Skip to main content
Erschienen in: Neurotherapeutics 1/2018

Open Access 01.01.2018 | Review

The Gut Microbiome in Neuromyelitis Optica

verfasst von: Scott S. Zamvil, Collin M. Spencer, Sergio E. Baranzini, Bruce A. C. Cree

Erschienen in: Neurotherapeutics | Ausgabe 1/2018

Abstract

Neuromyelitis optica (NMO) is a rare, disabling, sometimes fatal central nervous system inflammatory demyelinating disease that is associated with antibodies (“NMO IgG”) that target the water channel protein aquaporin-4 (AQP4) expressed on astrocytes. There is considerable interest in identifying environmental triggers that may elicit production of NMO IgG by AQP4-reactive B cells. Although NMO is considered principally a humoral autoimmune disease, antibodies of NMO IgG are IgG1, a T-cell-dependent immunoglobulin subclass, indicating that AQP4-reactive T cells have a pivotal role in NMO pathogenesis. When AQP4-specific proliferative T cells were first identified in patients with NMO it was discovered that T cells recognizing the dominant AQP4 T-cell epitope exhibited a T helper 17 (Th17) phenotype and displayed cross-reactivity to a homologous peptide sequence within a protein of Clostridium perfringens, a commensal bacterium found in human gut flora. The initial analysis of gut microbiota in NMO demonstrated that, in comparison to healthy controls (HC) and patients with multiple sclerosis, the microbiome of NMO is distinct. Remarkably, C. perfringens was the second most significantly enriched taxon in NMO, and among bacteria identified at the species level, C. perfringens was the one most highly associated with NMO. Those discoveries, along with evidence that certain Clostridia in the gut can regulate the balance between regulatory T cells and Th17 cells, indicate that gut microbiota, and possibly C. perfringens itself, could participate in NMO pathogenesis. Collectively, the evidence linking microbiota to humoral and cellular immunity in NMO underscores the importance for further investigating this relationship.
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s13311-017-0594-z) contains supplementary material, which is available to authorized users.

Introduction

Neuromyelitis optica (NMO) is a rare central nervous system (CNS) autoimmune inflammatory demyelinating disease characterized by attacks of transverse myelitis and optic neuritis that may lead to severe, disabling paralysis and loss of vision [1]. For many years, NMO was thought to be a severe atypical form of multiple sclerosis (MS), a more common CNS inflammatory demyelinating disease that is considered to target oligodendrocyte-derived myelin proteins [2]. In contrast with MS, distinguished by disseminated white matter lesions containing predominantly lymphocytes, NMO lesions are restricted primarily to the spinal cord, brainstem and optic nerves, and are characterized by the presence of neutrophils and eosinophils, and deposition of antibody and complement [3]. Understanding of the pathogenesis of NMO has advanced rapidly since 2004, when it was discovered that NMO is associated with the serologic biomarker, NMO IgG [4]. Shortly thereafter, aquaporin-4 (AQP4), a water channel protein expressed abundantly on astrocyte end-foot membranes in areas contacting the blood–brain barrier (BBB) [5], was identified as the primary target of NMO IgG [6]. The antibodies of NMO IgG target conformational determinants exposed on extracellular loops of AQP4. Experimental evidence has confirmed that those AQP4-specific antibodies, together with complement, can injure or destroy astrocytes [7]. NMO is therefore considered primarily an autoimmune astrocytopathy.
Despite identification of AQP4 as the principal target, the initial pathophysiologic events that lead to development of NMO have remained elusive. Besides genetic factors that may predispose to NMO, investigators have considered possible environmental triggers, including plants, bacteria, or viruses that could elicit AQP4-specific antibodies [810]. “Molecular mimicry”, which can occur when a foreign protein that shares structural or amino-acid sequence homology with a self-antigen elicits cross-reactive immunity [11], is implicated in the pathogenesis of several rheumatologic and CNS autoimmune disorders [1215]. In this context, some researchers have focused on the identification of foreign proteins that share structural or amino-acid sequence homology with AQP4 [9, 10]. One search of bacterial and viral proteins revealed extensive homology between a Klebsiella pneumoniae transmembrane protein and AQP4 but found no evidence for cross-reactivity in NMO [16]. Other investigators suggested that closely related bacterial aquaporins (e.g., aquaporin-Z [17]) could elicit cross-reactivity and provided some experimental evidence supporting their hypothesis. While much effort has been devoted to understanding the origin and pathophysiologic role of NMO IgG, the potential role of T cells, and cellular immune response in general in AQP4 immunity has received less attention. The AQP4-specific T cell may be the cryptic immunologic linchpin in NMO, providing a link between microbiota and NMO pathogenesis.

Identification of AQP4-Specific T Cells Suggests a Potential Role for Commensal Gut Bacteria in NMO Pathogenesis

Several early observations suggested that T cells participate in NMO pathogenesis. First, the AQP4-specific antibodies of NMO IgG are IgG1, a T-cell-dependent immunoglobulin subtype. Some data suggest that T follicular helper cells, the CD4+ T-cell subset that directs B-cell maturation, isotype switching, and differentiation to Ig-secreting plasma cells [18], are elevated in NMO [19, 20]. Second, epidemiologic and genetic studies most frequently associate NMO occurrence with certain allelic major histocompatibility complex (MHC) class II genes, which encode the transmembrane proteins expressed on antigen presenting cells (APCs) that associate with peptide fragments and are presented to antigen-specific CD4+ T cells. In this regard, several NMO studies have identified over-representation of patients carrying HLA-DR1*0301 (DR17), DRB3*0202, and DPB1*0501 genes in different ethnic populations [2123]. Furthermore, HLA-DRB1*1501, the most common MS susceptibility allele, is not associated with NMO [24]. Third, despite the predominance of neutrophils and eosinophils, T cells are also detected in NMO lesions [3, 25], and elevated levels of interleukin (IL)-17 and interferon-γ (proinflammatory T-cell-derived cytokines) have been detected in the cerebrospinal fluid of patients with NMO [26, 27]. Thus, besides directing antibody production by AQP4-reactive B cells, T cells likely contribute to the development of NMO lesions. In this respect, in 2009 it was observed that neither recombinant AQP4-specific antibodies [28] nor NMO IgG alone [29] were pathogenic in vivo. However, those AQP4-specific antibodies produced NMO-like lesions in rats that had received encephalitogenic myelin-specific T cells, findings that are consistent with the notion that cellular immune-mediated CNS inflammation causing loss of integrity of the BBB may be a prerequisite for CNS penetration of AQP4-specific antibodies. Collectively, these observations inspired researchers to search for AQP4-specific CD4+ T cells in NMO.
Working around the same time, investigators from Japan [30], the USA [31], and Israel [32] identified AQP4-reactive T cells in patients with NMO. All 3 groups observed that the numbers of AQP4-reactive T cells were elevated in NMO in comparison with HC. The 2 teams that studied T-cell responses to overlapping 20-mer peptides (p) spanning the length of AQP4 identified multiple determinants, which included an epitope within p61-80 [30, 31]. When our group measured T-cell activation and proliferation, p61-80 was identified as the one AQP4 determinant recognized most frequently in patients with NMO [31] (see Fig. 1). CD4+ T cells from patients with NMO that recognized this immunodominant AQP4 T-cell determinant exhibited T helper (Th)17 polarization [31], an observation that added key support to the existing clinical and histologic evidence indicating that Th17 cells have a central role in NMO pathogenesis.
In general, CD4+ T cells recognize linear peptide fragments of 12 to 14 amino acids that are produced during protein degradation by APCs [33]. By examining the fine specificity of T cells targeting the immunodominant AQP4 p61-80, its epitope was mapped to amino-acid residues 63 to 76. A search for homologous proteins revealed that this epitope contained a 10-residue sequence (66–75) with 90% homology to a sequence (207–216) within the adenosine triphosphate binding cassette transporter permease (ABC-TP) expressed by Clostridium perfringens, a ubiquitous anaerobic Gram-positive spore forming bacteria found in human commensal gut flora. Such a high level of homology is nearly unprecedented. In comparison, studies of T-cell molecular mimicry in MS have identified and focused on T-cell epitopes of myelin antigens that frequently share much less homology with foreign antigens [3436]. We observed that Th17 cells from patients with NMO, which recognized the immunodominant AQP4 epitope also proliferated in response to the corresponding C. perfringens ABC-TP peptide. Our serendipitous discovery suggesting a connection between C. perfringens and AQP4-specific T-cell reactivity in NMO could not be overlooked. Together with the emerging appreciation that gut microbiota can influence cellular and humoral immunity, these observations provided a clear foundation justifying the examination of gut microbiota in NMO.

Analysis of NMO Gut Microbiota Reveals Dysbiosis and Overabundance of Clostridium perfringens

Understanding the role of microbiota in human disease is increasing at a tremendous pace [37, 38]. Newborns become colonized with numerous microbes shortly after birth and, while the number of organisms stabilizes after the first year, microbial composition continues to vary in response to environmental changes [39]. Microbiota within the gastrointestinal tract, comprising a community of 1013–14 organisms, are particularly heterogeneous [37]. Gram-negative Bacteroides and Gram-positive Firmicutes, including Clostridiales and Lactobacillales, are the major phyla represented in the gut of healthy individuals. It has long been recognized that bacterial species within commensal gastrointestinal flora participate cooperatively in host functions. Specifically, gut microbiota generate metabolites de novo and also modify host-derived metabolites, producing certain vitamins, fatty acids, amino acids, and polyamines that are essential to immune regulation or mucosal defense [40, 41]. More recently, shifts within microbial communities have been associated with specific diseases. Helicobacter pylori dominates gastric microbiota in peptic ulcer disease, and over-representation of distinct species of gastrointestinal bacteria have been identified in colorectal cancer, type I diabetes mellitus, inflammatory bowel disease, rheumatoid arthritis, Parkinson’s disease, and MS [38, 4246]. In 2008, it was observed that polysaccharide A (PSA) produced by Bacteroides fragilis, which are found within the terminal ileum, promoted expansion of IL-10-producing regulatory T cells (Treg) [47, 48] and a later study showed that PSA expression conferred resistance to experimental autoimmune encephalomyelitis (EAE) in mice [48]. At the time we proposed studying the gut microbiome in NMO, it had been shown that commensal anaerobic spore-forming (chloroform-resistant) Clostridium within clusters IV and XIVa, abundant in the colon of mice [49], and that Clostridia strains within clusters IV, XIVa, and XVIII isolated from human fecal material [50], also induced Tregs [49, 50]. In contrast, colonization of the terminal ileum with segmented filamentous bacteria, a commensal anaerobic Gram-positive spore-forming bacteria closely related to the genus Clostridium, was associated with differentiation of proinflammatory Th17 cells [51] in mice and increased susceptibility to EAE [52]. These findings were particularly intriguing, as differentiation of naive T cells into either Th17 cells or Treg is controlled in a reciprocal manner [53]. Thus, it is plausible that a Clostridium species may alter the balance between proinflammatory and anti-inflammatory T-cell subsets in human disease.
Currently, the results from 1 NMO gut microbiome study have been reported [54]. In that investigation, we examined stool samples obtained from 16 patients with AQP4-seropositive NMO, 16 patients with MS, and 16 HCs. Principal component analysis demonstrated compositional differences between those bacterial communities. Whereas > 800 organizational taxonomic units were identified that differed in relative abundance between NMO and HC, only 42 retained statistical significance following correction for multiple comparisons (see Fig. 2). In contrast, of nearly 300 organizational taxonomic units that exhibited differential abundance between MS and HCs, none withstood similar correction. Because a majority of the patients with NMO were treated with rituximab or another immunosuppressive treatment, which could hypothetically alter the gut microflora, patients with MS treated with rituximab were included as added controls. Differences in the gut microbiota between rituximab-treated MS patients and rituximab-treated NMO patients were identified, indicating that dissimilarities between NMO and MS could not be attributed entirely to that treatment (see Fig. 3). Thus, regardless of whether the analysis included the entire dataset or individual subsets, results indicated that there are distinct changes in the NMO microbiota.
Remarkably, of bacteria identified at the species level, C. perfringens was the species most significantly enriched in patients with NMO compared with HCs (Table 1). Only an unclassified species of Fibrobacteres had a more significant p-value. In a 3-way analysis, C. perfringens was overabundant in NMO versus either HC or MS. Although C. perfringens was also over-represented in MS samples, the significance was marginal and did not survive statistical correction for multiple comparisons. Rituximab treatment did not influence abundance of C. perfringens in patients with either NMO or MS, and C. perfringens remained significantly associated with NMO for the comparison of patients with rituximab-treated NMO and rituximab-treated MS.
Table 1
Twelve most significant organizational taxonomic units (OTUs) that differentiate neuromyelitis optica (NMO) from healthy controls (HC)*
Phylum
Class
Order
Family
Genus
Species
p-value
Fibrobacteres
Unclassified
Unclassified
Unclassified
Unclassified
Unclassified
2.63 × 10-8
Firmicutes
Clostridia
Clostridiales
Clostridiaceae
Clostridium
perfringens
5.24 × 10–8
Tenericutes
Mollicutes
Acholeplasmatales
Acholeplasmataceae
Acholeplasma
Unclassified
9.21 × 10–8
Firmicutes
Clostridia
Clostridiales
Unclassified
Unclassified
Unclassified
2.21 × 10–7
Firmicutes
Clostridia
Clostridiales
Lachnospiraceae
Coprococcus
Unclassified
2.24 × 10–7
Bacteroidetes
Bacteroidia
Bacteroidales
Unclassified
Unclassified
Unclassified
2.68 × 10–7
Firmicutes
Clostridia
Clostridiales
Lachnospiraceae
Blautia
producta
3.95 × 10–7
Bacteroidetes
Bacteroidia
Bacteroidales
Prevotellaceae
Prevotella
97otu18529
4.71 x 10-7
Firmicutes
Clostridia
Clostridiales
Unclassified
Unclassified
Unclassified
6.31 × 10–7
Proteobacteria
Alphaproteobacteria
Unclassified
Unclassified
Unclassified
Unclassified
6.75 × 10–7
Firmicutes
Clostridia
Clostridiales
Lachnospiraceae
Unclassified
Unclassified
7.33 × 10–7
Elusimicrobia
Elusimicrobia
FAC88
91otu12128
94otu9638
97otu81717
7.61 × 10–7
*OTUs that significantly differed in abundance between NMO and HC after adjusting for multiple comparisons (p < 1.91 × 10–5), ranked in order of decreasing statistical significance. Adapted from Cree, et al., Ann Neurol 80:443-447 (2016), with permission of John Wiley & Sons [54]

Potential Roles of Clostridium perfringens in NMO Pathogenesis

Two NMO investigations, one that evaluated specificity of AQP4-reactive T cells and one that examined the microbiome, both provided findings that could support a role for C. perfringens in NMO. Based upon those results, we hypothesized that C. perfringens may have dual functions in NMO pathogenesis: it may 1) serve as its own proinflammatory adjuvant, promoting Th17 polarization; and 2) expose a determinant of a Clostridium ABC-TP that cross-reacts with AQP4 leading to expansion of AQP4-reactive T cells (see Fig. 4). Such a bold hypothesis should be balanced by some skepticism. Clostridium is ubiquitous, but NMO is rare. So, why would there be an association? Several possibilities exist. C. perfringens could act in concert with either, or both, environmental and genetic factors that predispose to NMO. Intrinsic molecular characteristics of Clostridia or its metabolic products, independent of antigenicity, are important. Dietary and endogenous lipid composition influences the balance between Treg and Th17 cells [62]. Specifically, short-chain fatty acids, for example, butyrate, propionate, and acetate, produced by anaerobic commensal bacteria in the colon by metabolism of undigested complex carbohydrates, promote development of Treg [40, 41]. In contrast, long-chain fatty acids, including lauric acid, through their influence on the retinoid orphan receptor gamma t, the central regulator of Th17 differentiation [63], promote expansion of Th17 cells [62, 64]. Reconstitution of germ-free mice with Treg-promoting Clostridia strains from clusters IV, XIVa, and XVIII has been associated with increased levels of short-chain fatty acids and transforming growth factor-β1 in the cecum [50]. However, C. perfringens is a species within cluster I [65]. Thus, one can speculate that dysbiosis of C. perfringens could influence the balance favoring long-chain fatty acids in the gut in humans, and like segmented filamentous bacteria in mice, promote Th17 differentiation [51]. Similarly, C. perfringens might cooperate with other local host metabolic factors, including high dietary salt [66] or epithelial serum amyloid A [67, 68], which can act as adjuvants promoting Th17 differentiation [6668].
Examples of molecular mimicry are well recognized in autoimmune disorders [1214]. While our data examining T-cell reactivity to AQP4 support molecular mimicry, it is difficult to imagine how this mechanism could apply to all patients with NMO. First, T-cell antigen recognition is “MHC-restricted” by the capability of a peptide to bind specific (allelic) MHC molecules. However, NMO is associated with multiple allelic HLA-D genes. At this time, it is not clear whether each of those allelic MHC II molecules can serve as restricting elements for presentation of the immunodominant AQP4 determinant or the C. perfringens ABC-TP mimic. Second, not all patients with NMO are AQP4 seropositive. Currently, T-cell reactivity to AQP4 has been examined in patients with “classic” AQP4-seropositive NMO but not in AQP4-seronegative patients. Thus, it is unknown whether T cells from AQP4-seronegative patients exhibit similar reactivity to the immunodominant AQP4 T-cell epitope or, alternatively, whether other autoantigens serve as targets in NMO. In this context, in 2014, several groups described patients with an opticospinal inflammatory disease resembling NMO that was associated with antibodies to myelin oligodendrocyte glycoprotein (MOG) and referred to this disorder as MOG NMO spectrum disorder (MOG-NMOSD) [6971]. Whether this “non-classical NMO-like” disorder is truly NMO was first questioned a short time later [72], and has since remained controversial. Unlike AQP4, which is expressed abundantly on astrocytes, MOG is an oligodendrocyte-produced myelin antigen and is a candidate antigen in MS. Nevertheless, the apparent heterogeneity in NMO or NMO-like conditions highlights concern in identifying one pathogenic mechanism for all similarly affected patients.
Ubiquitous in normal gut flora, C. perfringens is a diverse species that is recognized as a pathogen in several conditions. Fewer than 5% produce a C. perfringens enterotoxin, encoded by the gene cpe located in either the bacterial chromosomal or plasmid DNA [73]. Clostridium perfringens strains are classified into 5 subtypes (A–E) according to the particular toxin produced [73, 74]. Type A, which can produce the α enterotoxin, is a common cause of food poisoning and is also associated with gas gangrene. A year after we proposed a potential role for commensal C. perfringens in NMO, another group of investigators found evidence suggesting that type B C. perfringens might contribute to MS pathogenesis [75]. Type B C. perfringens produces an ε toxin (ETX) that has tropism for the CNS and can cause disruption of the BBB and injure neurons, astrocytes, and oligodendrocytes [76, 77]. Our microbiome study [54], which included patients with NMO and MS, and other larger investigations dedicated to MS and HC [45, 46, 78, 79], did not identify statistically significant elevations of C. perfringens in MS gastrointestinal microbiota. Nonetheless, it remains possible that C. perfringens ETX participates in pathogenesis in a subset of patients with MS. Because the C. perfringens ETX can cause BBB damage, BBB disruption facilitates CNS entry of AQP4-specific IgG1, and C. perfringens is overabundant in NMO, it may be important to search for the presence and potential contribution of pathogenic C. perfringens subtypes in gut microbiota in NMO.

Future Challenges

Results from our analysis of fecal bacteria in NMO indicated that the gastrointestinal microbiota in NMO is distinct from HC and MS, supporting the hypothesis that there may be dysbiosis of C. perfringens [54]. However, other candidate bacteria may participate in NMO pathogenesis. In this respect, certain bacteria (e.g., Prevotella copri and an unclassified species of Enterobacteriaceae) had greater effect sizes in comparison to HC, but their associations with NMO were less statistically significant than C. perfringens [54]. Further, only Fibrobacteres, a genus containing two cellulose-degrading bacterial species found in cattle and pigs [80], was more significantly associated with NMO than C. perfringens, and its effect size was similar. The biological significance of these associations is unclear and deserves further investigation. It is also important to recognize that the relative abundance of individual bacterial species is not uniform throughout the gastrointestinal tract. Therefore, examination of microbiota in fecal samples may not entirely reflect the relative abundance of individual species within their preferred niches.
Definitive answers regarding the role of microbiota in NMO will require research in both human subjects and animal models. It is important to replicate the initial analysis of gut microbiota with larger sample sizes. Owing to the potential impact of immunosuppressive therapies on gut microbiota, future studies should include larger numbers of patients with untreated NMO, which presents a logistic challenge as therapy is typically initiated shortly after diagnosis. As NMO is a rare disease, this research will likely require a coordinated effort among many centers. Further, while similar studies may clarify associations between individual bacterial populations and NMO, they will not permit determination of causality. Gastrointestinal dysbiosis may promote proinflammatory T-cell polarization and, conversely, cellular and humoral immunity can influence intestinal microbial community composition (see Fig. 4) [5759]. Evidence supporting a direct role for gut microbiota from disease-affected patients or a distinct candidate bacterial species, like C. perfringens, may be established through colonization of germ-free mice with fecal samples from patients or by monocolonization with individual bacterial species. Recently, a clinical model of autoimmune opticospinal inflammatory disease that is initiated by Th17 AQP4-specific T cells was established [8184]. The development of this new model had eluded investigators until it was learned that AQP4-specific T cells and B cells are regulated more stringently by mechanisms of central (thymic) and peripheral tolerance than myelin-specific T cells that cause EAE [8284]. By taking advantage of this model and related models it will now be possible to examine how colonization of gut microbiota from patients with NMO or monocolonization with C. perfringens may influence expansion of those pathogenic AQP4-specific T cells in vivo.
We have only scratched the surface in understanding gut dysbiosis in NMO. Nevertheless, it is important to consider its potential therapeutic implications. Is it possible to alter the gut microbiota, possibly through diet or fecal microbiota transplantation (FMT), in a beneficial manner in patients with NMO? In this regard, fecal transplantation has been effective in > 80% of patients with severe recurrent diarrhea caused by antibiotic-resistant C. difficile colitis [85]. It is important to recognize that manipulating factors, for example, microbial composition, which may have participated at a certain step(s) within the pathogenic pathway of a complex chronic inflammatory disease, may or may not necessarily translate therapeutically. However, given the severity of NMO, the potential benefit of FMT and its low risk, testing FMT in NMO should be given serious consideration. Based upon provocative results from studies involving patients with NMO, we have proposed potential mechanisms to explain how dysbiosis may participate in NMO pathogenesis. While they may be correct, partly right, or incorrect, it is clearly important to test these hypotheses, especially as such investigation may fill critical gaps in our understanding of NMO pathogenesis.

Acknowledgments

We thank Drs. Anne-Katrin Pröbstel and Patricia Nelson for helpful discussions. S.S.Z. is supported by grants from the National Institutes of Health (RO1 NS092835), National Multiple Sclerosis Society (RG 5179 and RG 1701-26628), Weill Institute for Neurosciences, Maisin Foundation, Race to Erase MS, and Celgene. B.A.C.C. is supported by grants from the Department of Defense, Hoffman La Roche, and the Weill Institute for Neurosciences. SEB is the Heidrich Family and Friends Endowed Chair in Neurology and is supported by grants from the US Department of Defense and the National Multiple Sclerosis Society.
Required Author Forms Disclosure forms provided by the authors are available with the online version of this article.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Anhänge

Electronic Supplementary Material

Literatur
1.
Zurück zum Zitat Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. The spectrum of neuromyelitis optica. Lancet Neurol 2007;6(9):805-815.CrossRefPubMed Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. The spectrum of neuromyelitis optica. Lancet Neurol 2007;6(9):805-815.CrossRefPubMed
2.
3.
Zurück zum Zitat Lucchinetti CF, Mandler RN, McGavern D, et al. A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain 2002;125(Pt 7):1450-1461.CrossRefPubMedPubMedCentral Lucchinetti CF, Mandler RN, McGavern D, et al. A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain 2002;125(Pt 7):1450-1461.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004;364(9451):2106-2112.CrossRefPubMed Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004;364(9451):2106-2112.CrossRefPubMed
5.
Zurück zum Zitat Hubbard JA, Hsu MS, Seldin MM, Binder DK. Expression of the astrocyte water channel Aquaporin-4 in the mouse brain. ASN Neuro 2015;7(5). Hubbard JA, Hsu MS, Seldin MM, Binder DK. Expression of the astrocyte water channel Aquaporin-4 in the mouse brain. ASN Neuro 2015;7(5).
6.
Zurück zum Zitat Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005;202(4):473-477.CrossRefPubMedPubMedCentral Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005;202(4):473-477.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Sellner J, Hemmer B, Muhlau M. The clinical spectrum and immunobiology of parainfectious neuromyelitis optica (Devic) syndromes. J Autoimmun 2010;34(4):371-379.CrossRefPubMed Sellner J, Hemmer B, Muhlau M. The clinical spectrum and immunobiology of parainfectious neuromyelitis optica (Devic) syndromes. J Autoimmun 2010;34(4):371-379.CrossRefPubMed
9.
Zurück zum Zitat Vaishnav RA, Liu R, Chapman J, et al. Aquaporin 4 molecular mimicry and implications for neuromyelitis optica. J Neuroimmunol 2013;260(1-2):92-98.CrossRefPubMedPubMedCentral Vaishnav RA, Liu R, Chapman J, et al. Aquaporin 4 molecular mimicry and implications for neuromyelitis optica. J Neuroimmunol 2013;260(1-2):92-98.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Kountouras J, Deretzi G, Gavalas E, et al. Aquaporin 4, Helicobacter pylori and potential implications for neuromyelitis optica. J Neuroimmunol 2013;263(1-2):162-163.CrossRefPubMed Kountouras J, Deretzi G, Gavalas E, et al. Aquaporin 4, Helicobacter pylori and potential implications for neuromyelitis optica. J Neuroimmunol 2013;263(1-2):162-163.CrossRefPubMed
11.
Zurück zum Zitat Fujinami RS, Oldstone MB. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985;230(4729):1043-1045.CrossRefPubMed Fujinami RS, Oldstone MB. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985;230(4729):1043-1045.CrossRefPubMed
12.
13.
Zurück zum Zitat van den Berg B, Walgaard C, Drenthen J, Fokke C, Jacobs BC, van Doorn PA. Guillain–Barré syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol 2014;10(8):469-482.CrossRefPubMed van den Berg B, Walgaard C, Drenthen J, Fokke C, Jacobs BC, van Doorn PA. Guillain–Barré syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol 2014;10(8):469-482.CrossRefPubMed
14.
Zurück zum Zitat Berer K, Krishnamoorthy G. Microbial view of central nervous system autoimmunity. FEBS Lett 2014;588(22):4207-4213.CrossRefPubMed Berer K, Krishnamoorthy G. Microbial view of central nervous system autoimmunity. FEBS Lett 2014;588(22):4207-4213.CrossRefPubMed
15.
Zurück zum Zitat Barros PO, Linhares UC, Teixeira B, et al. High in vitro immune reactivity to Escherichia coli in neuromyelitis optica patients is correlated with both neurological disabilities and elevated plasma lipopolysaccharide levels. Hum Immunol 2013;74(9):1080-1087.CrossRefPubMed Barros PO, Linhares UC, Teixeira B, et al. High in vitro immune reactivity to Escherichia coli in neuromyelitis optica patients is correlated with both neurological disabilities and elevated plasma lipopolysaccharide levels. Hum Immunol 2013;74(9):1080-1087.CrossRefPubMed
16.
Zurück zum Zitat Jarius S, Wandinger KP, Platzer S, Wildemann B. Homology between Klebsiella pneumoniae and human aquaporin-4: no evidence for cross-reactivity in neuromyelitis optica. A study on 114 patients. J Neurol 2011;258(5):929-931.CrossRefPubMed Jarius S, Wandinger KP, Platzer S, Wildemann B. Homology between Klebsiella pneumoniae and human aquaporin-4: no evidence for cross-reactivity in neuromyelitis optica. A study on 114 patients. J Neurol 2011;258(5):929-931.CrossRefPubMed
17.
Zurück zum Zitat Ren Z, Wang Y, Duan T, et al. Cross-immunoreactivity between bacterial aquaporin-Z and human aquaporin-4: potential relevance to neuromyelitis optica. J Immunol 2012;189(9):4602-4611.CrossRefPubMedPubMedCentral Ren Z, Wang Y, Duan T, et al. Cross-immunoreactivity between bacterial aquaporin-Z and human aquaporin-4: potential relevance to neuromyelitis optica. J Immunol 2012;189(9):4602-4611.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Li YJ, Zhang F, Qi Y, et al. Association of circulating follicular helper T cells with disease course of NMO spectrum disorders. J Neuroimmunol 2015;278:239-246.CrossRefPubMed Li YJ, Zhang F, Qi Y, et al. Association of circulating follicular helper T cells with disease course of NMO spectrum disorders. J Neuroimmunol 2015;278:239-246.CrossRefPubMed
20.
Zurück zum Zitat Fan X, Jiang Y, Han J, et al. Circulating memory T follicular helper cells in patients with neuromyelitis optica/neuromyelitis optica spectrum disorders. Mediat Inflamm 2016;2016:3678152. Fan X, Jiang Y, Han J, et al. Circulating memory T follicular helper cells in patients with neuromyelitis optica/neuromyelitis optica spectrum disorders. Mediat Inflamm 2016;2016:3678152.
21.
Zurück zum Zitat Matsushita T, Matsuoka T, Isobe N, et al. Association of the HLA-DPB1*0501 allele with anti-aquaporin-4 antibody positivity in Japanese patients with idiopathic central nervous system demyelinating disorders. Tissue Antigens 2009;73(2):171-176.CrossRefPubMed Matsushita T, Matsuoka T, Isobe N, et al. Association of the HLA-DPB1*0501 allele with anti-aquaporin-4 antibody positivity in Japanese patients with idiopathic central nervous system demyelinating disorders. Tissue Antigens 2009;73(2):171-176.CrossRefPubMed
22.
Zurück zum Zitat Brum DG, Barreira AA, dos Santos AC, et al. HLA-DRB association in neuromyelitis optica is different from that observed in multiple sclerosis. Mult Scler 2010;16(1):21-29.CrossRefPubMed Brum DG, Barreira AA, dos Santos AC, et al. HLA-DRB association in neuromyelitis optica is different from that observed in multiple sclerosis. Mult Scler 2010;16(1):21-29.CrossRefPubMed
23.
Zurück zum Zitat Deschamps R, Paturel L, Jeannin S, et al. Different HLA class II (DRB1 and DQB1) alleles determine either susceptibility or resistance to NMO and multiple sclerosis among the French Afro-Caribbean population. Mult Scler 2011;17(1):24-31.CrossRefPubMed Deschamps R, Paturel L, Jeannin S, et al. Different HLA class II (DRB1 and DQB1) alleles determine either susceptibility or resistance to NMO and multiple sclerosis among the French Afro-Caribbean population. Mult Scler 2011;17(1):24-31.CrossRefPubMed
24.
25.
Zurück zum Zitat Lucchinetti CF, Guo Y, Popescu BF, Fujihara K, Itoyama Y, Misu T. The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathol 2014;24(1):83-97.CrossRefPubMedPubMedCentral Lucchinetti CF, Guo Y, Popescu BF, Fujihara K, Itoyama Y, Misu T. The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathol 2014;24(1):83-97.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Ishizu T, Osoegawa M, Mei FJ, et al. Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain 2005;128(Pt 5):988-1002.CrossRefPubMed Ishizu T, Osoegawa M, Mei FJ, et al. Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain 2005;128(Pt 5):988-1002.CrossRefPubMed
27.
Zurück zum Zitat Matsushita T, Tateishi T, Isobe N, et al. Characteristic cerebrospinal fluid cytokine/chemokine profiles in neuromyelitis optica, relapsing remitting or primary progressive multiple sclerosis. PLoS ONE 2013;8(4):e61835.CrossRefPubMedPubMedCentral Matsushita T, Tateishi T, Isobe N, et al. Characteristic cerebrospinal fluid cytokine/chemokine profiles in neuromyelitis optica, relapsing remitting or primary progressive multiple sclerosis. PLoS ONE 2013;8(4):e61835.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Bennett JL, Lam C, Kalluri SR, et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol. 2009;66(5):617-629.CrossRefPubMedPubMedCentral Bennett JL, Lam C, Kalluri SR, et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol. 2009;66(5):617-629.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Bradl M, Misu T, Takahashi T, et al. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol 2009;66(5):630-643.CrossRefPubMed Bradl M, Misu T, Takahashi T, et al. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol 2009;66(5):630-643.CrossRefPubMed
30.
Zurück zum Zitat Matsuya N, Komori M, Nomura K, et al. Increased T-cell immunity against aquaporin-4 and proteolipid protein in neuromyelitis optica. Int Immunol 2011;23(9):565-573.CrossRefPubMed Matsuya N, Komori M, Nomura K, et al. Increased T-cell immunity against aquaporin-4 and proteolipid protein in neuromyelitis optica. Int Immunol 2011;23(9):565-573.CrossRefPubMed
31.
Zurück zum Zitat Varrin-Doyer M, Spencer CM, Schulze-Topphoff U, et al. Aquaporin 4-specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize Clostridium ABC transporter. Ann Neurol 2012;72(1):53-64.CrossRefPubMedPubMedCentral Varrin-Doyer M, Spencer CM, Schulze-Topphoff U, et al. Aquaporin 4-specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize Clostridium ABC transporter. Ann Neurol 2012;72(1):53-64.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Vaknin-Dembinsky A, Brill L, Kassis I, et al. T-cell reactivity against AQP4 in neuromyelitis optica. Neurology 2012;79(9):945-946.CrossRefPubMed Vaknin-Dembinsky A, Brill L, Kassis I, et al. T-cell reactivity against AQP4 in neuromyelitis optica. Neurology 2012;79(9):945-946.CrossRefPubMed
33.
Zurück zum Zitat Wolf PR, Ploegh HL. How MHC class II molecules acquire peptide cargo: biosynthesis and trafficking through the endocytic pathway. Annu Rev Cell Dev Biol 1995;11:267-306.CrossRefPubMed Wolf PR, Ploegh HL. How MHC class II molecules acquire peptide cargo: biosynthesis and trafficking through the endocytic pathway. Annu Rev Cell Dev Biol 1995;11:267-306.CrossRefPubMed
34.
Zurück zum Zitat Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 1995;80(5):695-705.CrossRefPubMed Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 1995;80(5):695-705.CrossRefPubMed
35.
Zurück zum Zitat Hemmer B, Gran B, Zhao Y, et al. Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease. Nat Med 1999;5(12):1375-1382.CrossRefPubMed Hemmer B, Gran B, Zhao Y, et al. Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease. Nat Med 1999;5(12):1375-1382.CrossRefPubMed
36.
Zurück zum Zitat Markovic-Plese S, Hemmer B, Zhao Y, Simon R, Pinilla C, Martin R. High level of cross-reactivity in influenza virus hemagglutinin-specific CD4+ T-cell response: implications for the initiation of autoimmune response in multiple sclerosis. J Neuroimmunol 2005;169(1-2):31-38.CrossRefPubMed Markovic-Plese S, Hemmer B, Zhao Y, Simon R, Pinilla C, Martin R. High level of cross-reactivity in influenza virus hemagglutinin-specific CD4+ T-cell response: implications for the initiation of autoimmune response in multiple sclerosis. J Neuroimmunol 2005;169(1-2):31-38.CrossRefPubMed
37.
Zurück zum Zitat Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006;124(4):837-848.CrossRefPubMed Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006;124(4):837-848.CrossRefPubMed
39.
Zurück zum Zitat Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med 2016;375(24):2369-2379.CrossRefPubMed Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med 2016;375(24):2369-2379.CrossRefPubMed
41.
Zurück zum Zitat Levy M, Blacher E, Elinav E. Microbiome, metabolites and host immunity. Curr Opin Microbiol 2017;35:8-15.CrossRefPubMed Levy M, Blacher E, Elinav E. Microbiome, metabolites and host immunity. Curr Opin Microbiol 2017;35:8-15.CrossRefPubMed
42.
Zurück zum Zitat Ochoa-Reparaz J, Mielcarz DW, Begum-Haque S, Kasper LH. Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann Neurol 2011;69(2):240-247.CrossRefPubMed Ochoa-Reparaz J, Mielcarz DW, Begum-Haque S, Kasper LH. Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann Neurol 2011;69(2):240-247.CrossRefPubMed
43.
Zurück zum Zitat Miyake S, Kim S, Suda W, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to Clostridia XIVa and IV clusters. PLoS ONE 2015;10(9):e0137429.CrossRefPubMedPubMedCentral Miyake S, Kim S, Suda W, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to Clostridia XIVa and IV clusters. PLoS ONE 2015;10(9):e0137429.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Tremlett H, Fadrosh DW, Faruqi AA, et al. Associations between the gut microbiota and host immune markers in pediatric multiple sclerosis and controls. BMC Neurol 2016;16(1):182.CrossRefPubMedPubMedCentral Tremlett H, Fadrosh DW, Faruqi AA, et al. Associations between the gut microbiota and host immune markers in pediatric multiple sclerosis and controls. BMC Neurol 2016;16(1):182.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Cekanaviciute E, Yoo BB, Runia TF, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci U S A 2017. Cekanaviciute E, Yoo BB, Runia TF, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci U S A 2017.
46.
Zurück zum Zitat Berer K, Gerdes LA, Cekanaviciute E, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A 2017. Berer K, Gerdes LA, Cekanaviciute E, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A 2017.
47.
Zurück zum Zitat Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008;453(7195):620-625.CrossRefPubMed Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008;453(7195):620-625.CrossRefPubMed
48.
Zurück zum Zitat Ochoa-Reparaz J, Mielcarz DW, Ditrio LE, et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J Immunol 2010;185(7):4101-4108.CrossRefPubMed Ochoa-Reparaz J, Mielcarz DW, Ditrio LE, et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J Immunol 2010;185(7):4101-4108.CrossRefPubMed
49.
Zurück zum Zitat Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011;331(6015):337-341.CrossRefPubMed Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011;331(6015):337-341.CrossRefPubMed
50.
Zurück zum Zitat Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013;500(7461):232-236.CrossRefPubMed Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013;500(7461):232-236.CrossRefPubMed
51.
52.
Zurück zum Zitat Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2011;108(Suppl. 1):4615-4622.CrossRefPubMed Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2011;108(Suppl. 1):4615-4622.CrossRefPubMed
53.
Zurück zum Zitat Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441(7090):235-238.CrossRefPubMed Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441(7090):235-238.CrossRefPubMed
54.
Zurück zum Zitat Cree BA, Spencer CM, Varrin-Doyer M, Baranzini SE, Zamvil SS. Gut microbiome analysis in neuromyelitis optica reveals overabundance of Clostridium perfringens. Ann Neurol 2016;80(3):443-447.CrossRefPubMedPubMedCentral Cree BA, Spencer CM, Varrin-Doyer M, Baranzini SE, Zamvil SS. Gut microbiome analysis in neuromyelitis optica reveals overabundance of Clostridium perfringens. Ann Neurol 2016;80(3):443-447.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Spencer J, Sollid LM. The human intestinal B-cell response. Mucosal Immunol 2016;9(5):1113-1124.CrossRefPubMed Spencer J, Sollid LM. The human intestinal B-cell response. Mucosal Immunol 2016;9(5):1113-1124.CrossRefPubMed
57.
Zurück zum Zitat Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci U S A 2009;106(46):19256-19261.CrossRefPubMedPubMedCentral Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci U S A 2009;106(46):19256-19261.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Kawamoto S, Maruya M, Kato LM, et al. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 2014;41(1):152-165.CrossRefPubMed Kawamoto S, Maruya M, Kato LM, et al. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 2014;41(1):152-165.CrossRefPubMed
59.
Zurück zum Zitat Kubinak JL, Round JL. Do antibodies select a healthy microbiota? Nat Rev Immunol 2016;16(12):767-774.CrossRefPubMed Kubinak JL, Round JL. Do antibodies select a healthy microbiota? Nat Rev Immunol 2016;16(12):767-774.CrossRefPubMed
60.
Zurück zum Zitat Linhares UC, Schiavoni PB, Barros PO, et al. The ex vivo production of IL-6 and IL-21 by CD4+ T cells is directly associated with neurological disability in neuromyelitis optica patients. J Clin Immunol 2013;33(1):179-189.CrossRefPubMed Linhares UC, Schiavoni PB, Barros PO, et al. The ex vivo production of IL-6 and IL-21 by CD4+ T cells is directly associated with neurological disability in neuromyelitis optica patients. J Clin Immunol 2013;33(1):179-189.CrossRefPubMed
61.
Zurück zum Zitat Barros PO, Dias ASO, Kasahara TM, et al. Expansion of IL-6+ Th17-like cells expressing TLRs correlates with microbial translocation and neurological disabilities in NMOSD patients. J Neuroimmunol 2017;307:82-90.CrossRefPubMed Barros PO, Dias ASO, Kasahara TM, et al. Expansion of IL-6+ Th17-like cells expressing TLRs correlates with microbial translocation and neurological disabilities in NMOSD patients. J Neuroimmunol 2017;307:82-90.CrossRefPubMed
62.
Zurück zum Zitat Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol 2011;12(1):5-9.CrossRefPubMed Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol 2011;12(1):5-9.CrossRefPubMed
63.
Zurück zum Zitat Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006;126(6):1121-1133.CrossRefPubMed Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006;126(6):1121-1133.CrossRefPubMed
64.
Zurück zum Zitat Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature 2016;535(7610):75-84.CrossRefPubMed Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature 2016;535(7610):75-84.CrossRefPubMed
65.
Zurück zum Zitat Gupta RS, Gao B. Phylogenomic analyses of clostridia and identification of novel protein signatures that are specific to the genus Clostridium sensu stricto (cluster I). Int J Syst Evol Microbiol 2009;59(Pt 2):285-294.CrossRefPubMed Gupta RS, Gao B. Phylogenomic analyses of clostridia and identification of novel protein signatures that are specific to the genus Clostridium sensu stricto (cluster I). Int J Syst Evol Microbiol 2009;59(Pt 2):285-294.CrossRefPubMed
66.
67.
68.
Zurück zum Zitat Sano T, Huang W, Hall JA, et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to Promote local effector Th17 responses. Cell 2015;163(2):381-393.CrossRefPubMedPubMedCentral Sano T, Huang W, Hall JA, et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to Promote local effector Th17 responses. Cell 2015;163(2):381-393.CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Sato DK, Callegaro D, Lana-Peixoto MA, et al. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology 2014;82(6):474-481.CrossRefPubMedPubMedCentral Sato DK, Callegaro D, Lana-Peixoto MA, et al. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology 2014;82(6):474-481.CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Kitley J, Waters P, Woodhall M, et al. Neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies: a comparative study. JAMA Neurol 2014;71(3):276-283.CrossRefPubMed Kitley J, Waters P, Woodhall M, et al. Neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies: a comparative study. JAMA Neurol 2014;71(3):276-283.CrossRefPubMed
71.
Zurück zum Zitat Hoftberger R, Sepulveda M, Armangue T, et al. Antibodies to MOG and AQP4 in adults with neuromyelitis optica and suspected limited forms of the disease. Mult Scler 2015;21(7):866-874.CrossRefPubMed Hoftberger R, Sepulveda M, Armangue T, et al. Antibodies to MOG and AQP4 in adults with neuromyelitis optica and suspected limited forms of the disease. Mult Scler 2015;21(7):866-874.CrossRefPubMed
72.
Zurück zum Zitat Zamvil SS, Slavin AJ. Does MOG Ig-positive AQP4-seronegative opticospinal inflammatory disease justify a diagnosis of NMO spectrum disorder? Neurol Neuroimmunol Neuroinflamm 2015;2(1):e62.CrossRefPubMedPubMedCentral Zamvil SS, Slavin AJ. Does MOG Ig-positive AQP4-seronegative opticospinal inflammatory disease justify a diagnosis of NMO spectrum disorder? Neurol Neuroimmunol Neuroinflamm 2015;2(1):e62.CrossRefPubMedPubMedCentral
73.
74.
Zurück zum Zitat Lindstrom M, Heikinheimo A, Lahti P, Korkeala H. Novel insights into the epidemiology of Clostridium perfringens type A food poisoning. Food Microbiol 2011;28(2):192-198.CrossRefPubMed Lindstrom M, Heikinheimo A, Lahti P, Korkeala H. Novel insights into the epidemiology of Clostridium perfringens type A food poisoning. Food Microbiol 2011;28(2):192-198.CrossRefPubMed
75.
Zurück zum Zitat Rumah KR, Linden J, Fischetti VA, Vartanian T. Isolation of Clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease. PLoS ONE 2013;8(10):e76359.CrossRefPubMedPubMedCentral Rumah KR, Linden J, Fischetti VA, Vartanian T. Isolation of Clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease. PLoS ONE 2013;8(10):e76359.CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Freedman JC, McClane BA, Uzal FA. New insights into Clostridium perfringens epsilon toxin activation and action on the brain during enterotoxemia. Anaerobe 2016;41:27-31.CrossRefPubMed Freedman JC, McClane BA, Uzal FA. New insights into Clostridium perfringens epsilon toxin activation and action on the brain during enterotoxemia. Anaerobe 2016;41:27-31.CrossRefPubMed
77.
Zurück zum Zitat Dorca-Arevalo J, Soler-Jover A, Gibert M, Popoff MR, Martin-Satue M, Blasi J. Binding of epsilon-toxin from Clostridium perfringens in the nervous system. Vet Microbiol 2008;131(1-2):14-25.CrossRefPubMed Dorca-Arevalo J, Soler-Jover A, Gibert M, Popoff MR, Martin-Satue M, Blasi J. Binding of epsilon-toxin from Clostridium perfringens in the nervous system. Vet Microbiol 2008;131(1-2):14-25.CrossRefPubMed
79.
Zurück zum Zitat Tremlett H, Fadrosh DW, Faruqi AA, et al. Gut microbiota composition and relapse risk in pediatric MS: a pilot study. J Neurol Sci 2016;363:153-157.CrossRefPubMedPubMedCentral Tremlett H, Fadrosh DW, Faruqi AA, et al. Gut microbiota composition and relapse risk in pediatric MS: a pilot study. J Neurol Sci 2016;363:153-157.CrossRefPubMedPubMedCentral
80.
Zurück zum Zitat Qi M, Nelson KE, Daugherty SC, et al. Novel molecular features of the fibrolytic intestinal bacterium Fibrobacter intestinalis not shared with Fibrobacter succinogenes as determined by suppressive subtractive hybridization. J Bacteriol 2005;187(11):3739-3751.CrossRefPubMedPubMedCentral Qi M, Nelson KE, Daugherty SC, et al. Novel molecular features of the fibrolytic intestinal bacterium Fibrobacter intestinalis not shared with Fibrobacter succinogenes as determined by suppressive subtractive hybridization. J Bacteriol 2005;187(11):3739-3751.CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Jones MV, Huang H, Calabresi PA, Levy M. Pathogenic aquaporin-4 reactive T cells are sufficient to induce mouse model of neuromyelitis optica. Acta Neuropathol Commun 2015;3:28.CrossRefPubMedPubMedCentral Jones MV, Huang H, Calabresi PA, Levy M. Pathogenic aquaporin-4 reactive T cells are sufficient to induce mouse model of neuromyelitis optica. Acta Neuropathol Commun 2015;3:28.CrossRefPubMedPubMedCentral
82.
Zurück zum Zitat Sagan SA, Winger RC, Cruz-Herranz A, et al. Tolerance checkpoint bypass permits emergence of pathogenic T cells to neuromyelitis optica autoantigen aquaporin-4. Proc Natl Acad Sci U S A 2016;113(51):14781-14786.CrossRefPubMedPubMedCentral Sagan SA, Winger RC, Cruz-Herranz A, et al. Tolerance checkpoint bypass permits emergence of pathogenic T cells to neuromyelitis optica autoantigen aquaporin-4. Proc Natl Acad Sci U S A 2016;113(51):14781-14786.CrossRefPubMedPubMedCentral
83.
84.
Zurück zum Zitat Sagan SA, Cruz-Herranz A, Spencer CM, et al. Induction of paralysis and visual system injury in mice by T cells specific for neuromyelitis optica autoantigen aquaporin-4. J Vis Exp 2017(126). Sagan SA, Cruz-Herranz A, Spencer CM, et al. Induction of paralysis and visual system injury in mice by T cells specific for neuromyelitis optica autoantigen aquaporin-4. J Vis Exp 2017(126).
85.
Zurück zum Zitat van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013;368(5):407-415.CrossRefPubMed van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013;368(5):407-415.CrossRefPubMed
Metadaten
Titel
The Gut Microbiome in Neuromyelitis Optica
verfasst von
Scott S. Zamvil
Collin M. Spencer
Sergio E. Baranzini
Bruce A. C. Cree
Publikationsdatum
01.01.2018
Verlag
Springer US
Erschienen in
Neurotherapeutics / Ausgabe 1/2018
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-017-0594-z

Weitere Artikel der Ausgabe 1/2018

Neurotherapeutics 1/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.