besprochen.

Hodgkin Lymphom: BrECADD-Regime übertrifft die Erwartungen

05.06.2024 ASCO 2024 Kongressbericht

Das Kombinationsregime BrECADD mit Brentuximab vedotin ermöglichte in der Studie HD21 beim fortgeschrittenen klassischen Hodgkin-Lymphom eine unerwartet hohe progressionsfreie Überlebensrate von 94,3% nach vier Jahren. Gleichzeitig war das Regime besser tolerabel als der bisherige Standard eBEACOPP.

Antikörper-Drug-Konjugat verdoppelt PFS bei Multiplem Myelom

05.06.2024 ASCO 2024 Nachrichten

Zwei Phase-3-Studien deuten auf erhebliche Vorteile des Antikörper-Wirkstoff-Konjugats Belantamab-Mafodotin bei vorbehandelten Personen mit Multiplem Myelom: Im Vergleich mit einer Standard-Tripeltherapie wurde das progressionsfreie Überleben teilweise mehr als verdoppelt.

Neuer TKI gegen CML: Höhere Wirksamkeit, seltener Nebenwirkungen

05.06.2024 Chronische myeloische Leukämie Nachrichten

Der Tyrosinkinasehemmer (TKI) Asciminib ist älteren Vertretern dieser Gruppe bei CML offenbar überlegen: Personen mit frisch diagnostizierter CML entwickelten damit in einer Phase-3-Studie häufiger eine gute molekulare Response, aber seltener ernste Nebenwirkungen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.