Skip to main content
Erschienen in: Pathology & Oncology Research 4/2018

07.07.2018 | Review

The ER – Glycogen Particle – Phagophore Triangle: A Hub Connecting Glycogenolysis and Glycophagy?

verfasst von: József Mandl, Gábor Bánhegyi

Erschienen in: Pathology & Oncology Research | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Glycogen particle is an intracellular organelle, which serves as a carbohydrate reserve in various cells. The function of glycogen is not entirely known in several cell types. Glycogen can be mobilized for different purposes, which can be related to cellular metabolic needs, intracellular redox state, metabolic state of the whole organism depending on regulatory aspects and also on cell functions. Essentially there are two different ways of glycogen degradation localized in different cellular organelles: glycogenolysis or lysosomal breakdown by acid alpha-glucosidase. While glycogenolysis occurs in glycogen particles connected to endoplasmic reticulum membrane, glycogen particles can be also combined with phagophores forming autophagosomes. A subdomain of the endoplasmic reticulum membrane - omegasomes - are the sites for phagophore formation. Thus, three organelles, the endoplasmic reticulum, the phagophore and the glycogen particle forms a triangle in which glycogen degradation occurs. The physiological significance, molecular logic and regulation of the two different catabolic paths are summarized and discussed with special aspect on the role of glycogen particles in intracellular organelle homeostasis and on molecular pathology of the cell. Pathological aspects and some diseases connected to the two different degradation pathways of glycogen particles are also detailed.
Literatur
1.
Zurück zum Zitat Adeva-Andany MM, González-Lucán M, Donapetry-García C, Fernández-Fernández C, Ameneiros-Rodríguez E (2016) Glycogen metabolism in humans. Biochem Biophys Acta Clin 5:85–100 Adeva-Andany MM, González-Lucán M, Donapetry-García C, Fernández-Fernández C, Ameneiros-Rodríguez E (2016) Glycogen metabolism in humans. Biochem Biophys Acta Clin 5:85–100
2.
Zurück zum Zitat Duran J, Guinovart JJ (2015) Brain glycogen in health and disease. Mol Asp Med 46:70–77CrossRef Duran J, Guinovart JJ (2015) Brain glycogen in health and disease. Mol Asp Med 46:70–77CrossRef
3.
Zurück zum Zitat Csordas G, Varnai P, Golenar T, Roy S, Purkins G, Schneider TG, Balla T, Hajnoczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132CrossRefPubMedPubMedCentral Csordas G, Varnai P, Golenar T, Roy S, Purkins G, Schneider TG, Balla T, Hajnoczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat de Brito OM, Scorrano L (2010) An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J 29:2715–2723CrossRefPubMedPubMedCentral de Brito OM, Scorrano L (2010) An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J 29:2715–2723CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Bánhegyi G, Mandl J (2001) The hepatic glycogenoreticular system. POR 7:107–110PubMed Bánhegyi G, Mandl J (2001) The hepatic glycogenoreticular system. POR 7:107–110PubMed
6.
Zurück zum Zitat Stapleton D, Nelson C, Parsawar K, McClain D, Gilbert-Wilson R, Barker E, Rudd B, Brown K, Hendrix W, O'Donnell P, Parker G (2010) Analysis of hepatic glycogen-associated proteins. Proteomics 10:2320–2329CrossRefPubMedPubMedCentral Stapleton D, Nelson C, Parsawar K, McClain D, Gilbert-Wilson R, Barker E, Rudd B, Brown K, Hendrix W, O'Donnell P, Parker G (2010) Analysis of hepatic glycogen-associated proteins. Proteomics 10:2320–2329CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Mandl J, Mészáros T, Bánhegyi G, Csala M (2013) Minireview: Endoplasmic reticulum stress: Control in protein, lipid, and signal homeostasis. Mol Endocrinol 27:384–393CrossRefPubMedPubMedCentral Mandl J, Mészáros T, Bánhegyi G, Csala M (2013) Minireview: Endoplasmic reticulum stress: Control in protein, lipid, and signal homeostasis. Mol Endocrinol 27:384–393CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Csala M, Kereszturi É, Mandl J, Bánhegyi G (2012) The endoplasmic reticulum as the extracellular space inside the cell: role in protein folding and glycosylation. Antioxid Redox Signal 16:1100–1108CrossRefPubMed Csala M, Kereszturi É, Mandl J, Bánhegyi G (2012) The endoplasmic reticulum as the extracellular space inside the cell: role in protein folding and glycosylation. Antioxid Redox Signal 16:1100–1108CrossRefPubMed
9.
Zurück zum Zitat Fawcett DW (1955) Observations on the cytology and electron microscopy of hepatic cells. J Natl Cancer Inst 15:1457–1503 Fawcett DW (1955) Observations on the cytology and electron microscopy of hepatic cells. J Natl Cancer Inst 15:1457–1503
10.
Zurück zum Zitat Cardell RR Jr (1977) Smooth endoplasmic reticulum in rat hepatocytes during glycogen deposition and depletion. Int Rev Cytol 48:221–279CrossRefPubMed Cardell RR Jr (1977) Smooth endoplasmic reticulum in rat hepatocytes during glycogen deposition and depletion. Int Rev Cytol 48:221–279CrossRefPubMed
11.
Zurück zum Zitat Bánhegyi G, Garzó T, Antoni F, Mandl J (1988) Glycogenolysis – and not gluconeogenesis – is the source of UDP-glucuronic acid for glucuronidation. Biochim Biophys Acta 967:429–435CrossRefPubMed Bánhegyi G, Garzó T, Antoni F, Mandl J (1988) Glycogenolysis – and not gluconeogenesis – is the source of UDP-glucuronic acid for glucuronidation. Biochim Biophys Acta 967:429–435CrossRefPubMed
12.
Zurück zum Zitat Mandl J, Bánhegyi G, Kalapos M, Garzó T (1995) Increased oxidation and decreased conjugation of drugs in the liver caused by starvation. (review) Chem. Biol. Interactions 96:87–101 Mandl J, Bánhegyi G, Kalapos M, Garzó T (1995) Increased oxidation and decreased conjugation of drugs in the liver caused by starvation. (review) Chem. Biol. Interactions 96:87–101
13.
Zurück zum Zitat Helmika W, Wever R (1997) A new model for the membrane topology of glucose-6-phosphatase: the enzyme involved in von Gierke disease. FEBS Lett 409:317–319CrossRef Helmika W, Wever R (1997) A new model for the membrane topology of glucose-6-phosphatase: the enzyme involved in von Gierke disease. FEBS Lett 409:317–319CrossRef
14.
Zurück zum Zitat Pan CJ, Lei KJ, Annabi B et al (1998) Transmembrane topology of glucose-6-phosphatase. J Biol Chem 273:6144–6148CrossRefPubMed Pan CJ, Lei KJ, Annabi B et al (1998) Transmembrane topology of glucose-6-phosphatase. J Biol Chem 273:6144–6148CrossRefPubMed
15.
16.
Zurück zum Zitat Clarke DJ, Burchell G (1994) Conjugation-Deconjugation reactions in Drug Metabolism and Toxicity. In: Kauffman FC (ed) Handbook of Experimental Pharmacology, vol 112. Springer Verlag, Budapest, pp 3–43 Clarke DJ, Burchell G (1994) Conjugation-Deconjugation reactions in Drug Metabolism and Toxicity. In: Kauffman FC (ed) Handbook of Experimental Pharmacology, vol 112. Springer Verlag, Budapest, pp 3–43
17.
Zurück zum Zitat Braun L, Garzo T, Mandl J, Banhegyi G (1994) Ascorbic acid synthesis is stimulated by enhanced glycogenolysis in murine liver. FEBS Lett 352:4–6CrossRefPubMed Braun L, Garzo T, Mandl J, Banhegyi G (1994) Ascorbic acid synthesis is stimulated by enhanced glycogenolysis in murine liver. FEBS Lett 352:4–6CrossRefPubMed
18.
Zurück zum Zitat Braun L, Csala M, Poussu A, Garzo T, Mandl J, Banhegyi G (1996) Glutathione depletion induces glycogenolysis dependent ascorbate synthesis in isolated murine hepatocytes. FEBS Lett 388:173–176CrossRefPubMed Braun L, Csala M, Poussu A, Garzo T, Mandl J, Banhegyi G (1996) Glutathione depletion induces glycogenolysis dependent ascorbate synthesis in isolated murine hepatocytes. FEBS Lett 388:173–176CrossRefPubMed
19.
Zurück zum Zitat Banhegyi G, Braun L, Csala M, Puskas F, Mandl J (1997) Ascorbate metabolism and its regulation in animals. Free Radic Biol Med 23:793–803CrossRefPubMed Banhegyi G, Braun L, Csala M, Puskas F, Mandl J (1997) Ascorbate metabolism and its regulation in animals. Free Radic Biol Med 23:793–803CrossRefPubMed
20.
Zurück zum Zitat Puskas F, Braun L, Csala M, Kardon T, Marcolongo P, Benedetti A, Mandl J, Banhegyi G (1998) Gulonolactone oxidase activity-dependent intravesicular glutathione oxidation in rat liver microsomes. FEBS Lett 430:293–296CrossRefPubMed Puskas F, Braun L, Csala M, Kardon T, Marcolongo P, Benedetti A, Mandl J, Banhegyi G (1998) Gulonolactone oxidase activity-dependent intravesicular glutathione oxidation in rat liver microsomes. FEBS Lett 430:293–296CrossRefPubMed
21.
Zurück zum Zitat Dzyakanchuk AA, Balázs Z, Nashev LG, Amrein KE, Odermatt A (2009) 11beta-Hydroxysteroid dehydrogenase 1 reductase activity is dependent on a high ratio of NADPH/NADP(+) and is stimulated by extracellular glucose. Mol Cell Endocrinol 301:137–141CrossRefPubMed Dzyakanchuk AA, Balázs Z, Nashev LG, Amrein KE, Odermatt A (2009) 11beta-Hydroxysteroid dehydrogenase 1 reductase activity is dependent on a high ratio of NADPH/NADP(+) and is stimulated by extracellular glucose. Mol Cell Endocrinol 301:137–141CrossRefPubMed
22.
Zurück zum Zitat Kereszturi É, Kálmán FS, Kardon T, Csala M, Bánhegyi G (2010) Decreased prereceptorial glucocorticoid activating capacity in starvation due to an oxidative shift of pyridine nucleotides in the endoplasmic reticulum. FEBS Lett 584:4703–4708CrossRefPubMed Kereszturi É, Kálmán FS, Kardon T, Csala M, Bánhegyi G (2010) Decreased prereceptorial glucocorticoid activating capacity in starvation due to an oxidative shift of pyridine nucleotides in the endoplasmic reticulum. FEBS Lett 584:4703–4708CrossRefPubMed
23.
Zurück zum Zitat Stapleton D, Nelson C, Parsawar K, Flores-Opazo M, McClain D, Parker G (2013) The 3T3-L1 adipocyte glycogen proteome. Proteome Sci 22:11CrossRef Stapleton D, Nelson C, Parsawar K, Flores-Opazo M, McClain D, Parker G (2013) The 3T3-L1 adipocyte glycogen proteome. Proteome Sci 22:11CrossRef
24.
Zurück zum Zitat Jiang S, Heller B, Tagliabracci VS, Zhai L, Irimia JM, DePaoli-Roach AA, Wells CD, Skurat AV, Roach PJ (2010) Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. J Biol Chem 285:34960–34971CrossRefPubMedPubMedCentral Jiang S, Heller B, Tagliabracci VS, Zhai L, Irimia JM, DePaoli-Roach AA, Wells CD, Skurat AV, Roach PJ (2010) Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. J Biol Chem 285:34960–34971CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Jiang S, Wells CD, Roach PJ (2011) Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem Biophys Res Commun 413:420–425CrossRefPubMedPubMedCentral Jiang S, Wells CD, Roach PJ (2011) Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem Biophys Res Commun 413:420–425CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Rong Y, McPhee CK, Deng S, Huang L, Chen L, Liu M, Tracy K, Baehrecke EH, Yu L, Lenardo MJ (2011) Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc Natl Acad Sci 108:7826–7831CrossRefPubMed Rong Y, McPhee CK, Deng S, Huang L, Chen L, Liu M, Tracy K, Baehrecke EH, Yu L, Lenardo MJ (2011) Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc Natl Acad Sci 108:7826–7831CrossRefPubMed
27.
Zurück zum Zitat Kotoulas OB, Phillips MJ (1971) Fine structural aspects of the mobilization of hepatic glycogen. I. Acceleration of glycogen breakdown. Am J Pathol 63:1–22PubMedPubMedCentral Kotoulas OB, Phillips MJ (1971) Fine structural aspects of the mobilization of hepatic glycogen. I. Acceleration of glycogen breakdown. Am J Pathol 63:1–22PubMedPubMedCentral
28.
29.
Zurück zum Zitat Kotoulas OB, Kalamidas SA, Kondomerkos DJ (2006) Glycogen autophagy in glucose homeostasis. Pathol Res Pract 202:631–638CrossRefPubMed Kotoulas OB, Kalamidas SA, Kondomerkos DJ (2006) Glycogen autophagy in glucose homeostasis. Pathol Res Pract 202:631–638CrossRefPubMed
30.
Zurück zum Zitat Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036CrossRefPubMed Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036CrossRefPubMed
31.
Zurück zum Zitat Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434CrossRefPubMedPubMedCentral Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Kalamidas SA, Kotoulas OB (2000) Glycogen autophagy in newborn rat hepatocytes. Histol Histopathol 15:1011–1018PubMed Kalamidas SA, Kotoulas OB (2000) Glycogen autophagy in newborn rat hepatocytes. Histol Histopathol 15:1011–1018PubMed
33.
Zurück zum Zitat Kondomerkos DJ, Kalamidas SA, Kotoulas OB, Hann AC (2005) Glycogen autophagy in the liver and heart of newborn rats. The effects of glucagon, adrenalin or rapamycin. Histol Histopathol 20:689–696PubMed Kondomerkos DJ, Kalamidas SA, Kotoulas OB, Hann AC (2005) Glycogen autophagy in the liver and heart of newborn rats. The effects of glucagon, adrenalin or rapamycin. Histol Histopathol 20:689–696PubMed
34.
Zurück zum Zitat Mellor KM, Varma U, Stapleton DI, Delbridge LM (2014) Cardiomyocyte glycophagy is regulated by insulin and exposure to high extracellular glucose. Am J Physiol Heart Circ Physiol 306:H1240–H1245CrossRefPubMed Mellor KM, Varma U, Stapleton DI, Delbridge LM (2014) Cardiomyocyte glycophagy is regulated by insulin and exposure to high extracellular glucose. Am J Physiol Heart Circ Physiol 306:H1240–H1245CrossRefPubMed
35.
Zurück zum Zitat Ravikumar B, Stewart A, Kita H, Kato K, Duden R, Rubinsztein DC (2003) Raised intracellular glucose concentrations reduce aggregation and cell death caused by mutant huntingtin exon 1 by decreasing mTOR phosphorylation and inducing autophagy. Hum Mol Genet 12:985–994CrossRefPubMed Ravikumar B, Stewart A, Kita H, Kato K, Duden R, Rubinsztein DC (2003) Raised intracellular glucose concentrations reduce aggregation and cell death caused by mutant huntingtin exon 1 by decreasing mTOR phosphorylation and inducing autophagy. Hum Mol Genet 12:985–994CrossRefPubMed
36.
Zurück zum Zitat Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701CrossRefPubMedPubMedCentral Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Ahn HH, Oh Y, Lee H, Lee W, Chang JW, Pyo HK, Nah do H, Jung YK (2015) Identification of glucose-6-phosphate transporter as a key regulator functioning at the autophagy initiation step. FEBS Lett 589:2100–2109CrossRefPubMed Ahn HH, Oh Y, Lee H, Lee W, Chang JW, Pyo HK, Nah do H, Jung YK (2015) Identification of glucose-6-phosphate transporter as a key regulator functioning at the autophagy initiation step. FEBS Lett 589:2100–2109CrossRefPubMed
38.
Zurück zum Zitat Chatelain F, Pegorier JP, Minassian C, Bruni N, Tarpin S, Girard J, Mithieux G (1998) Development and regulation of glucose-6-phosphatase gene expression in rat liver, intestine, and kidney: in vivo and in vitro studies in cultured fetal hepatocytes. Diabetes 47:882–889CrossRefPubMed Chatelain F, Pegorier JP, Minassian C, Bruni N, Tarpin S, Girard J, Mithieux G (1998) Development and regulation of glucose-6-phosphatase gene expression in rat liver, intestine, and kidney: in vivo and in vitro studies in cultured fetal hepatocytes. Diabetes 47:882–889CrossRefPubMed
39.
Zurück zum Zitat Froissart R, Piraud M, Boudjemline AM, Vianey-Saban C, Petit F, Hubert-Buron A, Eberschweiler PT, Gajdos V, Labrune P (2011) Glucose-6-phosphatase deficiency. Orphanet J Rare Dis 6:27CrossRefPubMedPubMedCentral Froissart R, Piraud M, Boudjemline AM, Vianey-Saban C, Petit F, Hubert-Buron A, Eberschweiler PT, Gajdos V, Labrune P (2011) Glucose-6-phosphatase deficiency. Orphanet J Rare Dis 6:27CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Cavanagh JB (1999) Corpora-amylacea and the family of polyglucosan diseases. Brain Res Brain Res Rev 29:265–295CrossRefPubMed Cavanagh JB (1999) Corpora-amylacea and the family of polyglucosan diseases. Brain Res Brain Res Rev 29:265–295CrossRefPubMed
41.
Zurück zum Zitat Mandl J, Meszaros K, Antoni F, Spolarics Z, Garzo T (1982) Reversible inhibition of RNA synthesis and irreversible inhibition of protein synthesis by D-galactosamine in isolated mouse hepatocytes. Mol Cell Biochem 46:25–30CrossRefPubMed Mandl J, Meszaros K, Antoni F, Spolarics Z, Garzo T (1982) Reversible inhibition of RNA synthesis and irreversible inhibition of protein synthesis by D-galactosamine in isolated mouse hepatocytes. Mol Cell Biochem 46:25–30CrossRefPubMed
42.
Zurück zum Zitat Farah BL, Landau DJ, Sinha RA, Brooks ED, Wu Y, Fung SY, Tanaka T, Hirayama M, Bay BH, Koeberl DD, Yen PM (2016) Induction of autophagy improves hepatic lipid metabolism in glucose-6-phosphatase deficiency. J Hepatol 64:370–379CrossRefPubMed Farah BL, Landau DJ, Sinha RA, Brooks ED, Wu Y, Fung SY, Tanaka T, Hirayama M, Bay BH, Koeberl DD, Yen PM (2016) Induction of autophagy improves hepatic lipid metabolism in glucose-6-phosphatase deficiency. J Hepatol 64:370–379CrossRefPubMed
43.
Zurück zum Zitat Jeon JY, Lee H, Park J, Lee M, Park SW, Kim JS, Lee M, Cho B, Kim K, Choi AM, Kim CK, Yun M (2015) The regulation of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase by autophagy in low-glycolytic hepatocellular carcinoma cells. Biochem Biophys Res Commun 463:440–446CrossRefPubMed Jeon JY, Lee H, Park J, Lee M, Park SW, Kim JS, Lee M, Cho B, Kim K, Choi AM, Kim CK, Yun M (2015) The regulation of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase by autophagy in low-glycolytic hepatocellular carcinoma cells. Biochem Biophys Res Commun 463:440–446CrossRefPubMed
44.
Zurück zum Zitat Kaur J, Debnath J (2015) Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol 16:461–472CrossRefPubMed Kaur J, Debnath J (2015) Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol 16:461–472CrossRefPubMed
45.
Zurück zum Zitat Rousset M, Zweibaum A, Fogh J (1981) Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins. Cancer Res 41:1165–1170PubMed Rousset M, Zweibaum A, Fogh J (1981) Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins. Cancer Res 41:1165–1170PubMed
46.
Zurück zum Zitat Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, Kamphorst JJ, Chen G, Lemons JM, Karantza V et al (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25:460–470CrossRefPubMedPubMedCentral Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, Kamphorst JJ, Chen G, Lemons JM, Karantza V et al (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25:460–470CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell'antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N, Kimmelman AC (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25:717–729CrossRefPubMedPubMedCentral Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell'antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N, Kimmelman AC (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25:717–729CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Kapuy O, Vinod PK, Mandl J, Bánhegyi G (2013) A cellular stress-directed bistable switch controls the crosstalk between autophagy and apoptosis. Mol BioSyst 9:296–306CrossRefPubMed Kapuy O, Vinod PK, Mandl J, Bánhegyi G (2013) A cellular stress-directed bistable switch controls the crosstalk between autophagy and apoptosis. Mol BioSyst 9:296–306CrossRefPubMed
51.
Zurück zum Zitat Lashinger LM, O’Flanagan CH, Dunlap SM, Rasmussen AJ, Sweeney S, Guo JY, Lodi A, Tiziani S, White E, Hursting SD (2016) Starving cancer from the outside and inside: Separate and combined effects of calorie restriction and autophagy inhibition on Ras-driven tumors. Cancer Metab 4:18CrossRefPubMedPubMedCentral Lashinger LM, O’Flanagan CH, Dunlap SM, Rasmussen AJ, Sweeney S, Guo JY, Lodi A, Tiziani S, White E, Hursting SD (2016) Starving cancer from the outside and inside: Separate and combined effects of calorie restriction and autophagy inhibition on Ras-driven tumors. Cancer Metab 4:18CrossRefPubMedPubMedCentral
52.
Metadaten
Titel
The ER – Glycogen Particle – Phagophore Triangle: A Hub Connecting Glycogenolysis and Glycophagy?
verfasst von
József Mandl
Gábor Bánhegyi
Publikationsdatum
07.07.2018
Verlag
Springer Netherlands
Erschienen in
Pathology & Oncology Research / Ausgabe 4/2018
Print ISSN: 1219-4956
Elektronische ISSN: 1532-2807
DOI
https://doi.org/10.1007/s12253-018-0446-0

Weitere Artikel der Ausgabe 4/2018

Pathology & Oncology Research 4/2018 Zur Ausgabe

Nodal-negativ nach neoadjuvanter Chemo: Axilladissektion verzichtbar?

03.05.2024 Mammakarzinom Nachrichten

Wenn bei Mammakarzinomen durch eine neoadjuvante Chemotherapie ein Downstaging von nodal-positiv zu nodal-negativ gelingt, scheint es auch ohne Axilladissektion nur selten zu axillären Rezidiven zu kommen.

Wo hapert es noch bei der Umsetzung der POMGAT-Leitlinie?

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Bestrahlung nach Prostatektomie: mehr Schaden als Nutzen?

02.05.2024 Prostatakarzinom Nachrichten

Eine adjuvante Radiotherapie nach radikaler Prostata-Op. bringt den Betroffenen wahrscheinlich keinen Vorteil. Im Gegenteil: Durch die Bestrahlung steigt offenbar das Risiko für Harn- und Stuhlinkontinenz.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärzte und Psychotherapeuten.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.