Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 10/2017

03.12.2016 | Original Article

The interactive electrode localization utility: software for automatic sorting and labeling of intracranial subdural electrodes

verfasst von: Roan A. LaPlante, Wei Tang, Noam Peled, Deborah I. Vallejo, Mia Borzello, Darin D. Dougherty, Emad N. Eskandar, Alik S. Widge, Sydney S. Cash, Steven M. Stufflebeam

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 10/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Existing methods for sorting, labeling, registering, and across-subject localization of electrodes in intracranial encephalography (iEEG) may involve laborious work requiring manual inspection of radiological images.

Methods

We describe a new open-source software package, the interactive electrode localization utility which presents a full pipeline for the registration, localization, and labeling of iEEG electrodes from CT and MR images. In addition, we describe a method to automatically sort and label electrodes from subdural grids of known geometry.

Results

We validated our software against manual inspection methods in twelve subjects undergoing iEEG for medically intractable epilepsy. Our algorithm for sorting and labeling performed correct identification on 96% of the electrodes.

Conclusions

The sorting and labeling methods we describe offer nearly perfect performance and the software package we have distributed may simplify the process of registering, sorting, labeling, and localizing subdural iEEG grid electrodes by manual inspection.
Literatur
1.
Zurück zum Zitat Penfield W, Jasper HH (1954) Epilepsy and the functional anatomy of the human brain. Oxford University Press, Oxford Penfield W, Jasper HH (1954) Epilepsy and the functional anatomy of the human brain. Oxford University Press, Oxford
2.
Zurück zum Zitat Engel AK, Moll CK, Fried I, Ojemann G (2005) Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci 6:35–47CrossRefPubMed Engel AK, Moll CK, Fried I, Ojemann G (2005) Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci 6:35–47CrossRefPubMed
3.
Zurück zum Zitat Tao JX, Ray A, Hawes-Ebersole S, Ebersole JS (2005) Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia 46:669–676CrossRefPubMed Tao JX, Ray A, Hawes-Ebersole S, Ebersole JS (2005) Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia 46:669–676CrossRefPubMed
4.
Zurück zum Zitat Crone NE, Boatman D, Gordon B, Hao L (2001) Induced electrocorticographic gamma activity during auditory perception. Clin Neurophysiol 112:565–582CrossRefPubMed Crone NE, Boatman D, Gordon B, Hao L (2001) Induced electrocorticographic gamma activity during auditory perception. Clin Neurophysiol 112:565–582CrossRefPubMed
5.
Zurück zum Zitat Meltzer JA, Zaveri HP, Goncharova II, Distasio MM, Papademetris X, Spencer SS, Constable RT (2008) Effects of working memory load on oscillatory power in human intracranial EEG. Cereb Cortex 18:1843–1855CrossRefPubMed Meltzer JA, Zaveri HP, Goncharova II, Distasio MM, Papademetris X, Spencer SS, Constable RT (2008) Effects of working memory load on oscillatory power in human intracranial EEG. Cereb Cortex 18:1843–1855CrossRefPubMed
6.
Zurück zum Zitat Lachaux JP, Fonlupt P, Kahane P, Minotti L, Hoffman D, Bertrand O, Baclu M (2007) Relationship between task-related gamma oscillations and BOLD signal: new insights from combined fMRI and intracranial EEG. Hum Brain Mapp 28:1368–1375CrossRefPubMed Lachaux JP, Fonlupt P, Kahane P, Minotti L, Hoffman D, Bertrand O, Baclu M (2007) Relationship between task-related gamma oscillations and BOLD signal: new insights from combined fMRI and intracranial EEG. Hum Brain Mapp 28:1368–1375CrossRefPubMed
7.
Zurück zum Zitat Jerbi K, Ossandon T, Hamame CM, Senova S, Dalal SS, Jung J, Minotti L, Bertrand O, Berthaz A, Kahane P, Lachaux JP (2009) Task-related gamma-band dynamics from an intracerebral perspective: review and implications for surface EEG and MEG. Hum Brain Mapp 30:1758–1771CrossRefPubMed Jerbi K, Ossandon T, Hamame CM, Senova S, Dalal SS, Jung J, Minotti L, Bertrand O, Berthaz A, Kahane P, Lachaux JP (2009) Task-related gamma-band dynamics from an intracerebral perspective: review and implications for surface EEG and MEG. Hum Brain Mapp 30:1758–1771CrossRefPubMed
8.
Zurück zum Zitat Cash SS, Halgren E, Dehghani N, Rossetti AO, Thesen T, Wang C, Devinsky O, Kuzniecky R, Doyle W, Madsen JR, Bromfield E (2009) The human K-complex represents an isolated cortical down-state. Science 324:1084–1087CrossRefPubMedCentralPubMed Cash SS, Halgren E, Dehghani N, Rossetti AO, Thesen T, Wang C, Devinsky O, Kuzniecky R, Doyle W, Madsen JR, Bromfield E (2009) The human K-complex represents an isolated cortical down-state. Science 324:1084–1087CrossRefPubMedCentralPubMed
9.
Zurück zum Zitat Hermes D, Miller KJ, Noordmans HJ, Vansteensel MJ, Ramsey NF (2010) Automated electrocorticographic electrode localization on individually rendered brain surfaces. J Neurosci Methods 185:293–298CrossRefPubMed Hermes D, Miller KJ, Noordmans HJ, Vansteensel MJ, Ramsey NF (2010) Automated electrocorticographic electrode localization on individually rendered brain surfaces. J Neurosci Methods 185:293–298CrossRefPubMed
10.
Zurück zum Zitat Dalal SS, Edwards E, Kirsch HE, Barbaro NM, Knight RT, Nagarajan SS (2008) Localization of neurosurgically implanted electrodes via photograph-MRI-radiograph coregistration. J Neurosci Methods 174:106–115CrossRefPubMedCentralPubMed Dalal SS, Edwards E, Kirsch HE, Barbaro NM, Knight RT, Nagarajan SS (2008) Localization of neurosurgically implanted electrodes via photograph-MRI-radiograph coregistration. J Neurosci Methods 174:106–115CrossRefPubMedCentralPubMed
11.
Zurück zum Zitat Yang AI, Wang X, Doyle WK, Halgren E, Carlson C, Belcher TL, Cash SS, Devinsky O, Thesen T (2012) Localization of dense intracranial electrode arrays using magnetic resonance imaging. NeuroImage 63:157–165CrossRefPubMedCentralPubMed Yang AI, Wang X, Doyle WK, Halgren E, Carlson C, Belcher TL, Cash SS, Devinsky O, Thesen T (2012) Localization of dense intracranial electrode arrays using magnetic resonance imaging. NeuroImage 63:157–165CrossRefPubMedCentralPubMed
12.
Zurück zum Zitat Schulze-Bonhage AH, Huppertz HJ, Comeau RM, Honegger JB, Spreer JM, Zentner JK (2002) Visualization of subdural strip and grid electrodes using curvilinear reformatting of 3D MR imaging data sets. Am J Neuroradiol 23:400–403PubMed Schulze-Bonhage AH, Huppertz HJ, Comeau RM, Honegger JB, Spreer JM, Zentner JK (2002) Visualization of subdural strip and grid electrodes using curvilinear reformatting of 3D MR imaging data sets. Am J Neuroradiol 23:400–403PubMed
13.
Zurück zum Zitat Kovalev D, Spreer JM, Honegger JB, Zentner JK, Schulze-Bonhage AH, Huppertz H-J (2005) Rapid and fully automated visualization of subdural electrodes in the presurgical evaluation of epilepsy patients. Am J Neuroradiol 26:1078–1083PubMed Kovalev D, Spreer JM, Honegger JB, Zentner JK, Schulze-Bonhage AH, Huppertz H-J (2005) Rapid and fully automated visualization of subdural electrodes in the presurgical evaluation of epilepsy patients. Am J Neuroradiol 26:1078–1083PubMed
14.
Zurück zum Zitat Kamida T, Anan M, Shimotaka K, Abe T, Fujiki M, Kobayashi H (2010) Visualization of subdural electrodes with fusion CT scan/MRI during neuronavigation-guided epilepsy surgery. J Clin Neurosci 17:511–513CrossRefPubMed Kamida T, Anan M, Shimotaka K, Abe T, Fujiki M, Kobayashi H (2010) Visualization of subdural electrodes with fusion CT scan/MRI during neuronavigation-guided epilepsy surgery. J Clin Neurosci 17:511–513CrossRefPubMed
16.
Zurück zum Zitat Dykstra AR, Chan AM, Quinn BT, Zepeda R, Keller CJ, Cormier J, Madsen JR, Eskandar EN, Cash SS (2012) Individualized localization and cortical surface-based registration of intracranial electrodes. NeuroImage 59:3563–3570CrossRefPubMed Dykstra AR, Chan AM, Quinn BT, Zepeda R, Keller CJ, Cormier J, Madsen JR, Eskandar EN, Cash SS (2012) Individualized localization and cortical surface-based registration of intracranial electrodes. NeuroImage 59:3563–3570CrossRefPubMed
17.
Zurück zum Zitat Taimouri V, Akhonda-Asi A, Tomas-Fernandez T, Peters JM, Prabhu SP, Poduri A, Takeoka M, Loddenkemper T, Bergin AMR, Harini C, Madsen JR, Warfield SK (2014) Electrode localization for planning surgical resection of the epileptogenic zone in pediatric epilepsy. Int J Comput Assist Radiol Surg 9:91–105CrossRefPubMed Taimouri V, Akhonda-Asi A, Tomas-Fernandez T, Peters JM, Prabhu SP, Poduri A, Takeoka M, Loddenkemper T, Bergin AMR, Harini C, Madsen JR, Warfield SK (2014) Electrode localization for planning surgical resection of the epileptogenic zone in pediatric epilepsy. Int J Comput Assist Radiol Surg 9:91–105CrossRefPubMed
18.
Zurück zum Zitat Princich JP, Wassermann D, Latini F, Oddo S, Blenkmann AO, Seifer G, Kochen S (2013) Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates. Front Neurosci 7:260CrossRefPubMedCentralPubMed Princich JP, Wassermann D, Latini F, Oddo S, Blenkmann AO, Seifer G, Kochen S (2013) Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates. Front Neurosci 7:260CrossRefPubMedCentralPubMed
19.
Zurück zum Zitat Hill DL, Maurer CR, Maciunas RJ, Barwise JA, Fitzpatrick MJ, Wang MY (1998) Measurement of intraoperative brain surface deformation under a craniotomy. Neurosurgery 43:514–526CrossRefPubMed Hill DL, Maurer CR, Maciunas RJ, Barwise JA, Fitzpatrick MJ, Wang MY (1998) Measurement of intraoperative brain surface deformation under a craniotomy. Neurosurgery 43:514–526CrossRefPubMed
20.
Zurück zum Zitat Van Laarhoven PJ, Aarts EH (1987) Simulated annealing: theory and applications. Springer, BerlinCrossRef Van Laarhoven PJ, Aarts EH (1987) Simulated annealing: theory and applications. Springer, BerlinCrossRef
21.
Zurück zum Zitat Ramachandran P, Varoquaux G (2011) Mayavi: 3D visualization of scientific data. Comput Sci Eng 13:40–51CrossRef Ramachandran P, Varoquaux G (2011) Mayavi: 3D visualization of scientific data. Comput Sci Eng 13:40–51CrossRef
22.
Zurück zum Zitat Hunter JD (2007) Matplotlib: A 2D graphics environment. IEEE Comput Sci Eng 9:90–95CrossRef Hunter JD (2007) Matplotlib: A 2D graphics environment. IEEE Comput Sci Eng 9:90–95CrossRef
23.
Zurück zum Zitat Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L, Hämäläinen M (2013) MEG and EEG data analysis with MNE-python. Front Neurosci 7:267CrossRefPubMedCentralPubMed Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L, Hämäläinen M (2013) MEG and EEG data analysis with MNE-python. Front Neurosci 7:267CrossRefPubMedCentralPubMed
Metadaten
Titel
The interactive electrode localization utility: software for automatic sorting and labeling of intracranial subdural electrodes
verfasst von
Roan A. LaPlante
Wei Tang
Noam Peled
Deborah I. Vallejo
Mia Borzello
Darin D. Dougherty
Emad N. Eskandar
Alik S. Widge
Sydney S. Cash
Steven M. Stufflebeam
Publikationsdatum
03.12.2016
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 10/2017
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-016-1504-2

Weitere Artikel der Ausgabe 10/2017

International Journal of Computer Assisted Radiology and Surgery 10/2017 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.