Skip to main content
Erschienen in: Cancer and Metastasis Reviews 2-3/2018

04.06.2018

The lipid products of phosphoinositide 3-kinase isoforms in cancer and thrombosis

verfasst von: Typhaine Anquetil, Bernard Payrastre, Marie-Pierre Gratacap, Julien Viaud

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 2-3/2018

Einloggen, um Zugang zu erhalten

Abstract

Our knowledge on the role of the different lipid messengers produced by phosphoinositide 3-kinases (PI3Ks) in normal and cancer cells as well as in platelets during arterial thrombosis has greatly expanded these last 15 years. PI3Ks are a family of lipid kinases that catalyze the phosphorylation of the D3 position of the inositol ring of phosphoinositides to produce phosphatidylinositol 3-phosphate (PtdIns3P), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), and phosphatidylinositol-3,4,5 trisphosphate (PtdIns(3,4,5)P3). These D3-phosphoinositides act as intracellular messengers recruiting effector proteins involved in the control of diverse cellular functions including survival, proliferation, migration, membrane trafficking, and cytoskeleton dynamics. The current idea is that the different isoforms of PI3Ks produce specific pools of lipids that regulate in time and space, at the membrane/cytosol interface, the formation of appropriate functional protein complexes. Dysregulation of PI3K-dependent pathways is directly involved in the etiology of several pathologies including cancers where the PI3K/AKT/mTORC1 axis is frequently aberrantly activated. Moreover, PtdIns(3,4,5)P3 production has been shown to play an essential role in platelet functions, particularly in the formation of a stable platelet thrombus at high shear rate. Therefore, PI3Ks are attractive therapeutic targets in the treatment of cancer and arterial thrombosis. In this review, we will discuss the role of the different lipid products of PI3K isoforms in the context of cancer and thrombosis and the development of selective PI3Ks inhibitors in the treatment of these diseases.
Literatur
3.
Zurück zum Zitat Choy, C. H., Han, B. K., & Botelho, R. J. (2017). Phosphoinositide diversity, distribution, and effector function: stepping out of the box. Bioessays, 39(12), doi: 10.1002/bies.201700121. Choy, C. H., Han, B. K., & Botelho, R. J. (2017). Phosphoinositide diversity, distribution, and effector function: stepping out of the box. Bioessays, 39(12), doi: 10.1002/bies.201700121.
12.
Zurück zum Zitat Krugmann, S., Anderson, K. E., Ridley, S. H., Risso, N., McGregor, A., Coadwell, J., et al. (2002). Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Molecular Cell, 9(1), 95–108.PubMedCrossRef Krugmann, S., Anderson, K. E., Ridley, S. H., Risso, N., McGregor, A., Coadwell, J., et al. (2002). Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Molecular Cell, 9(1), 95–108.PubMedCrossRef
17.
Zurück zum Zitat Cullen, P. J., & Venkateswarlu, K. (1999). Potential regulation of ADP-ribosylation factor 6 signalling by phosphatidylinositol 3,4,5-trisphosphate. Biochemical Society Transactions, 27(4), 683–689.PubMedCrossRef Cullen, P. J., & Venkateswarlu, K. (1999). Potential regulation of ADP-ribosylation factor 6 signalling by phosphatidylinositol 3,4,5-trisphosphate. Biochemical Society Transactions, 27(4), 683–689.PubMedCrossRef
19.
Zurück zum Zitat Campa, F., Yoon, H. Y., Ha, V. L., Szentpetery, Z., Balla, T., & Randazzo, P. A. (2009). A PH domain in the Arf GTPase-activating protein (GAP) ARAP1 binds phosphatidylinositol 3,4,5-trisphosphate and regulates Arf GAP activity independently of recruitment to the plasma membranes. The Journal of Biological Chemistry, 284(41), 28069–28083. https://doi.org/10.1074/jbc.M109.028266.PubMedPubMedCentralCrossRef Campa, F., Yoon, H. Y., Ha, V. L., Szentpetery, Z., Balla, T., & Randazzo, P. A. (2009). A PH domain in the Arf GTPase-activating protein (GAP) ARAP1 binds phosphatidylinositol 3,4,5-trisphosphate and regulates Arf GAP activity independently of recruitment to the plasma membranes. The Journal of Biological Chemistry, 284(41), 28069–28083. https://​doi.​org/​10.​1074/​jbc.​M109.​028266.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Miura, K., Jacques, K. M., Stauffer, S., Kubosaki, A., Zhu, K., Hirsch, D. S., et al. (2002). ARAP1: a point of convergence for Arf and Rho signaling. Molecular Cell, 9(1), 109–119.PubMedCrossRef Miura, K., Jacques, K. M., Stauffer, S., Kubosaki, A., Zhu, K., Hirsch, D. S., et al. (2002). ARAP1: a point of convergence for Arf and Rho signaling. Molecular Cell, 9(1), 109–119.PubMedCrossRef
21.
Zurück zum Zitat Battram, A. M., Durrant, T. N., Agbani, E. O., Heesom, K. J., Paul, D. S., Piatt, R., et al. (2017). The phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) binder Rasa3 regulates phosphoinositide 3-kinase (PI3K)-dependent integrin alphaIIbbeta3 outside-in signaling. The Journal of Biological Chemistry, 292(5), 1691–1704. https://doi.org/10.1074/jbc.M116.746867.PubMedCrossRef Battram, A. M., Durrant, T. N., Agbani, E. O., Heesom, K. J., Paul, D. S., Piatt, R., et al. (2017). The phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) binder Rasa3 regulates phosphoinositide 3-kinase (PI3K)-dependent integrin alphaIIbbeta3 outside-in signaling. The Journal of Biological Chemistry, 292(5), 1691–1704. https://​doi.​org/​10.​1074/​jbc.​M116.​746867.PubMedCrossRef
39.
Zurück zum Zitat Kihara, A., Noda, T., Ishihara, N., & Ohsumi, Y. (2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. The Journal of Cell Biology, 152(3), 519–530.PubMedPubMedCentralCrossRef Kihara, A., Noda, T., Ishihara, N., & Ohsumi, Y. (2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. The Journal of Cell Biology, 152(3), 519–530.PubMedPubMedCentralCrossRef
51.
54.
Zurück zum Zitat Sugimoto, Y., Whitman, M., Cantley, L. C., & Erikson, R. L. (1984). Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol. Proceedings of the National Academy of Sciences of the United States of America, 81(7), 2117–2121.PubMedPubMedCentralCrossRef Sugimoto, Y., Whitman, M., Cantley, L. C., & Erikson, R. L. (1984). Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol. Proceedings of the National Academy of Sciences of the United States of America, 81(7), 2117–2121.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Whitman, M., Kaplan, D. R., Schaffhausen, B., Cantley, L., & Roberts, T. M. (1985). Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature, 315(6016), 239–242.PubMedCrossRef Whitman, M., Kaplan, D. R., Schaffhausen, B., Cantley, L., & Roberts, T. M. (1985). Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature, 315(6016), 239–242.PubMedCrossRef
56.
Zurück zum Zitat Auger, K. R., Serunian, L. A., Soltoff, S. P., Libby, P., & Cantley, L. C. (1989). PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell, 57(1), 167–175.PubMedCrossRef Auger, K. R., Serunian, L. A., Soltoff, S. P., Libby, P., & Cantley, L. C. (1989). PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell, 57(1), 167–175.PubMedCrossRef
82.
Zurück zum Zitat Pasquier, B., El-Ahmad, Y., Filoche-Romme, B., Dureuil, C., Fassy, F., Abecassis, P. Y., et al. (2015). Discovery of (2S)-8-[(3R)-3-methylmorpholin-4-yl]-1-(3-methyl-2-oxobutyl)-2-(trifluoromethyl)- 3,4-dihydro-2H-pyrimido[1,2-a]pyrimidin-6-one: a novel potent and selective inhibitor of Vps34 for the treatment of solid tumors. Journal of Medicinal Chemistry, 58(1), 376–400. https://doi.org/10.1021/jm5013352.PubMedCrossRef Pasquier, B., El-Ahmad, Y., Filoche-Romme, B., Dureuil, C., Fassy, F., Abecassis, P. Y., et al. (2015). Discovery of (2S)-8-[(3R)-3-methylmorpholin-4-yl]-1-(3-methyl-2-oxobutyl)-2-(trifluoromethyl)- 3,4-dihydro-2H-pyrimido[1,2-a]pyrimidin-6-one: a novel potent and selective inhibitor of Vps34 for the treatment of solid tumors. Journal of Medicinal Chemistry, 58(1), 376–400. https://​doi.​org/​10.​1021/​jm5013352.PubMedCrossRef
84.
Zurück zum Zitat Dowdle, W. E., Nyfeler, B., Nagel, J., Elling, R. A., Liu, S., Triantafellow, E., et al. (2014). Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nature Cell Biology, 16(11), 1069–1079. https://doi.org/10.1038/ncb3053.PubMedCrossRef Dowdle, W. E., Nyfeler, B., Nagel, J., Elling, R. A., Liu, S., Triantafellow, E., et al. (2014). Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nature Cell Biology, 16(11), 1069–1079. https://​doi.​org/​10.​1038/​ncb3053.PubMedCrossRef
85.
Zurück zum Zitat Gratacap, M. P., Payrastre, B., Viala, C., Mauco, G., Plantavid, M., & Chap, H. (1998). Phosphatidylinositol 3,4,5-trisphosphate-dependent stimulation of phospholipase C-gamma2 is an early key event in FcgammaRIIA-mediated activation of human platelets. The Journal of Biological Chemistry, 273(38), 24314–24321.PubMedCrossRef Gratacap, M. P., Payrastre, B., Viala, C., Mauco, G., Plantavid, M., & Chap, H. (1998). Phosphatidylinositol 3,4,5-trisphosphate-dependent stimulation of phospholipase C-gamma2 is an early key event in FcgammaRIIA-mediated activation of human platelets. The Journal of Biological Chemistry, 273(38), 24314–24321.PubMedCrossRef
86.
Zurück zum Zitat Pasquet, J. M., Bobe, R., Gross, B., Gratacap, M. P., Tomlinson, M. G., Payrastre, B., et al. (1999). A collagen-related peptide regulates phospholipase Cgamma2 via phosphatidylinositol 3-kinase in human platelets. The Biochemical Journal, 342(Pt 1), 171–177.PubMedPubMedCentralCrossRef Pasquet, J. M., Bobe, R., Gross, B., Gratacap, M. P., Tomlinson, M. G., Payrastre, B., et al. (1999). A collagen-related peptide regulates phospholipase Cgamma2 via phosphatidylinositol 3-kinase in human platelets. The Biochemical Journal, 342(Pt 1), 171–177.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Trumel, C., Payrastre, B., Plantavid, M., Hechler, B., Viala, C., Presek, P., et al. (1999). A key role of adenosine diphosphate in the irreversible platelet aggregation induced by the PAR1-activating peptide through the late activation of phosphoinositide 3-kinase. Blood, 94(12), 4156–4165.PubMed Trumel, C., Payrastre, B., Plantavid, M., Hechler, B., Viala, C., Presek, P., et al. (1999). A key role of adenosine diphosphate in the irreversible platelet aggregation induced by the PAR1-activating peptide through the late activation of phosphoinositide 3-kinase. Blood, 94(12), 4156–4165.PubMed
88.
Zurück zum Zitat Sultan, C., Plantavid, M., Bachelot, C., Grondin, P., Breton, M., Mauco, G., et al. (1991). Involvement of platelet glycoprotein IIb-IIIa (alpha IIb-beta 3 integrin) in thrombin-induced synthesis of phosphatidylinositol 3′,4′-bisphosphate. The Journal of Biological Chemistry, 266(35), 23554–23557.PubMed Sultan, C., Plantavid, M., Bachelot, C., Grondin, P., Breton, M., Mauco, G., et al. (1991). Involvement of platelet glycoprotein IIb-IIIa (alpha IIb-beta 3 integrin) in thrombin-induced synthesis of phosphatidylinositol 3′,4′-bisphosphate. The Journal of Biological Chemistry, 266(35), 23554–23557.PubMed
89.
Zurück zum Zitat Kurosu, H., Maehama, T., Okada, T., Yamamoto, T., Hoshino, S., Fukui, Y., et al. (1997). Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110beta is synergistically activated by the betagamma subunits of G proteins and phosphotyrosyl peptide. The Journal of Biological Chemistry, 272(39), 24252–24256.PubMedCrossRef Kurosu, H., Maehama, T., Okada, T., Yamamoto, T., Hoshino, S., Fukui, Y., et al. (1997). Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110beta is synergistically activated by the betagamma subunits of G proteins and phosphotyrosyl peptide. The Journal of Biological Chemistry, 272(39), 24252–24256.PubMedCrossRef
91.
Zurück zum Zitat Banfic, H., Downes, C. P., & Rittenhouse, S. E. (1998). Biphasic activation of PKBalpha/Akt in platelets. Evidence for stimulation both by phosphatidylinositol 3,4-bisphosphate, produced via a novel pathway, and by phosphatidylinositol 3,4,5-trisphosphate. The Journal of Biological Chemistry, 273(19), 11630–11637.PubMedCrossRef Banfic, H., Downes, C. P., & Rittenhouse, S. E. (1998). Biphasic activation of PKBalpha/Akt in platelets. Evidence for stimulation both by phosphatidylinositol 3,4-bisphosphate, produced via a novel pathway, and by phosphatidylinositol 3,4,5-trisphosphate. The Journal of Biological Chemistry, 273(19), 11630–11637.PubMedCrossRef
92.
Zurück zum Zitat Woulfe, D., Jiang, H., Morgans, A., Monks, R., Birnbaum, M., & Brass, L. F. (2004). Defects in secretion, aggregation, and thrombus formation in platelets from mice lacking Akt2. The Journal of Clinical Investigation, 113(3), 441–450.PubMedPubMedCentralCrossRef Woulfe, D., Jiang, H., Morgans, A., Monks, R., Birnbaum, M., & Brass, L. F. (2004). Defects in secretion, aggregation, and thrombus formation in platelets from mice lacking Akt2. The Journal of Clinical Investigation, 113(3), 441–450.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Moore, S. F., van den Bosch, M. T., Hunter, R. W., Sakamoto, K., Poole, A. W., & Hers, I. (2013). Dual regulation of glycogen synthase kinase 3 (GSK3)alpha/beta by protein kinase C (PKC)alpha and Akt promotes thrombin-mediated integrin alphaIIbbeta3 activation and granule secretion in platelets. The Journal of Biological Chemistry, 288(6), 3918–3928. https://doi.org/10.1074/jbc.M112.429936.PubMedCrossRef Moore, S. F., van den Bosch, M. T., Hunter, R. W., Sakamoto, K., Poole, A. W., & Hers, I. (2013). Dual regulation of glycogen synthase kinase 3 (GSK3)alpha/beta by protein kinase C (PKC)alpha and Akt promotes thrombin-mediated integrin alphaIIbbeta3 activation and granule secretion in platelets. The Journal of Biological Chemistry, 288(6), 3918–3928. https://​doi.​org/​10.​1074/​jbc.​M112.​429936.PubMedCrossRef
95.
Zurück zum Zitat Gratacap, M. P., Herault, J. P., Viala, C., Ragab, A., Savi, P., Herbert, J. M., et al. (2000). FcgammaRIIA requires a Gi-dependent pathway for an efficient stimulation of phosphoinositide 3-kinase, calcium mobilization, and platelet aggregation. Blood, 96(10), 3439–3446.PubMed Gratacap, M. P., Herault, J. P., Viala, C., Ragab, A., Savi, P., Herbert, J. M., et al. (2000). FcgammaRIIA requires a Gi-dependent pathway for an efficient stimulation of phosphoinositide 3-kinase, calcium mobilization, and platelet aggregation. Blood, 96(10), 3439–3446.PubMed
96.
Zurück zum Zitat Ragab, A., Severin, S., Gratacap, M. P., Aguado, E., Malissen, M., Jandrot-Perrus, M., et al. (2007). Roles of the C-terminal tyrosine residues of LAT in GPVI-induced platelet activation: Insights into the mechanism of PLC gamma 2 activation. Blood, 110(7), 2466–2474.PubMedCrossRef Ragab, A., Severin, S., Gratacap, M. P., Aguado, E., Malissen, M., Jandrot-Perrus, M., et al. (2007). Roles of the C-terminal tyrosine residues of LAT in GPVI-induced platelet activation: Insights into the mechanism of PLC gamma 2 activation. Blood, 110(7), 2466–2474.PubMedCrossRef
98.
Zurück zum Zitat Bae, Y. S., Cantley, L. G., Chen, C. S., Kim, S. R., Kwon, K. S., & Rhee, S. G. (1998). Activation of phospholipase C-gamma by phosphatidylinositol 3,4,5-trisphosphate. The Journal of Biological Chemistry, 273(8), 4465–4469.PubMedCrossRef Bae, Y. S., Cantley, L. G., Chen, C. S., Kim, S. R., Kwon, K. S., & Rhee, S. G. (1998). Activation of phospholipase C-gamma by phosphatidylinositol 3,4,5-trisphosphate. The Journal of Biological Chemistry, 273(8), 4465–4469.PubMedCrossRef
99.
Zurück zum Zitat Wang, Y., & Wang, Z. (2003). Regulation of EGF-induced phospholipase C-gamma1 translocation and activation by its SH2 and PH domains. Traffic, 4(9), 618–630.PubMedCrossRef Wang, Y., & Wang, Z. (2003). Regulation of EGF-induced phospholipase C-gamma1 translocation and activation by its SH2 and PH domains. Traffic, 4(9), 618–630.PubMedCrossRef
106.
Zurück zum Zitat Quek, L. S., Bolen, J., & Watson, S. P. (1998). A role for Bruton’s tyrosine kinase (Btk) in platelet activation by collagen. Current Biology, 8(20), 1137–1140.PubMedCrossRef Quek, L. S., Bolen, J., & Watson, S. P. (1998). A role for Bruton’s tyrosine kinase (Btk) in platelet activation by collagen. Current Biology, 8(20), 1137–1140.PubMedCrossRef
107.
108.
Zurück zum Zitat Dowler, S., Currie, R. A., Downes, C. P., & Alessi, D. R. (1999). DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides. The Biochemical Journal, 342(Pt 1), 7–12.PubMedPubMedCentralCrossRef Dowler, S., Currie, R. A., Downes, C. P., & Alessi, D. R. (1999). DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides. The Biochemical Journal, 342(Pt 1), 7–12.PubMedPubMedCentralCrossRef
113.
114.
Zurück zum Zitat Giuriato, S., Payrastre, B., Drayer, A. L., Plantavid, M., Woscholski, R., Parker, P., et al. (1997). Tyrosine phosphorylation and relocation of SHIP are integrin-mediated in thrombin-stimulated human blood platelets. The Journal of Biological Chemistry, 272(43), 26857–26863.PubMedCrossRef Giuriato, S., Payrastre, B., Drayer, A. L., Plantavid, M., Woscholski, R., Parker, P., et al. (1997). Tyrosine phosphorylation and relocation of SHIP are integrin-mediated in thrombin-stimulated human blood platelets. The Journal of Biological Chemistry, 272(43), 26857–26863.PubMedCrossRef
115.
Zurück zum Zitat Giuriato, S., Bodin, S., Erneux, C., Woscholski, R., Plantavid, M., Chap, H., et al. (2000). pp60c-src associates with the SH2-containing inositol-5-phosphatase SHIP1 and is involved in its tyrosine phosphorylation downstream of alphaIIbbeta3 integrin in human platelets. The Biochemical Journal, 348(Pt 1), 107–112.PubMedPubMedCentralCrossRef Giuriato, S., Bodin, S., Erneux, C., Woscholski, R., Plantavid, M., Chap, H., et al. (2000). pp60c-src associates with the SH2-containing inositol-5-phosphatase SHIP1 and is involved in its tyrosine phosphorylation downstream of alphaIIbbeta3 integrin in human platelets. The Biochemical Journal, 348(Pt 1), 107–112.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Severin, S., Gratacap, M. P., Lenain, N., Alvarez, L., Hollande, E., Penninger, J. M., et al. (2007). Deficiency of Src homology 2 domain-containing inositol 5-phosphatase 1 affects platelet responses and thrombus growth. The Journal of Clinical Investigation, 117(4), 944–952.PubMedPubMedCentralCrossRef Severin, S., Gratacap, M. P., Lenain, N., Alvarez, L., Hollande, E., Penninger, J. M., et al. (2007). Deficiency of Src homology 2 domain-containing inositol 5-phosphatase 1 affects platelet responses and thrombus growth. The Journal of Clinical Investigation, 117(4), 944–952.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Mountford, J. K., Petitjean, C., Putra, H. W., McCafferty, J. A., Setiabakti, N. M., Lee, H., et al. (2015). The class II PI 3-kinase, PI3KC2alpha, links platelet internal membrane structure to shear-dependent adhesive function. Nature Communications, 6, 653/5. https://doi.org/10.1038/ncomms7535.CrossRef Mountford, J. K., Petitjean, C., Putra, H. W., McCafferty, J. A., Setiabakti, N. M., Lee, H., et al. (2015). The class II PI 3-kinase, PI3KC2alpha, links platelet internal membrane structure to shear-dependent adhesive function. Nature Communications, 6, 653/5. https://​doi.​org/​10.​1038/​ncomms7535.CrossRef
121.
Zurück zum Zitat Zhang, J., Banfic, H., Straforini, F., Tosi, L., Volinia, S., & Rittenhouse, S. E. (1998). A type II phosphoinositide 3-kinase is stimulated via activated integrin in platelets. A source of phosphatidylinositol 3-phosphate. The Journal of Biological Chemistry, 273(23), 14081–14084.PubMedCrossRef Zhang, J., Banfic, H., Straforini, F., Tosi, L., Volinia, S., & Rittenhouse, S. E. (1998). A type II phosphoinositide 3-kinase is stimulated via activated integrin in platelets. A source of phosphatidylinositol 3-phosphate. The Journal of Biological Chemistry, 273(23), 14081–14084.PubMedCrossRef
Metadaten
Titel
The lipid products of phosphoinositide 3-kinase isoforms in cancer and thrombosis
verfasst von
Typhaine Anquetil
Bernard Payrastre
Marie-Pierre Gratacap
Julien Viaud
Publikationsdatum
04.06.2018
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 2-3/2018
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-018-9735-z

Weitere Artikel der Ausgabe 2-3/2018

Cancer and Metastasis Reviews 2-3/2018 Zur Ausgabe

Announcement

Biographies

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.