Skip to main content
Erschienen in: Brain Structure and Function 6/2019

14.05.2019 | Original Article

The effect of exercise on memory and BDNF signaling is dependent on intensity

verfasst von: Marina Cefis, Anne Prigent-Tessier, Aurore Quirié, Nicolas Pernet, Christine Marie, Philippe Garnier

Erschienen in: Brain Structure and Function | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Abstract

The aims of the present study were to investigate in brain of adult rats (1) whether exercise-induced activation of brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) pathway is dependent on exercise intensity modality and (2) whether exercise-induced improvement of memory is proportional to this pathway activation. Wistar rats were subjected to low (12 m/min) or high (18 m/min) exercise intensity on horizontal treadmill (30 min/day, 7 consecutive days) that corresponds to ~ 40 and 70% of maximal aerobic speed, respectively. Animals treated with scopolamine to induce memory impairment were subjected to novel object recognition test to assess potential improvement in cognitive function. Expressions of BDNF, phosphorylated TrkB receptors, synaptophysin (a marker of synaptogenesis), c-fos (a neuronal activity marker) and phosphorylated endothelial nitric oxide synthase (a cerebral blood flow marker) were measured in prefrontal cortex and hippocampus of different groups of rats. In terms of cognition, our data reported that only the most intense exercise improves memory performance. Our data also revealed that BDNF pathway is dependent on intensity modality of exercise with a gradual effect in hippocampus whereas only the highest intensity leads to this pathway activation in prefrontal cortex. Our study revealed that memory improvement through BDNF pathway activation is dependent on exercise intensity. While reporting that our protocol is sufficient to improve cognition in animals with impaired memory, our data suggest that prefrontal cortex is possibly a more suitable structure than hippocampus when neuroplastic markers are used to mirror potential improvement in memory performance.
Literatur
Zurück zum Zitat Akirav I, Khatsrinov V, Vouimba RM, Merhav M, Ferreira G, Rosenblum K, Maroun M (2006) Extinction of conditioned taste aversion depends on functional protein synthesis but not on NMDA receptor activation in the ventromedial prefrontal cortex. Learn Mem 13:254–258. https://doi.org/10.1101/lm.191706 CrossRefPubMed Akirav I, Khatsrinov V, Vouimba RM, Merhav M, Ferreira G, Rosenblum K, Maroun M (2006) Extinction of conditioned taste aversion depends on functional protein synthesis but not on NMDA receptor activation in the ventromedial prefrontal cortex. Learn Mem 13:254–258. https://​doi.​org/​10.​1101/​lm.​191706 CrossRefPubMed
Zurück zum Zitat Ebert U, Kirch W (1998) Scopolamine model of dementia: electroencephalogram findings and cognitive performance. Eur J Clin Investig 28:944–949CrossRef Ebert U, Kirch W (1998) Scopolamine model of dementia: electroencephalogram findings and cognitive performance. Eur J Clin Investig 28:944–949CrossRef
Zurück zum Zitat Ennaceur A, Meliani K (1992) Effects of physostigmine and scopolamine on rats’ performances in object-recognition and radial-maze tests. Psychopharmacology 109:321–330CrossRefPubMed Ennaceur A, Meliani K (1992) Effects of physostigmine and scopolamine on rats’ performances in object-recognition and radial-maze tests. Psychopharmacology 109:321–330CrossRefPubMed
Zurück zum Zitat Kimura A, Okada K, Sato A, Suzuki H (1994) Regional cerebral blood flow in the frontal, parietal and occipital cortices increases independently of systemic arterial pressure during slow walking in conscious rats. Neurosci Res 20:309–315CrossRefPubMed Kimura A, Okada K, Sato A, Suzuki H (1994) Regional cerebral blood flow in the frontal, parietal and occipital cortices increases independently of systemic arterial pressure during slow walking in conscious rats. Neurosci Res 20:309–315CrossRefPubMed
Zurück zum Zitat Nakajima K, Uchida S, Suzuki A, Hotta H, Aikawa Y (2003) The effect of walking on regional blood flow and acetylcholine in the hippocampus in conscious rats. Auton Neurosci 103:83–92CrossRefPubMed Nakajima K, Uchida S, Suzuki A, Hotta H, Aikawa Y (2003) The effect of walking on regional blood flow and acetylcholine in the hippocampus in conscious rats. Auton Neurosci 103:83–92CrossRefPubMed
Zurück zum Zitat Pozzo-Miller LD et al (1999) Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. J Neurosci 19:4972–4983CrossRefPubMedPubMedCentral Pozzo-Miller LD et al (1999) Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. J Neurosci 19:4972–4983CrossRefPubMedPubMedCentral
Zurück zum Zitat van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96:13427–13431CrossRefPubMedPubMedCentral van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96:13427–13431CrossRefPubMedPubMedCentral
Zurück zum Zitat Vaynman S, Ying Z, Gomez-Pinilla F (2003) Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience 122:647–657CrossRefPubMed Vaynman S, Ying Z, Gomez-Pinilla F (2003) Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience 122:647–657CrossRefPubMed
Metadaten
Titel
The effect of exercise on memory and BDNF signaling is dependent on intensity
verfasst von
Marina Cefis
Anne Prigent-Tessier
Aurore Quirié
Nicolas Pernet
Christine Marie
Philippe Garnier
Publikationsdatum
14.05.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 6/2019
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-019-01889-7

Weitere Artikel der Ausgabe 6/2019

Brain Structure and Function 6/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.