Skip to main content
Erschienen in: Brain Topography 4/2016

15.03.2016 | Original Paper

The Hand Motor Hotspot is not Always Located in the Hand Knob: A Neuronavigated Transcranial Magnetic Stimulation Study

verfasst von: Rechdi Ahdab, Samar S. Ayache, Pierre Brugières, Wassim H. Farhat, Jean-Pascal Lefaucheur

Erschienen in: Brain Topography | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

The hand motor hot spot (hMHS) is one of the most salient parameters in transcranial magnetic stimulation (TMS) practice, notably used for targeting. It is commonly accepted that the hMHS corresponds to the hand representation within the primary motor cortex (M1). Anatomical and imaging studies locate this representation in a region of the central sulcus called the “hand knob”. The aim of this study was to determine if the hMHS location corresponds to its expected location at the hand knob. Twelve healthy volunteers and eleven patients with chronic neuropathic pain of various origins, but not related to a brain lesion, were enrolled. Morphological magnetic resonance imaging of the brain was normal in all participants. Both hemispheres were studied in all participants except four (two patients and two healthy subjects). Cortical mapping of the hand motor area was conducted using a TMS-dedicated navigation system and recording motor evoked potentials (MEPs) in the contralateral first dorsal interosseous (FDI) muscle. We then determined the anatomical position of the hMHS, defined as the stimulation site providing the largest FDI-MEPs. In 45 % of hemispheres of normal subjects and 25 % of hemispheres of pain patients, the hMHS was located over the central sulcus, most frequently at the level of the hand knob. However, in the other cases, the hMHS was located outside M1, most frequently anteriorly over the precentral or middle frontal gyrus. This study shows that the hMHS does not always correspond to the hand knob and M1 location in healthy subjects or patients. Therefore, image-guided navigation is needed to improve the anatomical accuracy of TMS targeting, even for M1.
Literatur
Zurück zum Zitat Ahdab R, Ayache SS, Brugières P et al (2010) Comparison of “standard” and “navigated” procedures of TMS coil positioning over motor, premotor and prefrontal targets in depressive patients. Neurophysiol Clin 40:27–36CrossRefPubMed Ahdab R, Ayache SS, Brugières P et al (2010) Comparison of “standard” and “navigated” procedures of TMS coil positioning over motor, premotor and prefrontal targets in depressive patients. Neurophysiol Clin 40:27–36CrossRefPubMed
Zurück zum Zitat Ahdab R, Ayache SS, Farhat WH et al (2014) Reappraisal of the anatomical landmarks of motor and premotor cortical regions for image-guided brain navigation in TMS practice. Hum Brain Mapp 35:2435–2447CrossRefPubMed Ahdab R, Ayache SS, Farhat WH et al (2014) Reappraisal of the anatomical landmarks of motor and premotor cortical regions for image-guided brain navigation in TMS practice. Hum Brain Mapp 35:2435–2447CrossRefPubMed
Zurück zum Zitat Brodmann K (1909) Vergleichende Lokalisationslehre der Groβhirnrinde in ihren 883 Prinzipien dargestellt auf Grund des Zellaufbaues. Barth, Leipzig Brodmann K (1909) Vergleichende Lokalisationslehre der Groβhirnrinde in ihren 883 Prinzipien dargestellt auf Grund des Zellaufbaues. Barth, Leipzig
Zurück zum Zitat Classen J, Knorr U, Werhahn KJ et al (1998) Multimodal output mapping of human central motor representation on different spatial scales. J Physiol 512:163–179CrossRefPubMedPubMedCentral Classen J, Knorr U, Werhahn KJ et al (1998) Multimodal output mapping of human central motor representation on different spatial scales. J Physiol 512:163–179CrossRefPubMedPubMedCentral
Zurück zum Zitat Danner N, Julkunen P, Könönen M, Säisänen L, Nurkkala J, Karhu J (2008) Navigated transcranial magnetic stimulation and computed electric field strength reduce stimulator-dependent differences in the motor threshold. J Neurosci Methods 174:116–122CrossRefPubMed Danner N, Julkunen P, Könönen M, Säisänen L, Nurkkala J, Karhu J (2008) Navigated transcranial magnetic stimulation and computed electric field strength reduce stimulator-dependent differences in the motor threshold. J Neurosci Methods 174:116–122CrossRefPubMed
Zurück zum Zitat Deng ZD, Lisanby SH, Peterchev AV (2013) Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul 6:1–13CrossRefPubMed Deng ZD, Lisanby SH, Peterchev AV (2013) Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul 6:1–13CrossRefPubMed
Zurück zum Zitat Denslow S, Bohning DE, Bohning PA et al (2005) An increased precision comparison of TMS-induced motor cortex BOLD fMRI response for image-guided versus function-guided coil placement. Cogn Behav Neurol 18:119–126CrossRefPubMed Denslow S, Bohning DE, Bohning PA et al (2005) An increased precision comparison of TMS-induced motor cortex BOLD fMRI response for image-guided versus function-guided coil placement. Cogn Behav Neurol 18:119–126CrossRefPubMed
Zurück zum Zitat Diekhoff S, Uludag K, Sparing R et al (2011) Functional localization in the human brain: gradient-echo, spin-echo, and arterial spin-labeling fMRI compared with neuronavigated TMS. Hum Brain Mapp 32:341–357CrossRefPubMed Diekhoff S, Uludag K, Sparing R et al (2011) Functional localization in the human brain: gradient-echo, spin-echo, and arterial spin-labeling fMRI compared with neuronavigated TMS. Hum Brain Mapp 32:341–357CrossRefPubMed
Zurück zum Zitat Foerster O (1936) The motor cortex in man in the light of Hughlings Jackson’s doctrines. Brain 59:135–159CrossRef Foerster O (1936) The motor cortex in man in the light of Hughlings Jackson’s doctrines. Brain 59:135–159CrossRef
Zurück zum Zitat Geyer S, Matelli M, Luppino G, Zilles K (2000) Functional neuroanatomy of the primate isocortical motor system. Anat Embryol 202:443–474CrossRefPubMed Geyer S, Matelli M, Luppino G, Zilles K (2000) Functional neuroanatomy of the primate isocortical motor system. Anat Embryol 202:443–474CrossRefPubMed
Zurück zum Zitat Ghosh S, Porter R (1988) Corticocortical synaptic influences on morphologically identified pyramidal neurones in the motor cortex of the monkey. J Physiol 400:617–629CrossRefPubMedPubMedCentral Ghosh S, Porter R (1988) Corticocortical synaptic influences on morphologically identified pyramidal neurones in the motor cortex of the monkey. J Physiol 400:617–629CrossRefPubMedPubMedCentral
Zurück zum Zitat Godschalk M, Mitz AR, van Duin B, van der Burg H (1995) Somatotopy of monkey premotor cortex examined with microstimulation. Neurosci Res 23:269–279CrossRefPubMed Godschalk M, Mitz AR, van Duin B, van der Burg H (1995) Somatotopy of monkey premotor cortex examined with microstimulation. Neurosci Res 23:269–279CrossRefPubMed
Zurück zum Zitat Grafton ST, Woods RP, Mazziotta JC, Phelps ME (1991) Somatotopic mapping of the primary motor cortex in humans: activation studies with cerebral blood flow and positron emission tomography. J Neurophysiol 66:735–743PubMed Grafton ST, Woods RP, Mazziotta JC, Phelps ME (1991) Somatotopic mapping of the primary motor cortex in humans: activation studies with cerebral blood flow and positron emission tomography. J Neurophysiol 66:735–743PubMed
Zurück zum Zitat Graziano MS, Taylor CS, Moore T (2002a) Complex movements evoked by microstimulation of precentral cortex. Neuron 34:841–851CrossRefPubMed Graziano MS, Taylor CS, Moore T (2002a) Complex movements evoked by microstimulation of precentral cortex. Neuron 34:841–851CrossRefPubMed
Zurück zum Zitat Graziano MS, Taylor CS, Moore T, Cooke DF (2002b) The cortical control of movement revisited. Neuron 36:349–362CrossRefPubMed Graziano MS, Taylor CS, Moore T, Cooke DF (2002b) The cortical control of movement revisited. Neuron 36:349–362CrossRefPubMed
Zurück zum Zitat He SQ, Dum RP, Strick PL (1993) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J Neurosci 13:952–980PubMed He SQ, Dum RP, Strick PL (1993) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J Neurosci 13:952–980PubMed
Zurück zum Zitat He SQ, Dum RP, Strick PL (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 15:3284–3306PubMed He SQ, Dum RP, Strick PL (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 15:3284–3306PubMed
Zurück zum Zitat Inuggi A, Filippi M, Chieffo R et al (2010) Motor area localization using fMRI-constrained cortical current density reconstruction of movement-related cortical potentials, a comparison with fMRI and TMS mapping. Brain Res 1308:68–78CrossRefPubMed Inuggi A, Filippi M, Chieffo R et al (2010) Motor area localization using fMRI-constrained cortical current density reconstruction of movement-related cortical potentials, a comparison with fMRI and TMS mapping. Brain Res 1308:68–78CrossRefPubMed
Zurück zum Zitat Julkunen P, Ruohonen J, Sääskilahti S et al (2011) Threshold curves for transcranial magnetic stimulation to improve reliability of motor pathway status assessment. Clin Neurophysiol 122:975–983CrossRefPubMed Julkunen P, Ruohonen J, Sääskilahti S et al (2011) Threshold curves for transcranial magnetic stimulation to improve reliability of motor pathway status assessment. Clin Neurophysiol 122:975–983CrossRefPubMed
Zurück zum Zitat Kahn T, Schwabe B, Bettag M et al (1996) Mapping of the cortical motor hand area with functional MR imaging and MR imaging-guided laser-induced interstitial thermotherapy of brain tumors. Radiology 200:149–157CrossRefPubMed Kahn T, Schwabe B, Bettag M et al (1996) Mapping of the cortical motor hand area with functional MR imaging and MR imaging-guided laser-induced interstitial thermotherapy of brain tumors. Radiology 200:149–157CrossRefPubMed
Zurück zum Zitat Kantelhardt SR, Fadini T, Finke M et al (2010) Robot-assisted image-guided transcranial magnetic stimulation for somatotopic mapping of the motor cortex: a clinical pilot study. Acta Neurochir 152:333–343CrossRefPubMed Kantelhardt SR, Fadini T, Finke M et al (2010) Robot-assisted image-guided transcranial magnetic stimulation for somatotopic mapping of the motor cortex: a clinical pilot study. Acta Neurochir 152:333–343CrossRefPubMed
Zurück zum Zitat Lefaucheur JP (2010) Why image-guided navigation becomes essential in the practice of transcranial magnetic stimulation. Neurophysiol Clin 40:1–5CrossRefPubMed Lefaucheur JP (2010) Why image-guided navigation becomes essential in the practice of transcranial magnetic stimulation. Neurophysiol Clin 40:1–5CrossRefPubMed
Zurück zum Zitat Lefaucheur JP, André-Obadia N, Antal A et al (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125:2150–2206CrossRefPubMed Lefaucheur JP, André-Obadia N, Antal A et al (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125:2150–2206CrossRefPubMed
Zurück zum Zitat Lotze M, Kaethner RJ, Erb M et al (2003) Comparison of representational maps using functional magnetic resonance imaging and transcranial magnetic stimulation. Clin Neurophysiol 114:306–312CrossRefPubMed Lotze M, Kaethner RJ, Erb M et al (2003) Comparison of representational maps using functional magnetic resonance imaging and transcranial magnetic stimulation. Clin Neurophysiol 114:306–312CrossRefPubMed
Zurück zum Zitat Maier MA, Armand J, Kirkwood PA et al (2002) Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study. Cereb Cortex 12:281–296CrossRefPubMed Maier MA, Armand J, Kirkwood PA et al (2002) Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study. Cereb Cortex 12:281–296CrossRefPubMed
Zurück zum Zitat Meincke J, Hewitt M, Batsikadze G, Liebetanz D (2016) Automated TMS hotspot-hunting using a closed loop threshold-based algorithm. Neuroimage 124:509–517CrossRefPubMed Meincke J, Hewitt M, Batsikadze G, Liebetanz D (2016) Automated TMS hotspot-hunting using a closed loop threshold-based algorithm. Neuroimage 124:509–517CrossRefPubMed
Zurück zum Zitat Mylius V, Ayache SS, Ahdab R et al (2013) Definition of DLPFC and M1 according to anatomical landmarks for navigated brain stimulation: inter-rater reliability, accuracy, and influence of gender and age. Neuroimage 78:224–232CrossRefPubMed Mylius V, Ayache SS, Ahdab R et al (2013) Definition of DLPFC and M1 according to anatomical landmarks for navigated brain stimulation: inter-rater reliability, accuracy, and influence of gender and age. Neuroimage 78:224–232CrossRefPubMed
Zurück zum Zitat Nii Y, Uematsu S, Lesser RP, Gordon B (1996) Does the central sulcus divide motor and sensory functions? Cortical mapping of human hand areas as revealed by electrical stimulation through subdural grid electrodes. Neurology 46:360–367CrossRefPubMed Nii Y, Uematsu S, Lesser RP, Gordon B (1996) Does the central sulcus divide motor and sensory functions? Cortical mapping of human hand areas as revealed by electrical stimulation through subdural grid electrodes. Neurology 46:360–367CrossRefPubMed
Zurück zum Zitat Niskanen E, Julkunen P, Säisänen L, Vanninen R, Karjalainen P, Könönen M (2010) Group-level variations in motor representation areas of thenar and anterior tibial muscles: navigated Transcranial Magnetic Stimulation Study. Hum Brain Mapp 31:1272–1280PubMed Niskanen E, Julkunen P, Säisänen L, Vanninen R, Karjalainen P, Könönen M (2010) Group-level variations in motor representation areas of thenar and anterior tibial muscles: navigated Transcranial Magnetic Stimulation Study. Hum Brain Mapp 31:1272–1280PubMed
Zurück zum Zitat Nummenmaa A, Stenroos M, Ilmoniemi RJ et al (2013) Comparison of spherical and realistically shaped boundary element head models for transcranial magnetic stimulation navigation. Clin Neurophysiol 124:1995–2007CrossRefPubMedPubMedCentral Nummenmaa A, Stenroos M, Ilmoniemi RJ et al (2013) Comparison of spherical and realistically shaped boundary element head models for transcranial magnetic stimulation navigation. Clin Neurophysiol 124:1995–2007CrossRefPubMedPubMedCentral
Zurück zum Zitat Opitz A, Legon W, Rowlands A et al (2013) Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. Neuroimage 81:253–264CrossRefPubMed Opitz A, Legon W, Rowlands A et al (2013) Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. Neuroimage 81:253–264CrossRefPubMed
Zurück zum Zitat Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443CrossRef Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443CrossRef
Zurück zum Zitat Picht T, Mularski S, Kuehn B et al (2009) Navigated transcranial magnetic stimulation for preoperative functional diagnostics in brain tumor surgery. Neurosurgery 65:93–99CrossRefPubMed Picht T, Mularski S, Kuehn B et al (2009) Navigated transcranial magnetic stimulation for preoperative functional diagnostics in brain tumor surgery. Neurosurgery 65:93–99CrossRefPubMed
Zurück zum Zitat Picht T, Schmidt S, Brandt S et al (2011) Preoperative functional mapping for rolandic brain tumor surgery: comparison of navigated transcranial magnetic stimulation to direct cortical stimulation. Neurosurgery 69:581–588CrossRefPubMed Picht T, Schmidt S, Brandt S et al (2011) Preoperative functional mapping for rolandic brain tumor surgery: comparison of navigated transcranial magnetic stimulation to direct cortical stimulation. Neurosurgery 69:581–588CrossRefPubMed
Zurück zum Zitat Puce A, Constable RT, Luby ML et al (1995) Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg 83:262–270CrossRefPubMed Puce A, Constable RT, Luby ML et al (1995) Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg 83:262–270CrossRefPubMed
Zurück zum Zitat Rademacher J, Burgel U, Geyer S et al (2001) Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. Brain 124:2232–2258CrossRefPubMed Rademacher J, Burgel U, Geyer S et al (2001) Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. Brain 124:2232–2258CrossRefPubMed
Zurück zum Zitat Rossini PM, Burke D, Chen R et al (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N Committee. Clin Neurophysiol 126:1071–1107CrossRefPubMed Rossini PM, Burke D, Chen R et al (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N Committee. Clin Neurophysiol 126:1071–1107CrossRefPubMed
Zurück zum Zitat Rumeau C, Tzourio N, Murayama N et al (1994) Location of hand function in the sensorimotor cortex: MR and functional correlation. AJNR Am J Neuroradiol 15:567–572PubMed Rumeau C, Tzourio N, Murayama N et al (1994) Location of hand function in the sensorimotor cortex: MR and functional correlation. AJNR Am J Neuroradiol 15:567–572PubMed
Zurück zum Zitat Ruohonen J, Karhu J (2010) Navigated transcranial magnetic stimulation. Neurophysiol Clin 40:7–17CrossRefPubMed Ruohonen J, Karhu J (2010) Navigated transcranial magnetic stimulation. Neurophysiol Clin 40:7–17CrossRefPubMed
Zurück zum Zitat Schmidt S, Bathe-Peters R, Fleischmann R, Rönnefarth M, Scholz M, Brandt SA (2015) Nonphysiological factors in navigated TMS studies; confounding covariates and valid intracortical estimates. Hum Brain Mapp 36:40–49CrossRefPubMed Schmidt S, Bathe-Peters R, Fleischmann R, Rönnefarth M, Scholz M, Brandt SA (2015) Nonphysiological factors in navigated TMS studies; confounding covariates and valid intracortical estimates. Hum Brain Mapp 36:40–49CrossRefPubMed
Zurück zum Zitat Shimazu H, Maier MA, Cerri G et al (2004) Macaque ventral premotor cortex exerts powerful facilitation of motor cortex outputs to upper limb motoneurons. J Neurosci 24:1200–1211CrossRefPubMed Shimazu H, Maier MA, Cerri G et al (2004) Macaque ventral premotor cortex exerts powerful facilitation of motor cortex outputs to upper limb motoneurons. J Neurosci 24:1200–1211CrossRefPubMed
Zurück zum Zitat Sparing R, Buelte D, Meister IG et al (2008) Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Hum Brain Mapp 29:82–96CrossRefPubMed Sparing R, Buelte D, Meister IG et al (2008) Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Hum Brain Mapp 29:82–96CrossRefPubMed
Zurück zum Zitat Tarapore PE, Tate MC, Findlay AM et al (2012) Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg 117:354–362CrossRefPubMedPubMedCentral Tarapore PE, Tate MC, Findlay AM et al (2012) Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg 117:354–362CrossRefPubMedPubMedCentral
Zurück zum Zitat Teitti S, Määttä S, Säisänen L et al (2008) Non-primary motor areas in the human frontal lobe are connected directly to hand muscles. Neuroimage 40:1243–1250CrossRefPubMed Teitti S, Määttä S, Säisänen L et al (2008) Non-primary motor areas in the human frontal lobe are connected directly to hand muscles. Neuroimage 40:1243–1250CrossRefPubMed
Zurück zum Zitat Terao Y, Ugawa Y, Sakai K et al (1998) Localizing the site of magnetic brain stimulation by functional MRI. Exp Brain Res 121:145–152CrossRefPubMed Terao Y, Ugawa Y, Sakai K et al (1998) Localizing the site of magnetic brain stimulation by functional MRI. Exp Brain Res 121:145–152CrossRefPubMed
Zurück zum Zitat Thielscher A, Kammer T (2004) Electric field properties of two commercial figure-8 coils in TMS: calculation of focality and efficiency. Clin Neurophysiol 115:1697–1708CrossRefPubMed Thielscher A, Kammer T (2004) Electric field properties of two commercial figure-8 coils in TMS: calculation of focality and efficiency. Clin Neurophysiol 115:1697–1708CrossRefPubMed
Zurück zum Zitat Tokuno H, Nambu A (2000) Organization of nonprimary motor cortical inputs on pyramidal and nonpyramidal tract neurons of primary motor cortex: an electrophysiological study in the macaque monkey. Cereb Cortex 10:58–68CrossRefPubMed Tokuno H, Nambu A (2000) Organization of nonprimary motor cortical inputs on pyramidal and nonpyramidal tract neurons of primary motor cortex: an electrophysiological study in the macaque monkey. Cereb Cortex 10:58–68CrossRefPubMed
Zurück zum Zitat Uematsu S, Lesser R, Fisher RS et al (1992) Motor and sensory cortex in humans: topography studied with chronic subdural stimulation. Neurosurgery 31:59–71CrossRefPubMed Uematsu S, Lesser R, Fisher RS et al (1992) Motor and sensory cortex in humans: topography studied with chronic subdural stimulation. Neurosurgery 31:59–71CrossRefPubMed
Zurück zum Zitat Wassermann EM, Wang B, Zeffiro TA et al (1996) Locating the motor cortex on the MRI with transcranial magnetic stimulation and PET. Neuroimage 3:1–9CrossRefPubMed Wassermann EM, Wang B, Zeffiro TA et al (1996) Locating the motor cortex on the MRI with transcranial magnetic stimulation and PET. Neuroimage 3:1–9CrossRefPubMed
Zurück zum Zitat Yousry TA, Schmid UD, Jassoy AG et al (1995) Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery. Radiology 195:23–29CrossRefPubMed Yousry TA, Schmid UD, Jassoy AG et al (1995) Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery. Radiology 195:23–29CrossRefPubMed
Zurück zum Zitat Yousry TA, Schmid UD, Alkadhi H et al (1997) Localization of the motor hand area to a knob on the precentral gyrus: a new landmark. Brain 120:141–157CrossRefPubMed Yousry TA, Schmid UD, Alkadhi H et al (1997) Localization of the motor hand area to a knob on the precentral gyrus: a new landmark. Brain 120:141–157CrossRefPubMed
Metadaten
Titel
The Hand Motor Hotspot is not Always Located in the Hand Knob: A Neuronavigated Transcranial Magnetic Stimulation Study
verfasst von
Rechdi Ahdab
Samar S. Ayache
Pierre Brugières
Wassim H. Farhat
Jean-Pascal Lefaucheur
Publikationsdatum
15.03.2016
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 4/2016
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-016-0486-2

Weitere Artikel der Ausgabe 4/2016

Brain Topography 4/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.