Skip to main content
Erschienen in: The Cerebellum 2/2011

01.06.2011

The Neural Substrate of Predictive Motor Timing in Spinocerebellar Ataxia

verfasst von: Martin Bares, Ovidiu V. Lungu, Tao Liu, Tobias Waechter, Christopher M. Gomez, James Ashe

Erschienen in: The Cerebellum | Ausgabe 2/2011

Einloggen, um Zugang zu erhalten

Abstract

The neural mechanisms involved in motor timing are subcortical, involving mainly cerebellum and basal ganglia. However, the role played by these structures in predictive motor timing is not well understood. Unlike motor timing, which is often tested using rhythm production tasks, predictive motor timing requires visuo-motor coordination in anticipation of a future event, and it is evident in behaviors such as catching a ball or shooting a moving target. We examined the role of the cerebellum and striatum in predictive motor timing in a target interception task in healthy (n = 12) individuals and in subjects (n = 9) with spinocerebellar ataxia types 6 and 8. The performance of the healthy subjects was better than that of the spinocerebellar ataxia. Successful performance in both groups was associated with increased activity in the cerebellum (right dentate nucleus, left uvula (lobule V), and lobule VI), thalamus, and in several cortical areas. The superior performance in the controls was related to activation in thalamus, putamen (lentiform nucleus) and cerebellum (right dentate nucleus and culmen—lobule IV), which were not activated either in the spinocerebellar subjects or within a subgroup of controls who performed poorly. Both the cerebellum and the basal ganglia are necessary for the predictive motor timing. The degeneration of the cerebellum associated with spinocerebellar types 6 and 8 appears to lead to quantitative rather than qualitative deficits in temporal processing. The lack of any areas with greater activity in the spinocerebellar group than in controls suggests that limited functional reorganization occurs in this condition.
Literatur
1.
Zurück zum Zitat Hore J, Watts S. Timing finger opening in over arm throwing based on a spatial representation of hand path. J Neurophysiol. 2005;93:3189–99.PubMedCrossRef Hore J, Watts S. Timing finger opening in over arm throwing based on a spatial representation of hand path. J Neurophysiol. 2005;93:3189–99.PubMedCrossRef
3.
Zurück zum Zitat Harrington DL, Haaland KY. Neural underpinnings of temporal processing: a review of focal lesion, pharmacological, and functional imaging research. Rev Neurosci. 1999;10(2):91–116.PubMedCrossRef Harrington DL, Haaland KY. Neural underpinnings of temporal processing: a review of focal lesion, pharmacological, and functional imaging research. Rev Neurosci. 1999;10(2):91–116.PubMedCrossRef
5.
Zurück zum Zitat Gibbon J, Malapani C, Dale CL, Gallistel C. Toward the neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol. 1997;7:170–84.PubMedCrossRef Gibbon J, Malapani C, Dale CL, Gallistel C. Toward the neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol. 1997;7:170–84.PubMedCrossRef
6.
Zurück zum Zitat Matell MS, Meck WH. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Brain Res Cogn Brain Res. 2004;21:139–70.PubMedCrossRef Matell MS, Meck WH. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Brain Res Cogn Brain Res. 2004;21:139–70.PubMedCrossRef
7.
Zurück zum Zitat Mauk MD, Buonomano DV. The neural basis for temporal processing. Annu Rev Neurosci. 2004;27:307–40.PubMedCrossRef Mauk MD, Buonomano DV. The neural basis for temporal processing. Annu Rev Neurosci. 2004;27:307–40.PubMedCrossRef
8.
Zurück zum Zitat Ivry RB, Spencer RMC. The neural representation of time. Curr Opin Neurobiol. 2004;14:225–32.PubMedCrossRef Ivry RB, Spencer RMC. The neural representation of time. Curr Opin Neurobiol. 2004;14:225–32.PubMedCrossRef
9.
Zurück zum Zitat Braitenberg V. Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res. 1967;25:334–46.PubMedCrossRef Braitenberg V. Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res. 1967;25:334–46.PubMedCrossRef
10.
Zurück zum Zitat Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Neurosci. 2005;6:297–311.CrossRef Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Neurosci. 2005;6:297–311.CrossRef
11.
Zurück zum Zitat Blakemore SJ, Sirigu A. Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res. 2003;153:239–45.PubMedCrossRef Blakemore SJ, Sirigu A. Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res. 2003;153:239–45.PubMedCrossRef
12.
Zurück zum Zitat Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci. 2005;6:755–65.PubMedCrossRef Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci. 2005;6:755–65.PubMedCrossRef
13.
Zurück zum Zitat Ivry RB, Keele SW. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1:136–52.CrossRef Ivry RB, Keele SW. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1:136–52.CrossRef
14.
Zurück zum Zitat Jueptner M, Rijntjes M, Weiller C, Faiss JH, Timmann D, Mueller SP, et al. Localization of a cerebellar timing process using PET. Neurology. 1995;45:1540–5.PubMed Jueptner M, Rijntjes M, Weiller C, Faiss JH, Timmann D, Mueller SP, et al. Localization of a cerebellar timing process using PET. Neurology. 1995;45:1540–5.PubMed
15.
16.
Zurück zum Zitat Pastor MA, Day BL, Macaluso E, Friston KJ, Frackowiak RSJ. The functional neuroanatomy of temporal discrimination. J Neurosci. 2004;24:2585–91.PubMedCrossRef Pastor MA, Day BL, Macaluso E, Friston KJ, Frackowiak RSJ. The functional neuroanatomy of temporal discrimination. J Neurosci. 2004;24:2585–91.PubMedCrossRef
17.
Zurück zum Zitat Spencer RMC, Zelaznik HN, Diedrichsen J, Ivry RB. Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science. 2003;300:1437–9.PubMedCrossRef Spencer RMC, Zelaznik HN, Diedrichsen J, Ivry RB. Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science. 2003;300:1437–9.PubMedCrossRef
18.
Zurück zum Zitat Meck WH, Benson AM. Dissecting the brain's internal clock: how frontal–striatal circuitry keeps time and shifts attention. Brain Cogn. 2002;48(1):195–211.PubMedCrossRef Meck WH, Benson AM. Dissecting the brain's internal clock: how frontal–striatal circuitry keeps time and shifts attention. Brain Cogn. 2002;48(1):195–211.PubMedCrossRef
19.
Zurück zum Zitat Harrington DL, Haaland KY, Hermanowitz M. Temporal processing in the basal ganglia. Neuropsychology. 1998;12:3–12.PubMedCrossRef Harrington DL, Haaland KY, Hermanowitz M. Temporal processing in the basal ganglia. Neuropsychology. 1998;12:3–12.PubMedCrossRef
20.
Zurück zum Zitat Malapani C, Rakitin B, Levy R, Meck WH, Deweer B, Dubois B, et al. Coupled temporal memories in Parkinson's disease: a dopamine-related dysfunction. J Cogn Neurosci. 1998;10:316–31.PubMedCrossRef Malapani C, Rakitin B, Levy R, Meck WH, Deweer B, Dubois B, et al. Coupled temporal memories in Parkinson's disease: a dopamine-related dysfunction. J Cogn Neurosci. 1998;10:316–31.PubMedCrossRef
21.
Zurück zum Zitat O’Boyle DJ, Freeman JS, Cody FW. The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson's disease. Brain. 1996;119:51–70.PubMedCrossRef O’Boyle DJ, Freeman JS, Cody FW. The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson's disease. Brain. 1996;119:51–70.PubMedCrossRef
22.
Zurück zum Zitat Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT. Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain. 2004;127:561–74.PubMedCrossRef Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT. Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain. 2004;127:561–74.PubMedCrossRef
23.
Zurück zum Zitat Ferrandez AM, Huqueville L, Lehericy S, Poline JB, Marsault C, Pouthas V. Basal ganglia and supplementary motor area subtend duration perception: an fMRI study. Neuroimage. 2003;19(4):1532–44.PubMedCrossRef Ferrandez AM, Huqueville L, Lehericy S, Poline JB, Marsault C, Pouthas V. Basal ganglia and supplementary motor area subtend duration perception: an fMRI study. Neuroimage. 2003;19(4):1532–44.PubMedCrossRef
24.
Zurück zum Zitat Livesey AC, Wall MB, Smith AT. Time perception: manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia. 2007;45:321–31.PubMedCrossRef Livesey AC, Wall MB, Smith AT. Time perception: manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia. 2007;45:321–31.PubMedCrossRef
25.
Zurück zum Zitat Nenadic I, Gaser C, Volz HP, Rammsayer T, Häger F, Sauer H. Processing of temporal information and the basal ganglia: new evidence from fMRI. Exp Brain Res. 2003;148:238–46.PubMed Nenadic I, Gaser C, Volz HP, Rammsayer T, Häger F, Sauer H. Processing of temporal information and the basal ganglia: new evidence from fMRI. Exp Brain Res. 2003;148:238–46.PubMed
26.
Zurück zum Zitat Jahanshahi M, Jones C, Dirnberger G, Frith C. The substantia nigra pars compacta and temporal processing. J Neurosci. 2006;26(47):12266–73.PubMedCrossRef Jahanshahi M, Jones C, Dirnberger G, Frith C. The substantia nigra pars compacta and temporal processing. J Neurosci. 2006;26(47):12266–73.PubMedCrossRef
27.
Zurück zum Zitat Ivry RB. The representation of temporal information in perception and motor control. Cur Opin Neurobiol. 1996;6:851–7.CrossRef Ivry RB. The representation of temporal information in perception and motor control. Cur Opin Neurobiol. 1996;6:851–7.CrossRef
28.
Zurück zum Zitat Lewis PA, Miall RC. A right hemispheric prefrontal system for cognitive time measurement. Behav Processes. 2006;71:226–34.PubMedCrossRef Lewis PA, Miall RC. A right hemispheric prefrontal system for cognitive time measurement. Behav Processes. 2006;71:226–34.PubMedCrossRef
29.
Zurück zum Zitat O’Reilly JX, Mesulam MM, Nobre AC. The cerebellum predicts the timing of perceptual events. J Neurosci. 2008;28(9):2252–60.PubMedCrossRef O’Reilly JX, Mesulam MM, Nobre AC. The cerebellum predicts the timing of perceptual events. J Neurosci. 2008;28(9):2252–60.PubMedCrossRef
30.
Zurück zum Zitat Leon MI, Shadlen MN. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron. 2003;38:8432–44.CrossRef Leon MI, Shadlen MN. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron. 2003;38:8432–44.CrossRef
31.
Zurück zum Zitat Maschke M, Oehlert G, Xie TD, Perlman S, Subramony SH, Kumar N, et al. Clinical feature profile of spinocerebellar ataxia type 1–8 predicts genetically defined subtypes. Mov Disord. 2005;20:1405–12.PubMedCrossRef Maschke M, Oehlert G, Xie TD, Perlman S, Subramony SH, Kumar N, et al. Clinical feature profile of spinocerebellar ataxia type 1–8 predicts genetically defined subtypes. Mov Disord. 2005;20:1405–12.PubMedCrossRef
32.
Zurück zum Zitat Bares M, Lungu O, Liu T, Waechter T, Gomez CM, Ashe J. Impaired predictive motor timing in patients with cerebellar disorders. Exp Brain Res. 2007;180(2):356–65.CrossRef Bares M, Lungu O, Liu T, Waechter T, Gomez CM, Ashe J. Impaired predictive motor timing in patients with cerebellar disorders. Exp Brain Res. 2007;180(2):356–65.CrossRef
33.
Zurück zum Zitat Bares M, Lungu OV, Husarova I, Gescheidt T. Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson's disease. Cerebellum. 2010;9(1):124–35.PubMedCrossRef Bares M, Lungu OV, Husarova I, Gescheidt T. Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson's disease. Cerebellum. 2010;9(1):124–35.PubMedCrossRef
34.
Zurück zum Zitat Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci. 1997;145:205–11.PubMedCrossRef Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci. 1997;145:205–11.PubMedCrossRef
35.
Zurück zum Zitat Oldfield RC. The assessment and analysis of handeness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.PubMedCrossRef Oldfield RC. The assessment and analysis of handeness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.PubMedCrossRef
36.
Zurück zum Zitat Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatr. 1979;134:382–9.CrossRef Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatr. 1979;134:382–9.CrossRef
37.
Zurück zum Zitat Talairach J, Tournoux P. Co-planar stereotactic atlas of the human brain. Stuttgart: Georg Thieme Verlag; 1988. Talairach J, Tournoux P. Co-planar stereotactic atlas of the human brain. Stuttgart: Georg Thieme Verlag; 1988.
38.
Zurück zum Zitat Penny W, Holmes A. Random-effects analysis. In: Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Friston KJ, Price CJ, Zeki S, Ashburner J, Penny W, editors. Human brain function, chap 42. 2nd ed. London: Academic; 2003. p. 843–50. Penny W, Holmes A. Random-effects analysis. In: Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Friston KJ, Price CJ, Zeki S, Ashburner J, Penny W, editors. Human brain function, chap 42. 2nd ed. London: Academic; 2003. p. 843–50.
39.
Zurück zum Zitat Miall RC, Weir DJ, Wolpert DM, Stein JF. Is the cerebellum a smith predictor? J Mot Behav. 1993;25:203–16.PubMedCrossRef Miall RC, Weir DJ, Wolpert DM, Stein JF. Is the cerebellum a smith predictor? J Mot Behav. 1993;25:203–16.PubMedCrossRef
40.
Zurück zum Zitat Bastian AJ. Learning to predict future: the cerebellum adapts feed-forward movement control. Curr Opin Neurobiol. 2006;16:645–9.PubMedCrossRef Bastian AJ. Learning to predict future: the cerebellum adapts feed-forward movement control. Curr Opin Neurobiol. 2006;16:645–9.PubMedCrossRef
41.
Zurück zum Zitat Nixon PD. Predicting sensory events. The role of the cerebellum in motor learning. Exp Brain Res. 2001;138:251–7.PubMedCrossRef Nixon PD. Predicting sensory events. The role of the cerebellum in motor learning. Exp Brain Res. 2001;138:251–7.PubMedCrossRef
42.
Zurück zum Zitat Nowak DA, Topka H, Timmann D, Boecker H, Hermsdörfer J. The role of the cerebellum for predictive control of grasping. Cerebellum. 2007;6:7–17.PubMedCrossRef Nowak DA, Topka H, Timmann D, Boecker H, Hermsdörfer J. The role of the cerebellum for predictive control of grasping. Cerebellum. 2007;6:7–17.PubMedCrossRef
43.
Zurück zum Zitat Nowak DA, Hufnagel A, Ameli M, Timmann D, Hermsdörfer J. Interhemispheric transfer of predictive force control during grasping in cerebellar disorders. Cerebellum. 2009;8(2):108–15.PubMedCrossRef Nowak DA, Hufnagel A, Ameli M, Timmann D, Hermsdörfer J. Interhemispheric transfer of predictive force control during grasping in cerebellar disorders. Cerebellum. 2009;8(2):108–15.PubMedCrossRef
44.
Zurück zum Zitat Bo J, Block HJ, Clark JE, Bastian AJ. A cerebellar deficit in sensorimotor prediction explains movement timing variability. J Neurophysiol. 2008;100(5):2825–32.PubMedCrossRef Bo J, Block HJ, Clark JE, Bastian AJ. A cerebellar deficit in sensorimotor prediction explains movement timing variability. J Neurophysiol. 2008;100(5):2825–32.PubMedCrossRef
45.
Zurück zum Zitat Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2:338–47.PubMedCrossRef Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2:338–47.PubMedCrossRef
46.
Zurück zum Zitat Lewis PA, Miall RC. Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia. 2003;41(12):1583–92.PubMedCrossRef Lewis PA, Miall RC. Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia. 2003;41(12):1583–92.PubMedCrossRef
47.
Zurück zum Zitat Xu D, Liu T, Ashe J, Bushara KO. Role of the olivo-cerebellar system in timing. J Neurosci. 2006;26:5990–5.PubMedCrossRef Xu D, Liu T, Ashe J, Bushara KO. Role of the olivo-cerebellar system in timing. J Neurosci. 2006;26:5990–5.PubMedCrossRef
48.
Zurück zum Zitat Mathiak K, Hertrich I, Grodd W, Ackermann H. Cerebellum and speech perception: a functional magnetic resonance imaging study. J Cogn Neurosci. 2002;14(6):902–12.PubMedCrossRef Mathiak K, Hertrich I, Grodd W, Ackermann H. Cerebellum and speech perception: a functional magnetic resonance imaging study. J Cogn Neurosci. 2002;14(6):902–12.PubMedCrossRef
49.
Zurück zum Zitat Perrett SP, Ruiz BP, Mauk MD. Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J Neurosci. 1993;13:1708–18.PubMed Perrett SP, Ruiz BP, Mauk MD. Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J Neurosci. 1993;13:1708–18.PubMed
50.
Zurück zum Zitat Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, et al. Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci. 2005;25:3919–31.PubMedCrossRef Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, et al. Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci. 2005;25:3919–31.PubMedCrossRef
51.
Zurück zum Zitat Timmann D, Watts S, Hore J. Failure of cerebellar patients to time finger opening precisely causes ball high–low inaccuracy in overarm throws. J Neurophysiol. 1999;82(1):103–14.PubMed Timmann D, Watts S, Hore J. Failure of cerebellar patients to time finger opening precisely causes ball high–low inaccuracy in overarm throws. J Neurophysiol. 1999;82(1):103–14.PubMed
52.
Zurück zum Zitat Ullen F, Forssberg H, Erhsson HH. Neural networks for the coordination of the hands in time. J Neurophysiol. 2003;89(2):1126–35.PubMedCrossRef Ullen F, Forssberg H, Erhsson HH. Neural networks for the coordination of the hands in time. J Neurophysiol. 2003;89(2):1126–35.PubMedCrossRef
53.
Zurück zum Zitat Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR. Distributed neural systems underlying the timing of movements. J Neurosci. 1997;17(14):5528–35.PubMed Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR. Distributed neural systems underlying the timing of movements. J Neurosci. 1997;17(14):5528–35.PubMed
54.
Zurück zum Zitat Edelstyn NM, Ellis SJ, Jenkinson P, Sawyer A. Contribution of the left dorsomedial thalamus to recognition memory: a neuropsychological case study. Neurocase. 2002;8(6):442–52.PubMedCrossRef Edelstyn NM, Ellis SJ, Jenkinson P, Sawyer A. Contribution of the left dorsomedial thalamus to recognition memory: a neuropsychological case study. Neurocase. 2002;8(6):442–52.PubMedCrossRef
55.
Zurück zum Zitat Lewis PA, Miall RC. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol. 2003;13:250–5.PubMedCrossRef Lewis PA, Miall RC. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol. 2003;13:250–5.PubMedCrossRef
56.
Zurück zum Zitat Manto MU. On the cerebello-cerebral interactions. Cerebellum. 2007;5(4):286–8.CrossRef Manto MU. On the cerebello-cerebral interactions. Cerebellum. 2007;5(4):286–8.CrossRef
57.
Zurück zum Zitat Daly JJ, Wolpaw JR. Brain–computer interfaces in neurological rehabilitation. Lancet Neurol. 2008;7(11):1032–43.PubMedCrossRef Daly JJ, Wolpaw JR. Brain–computer interfaces in neurological rehabilitation. Lancet Neurol. 2008;7(11):1032–43.PubMedCrossRef
58.
Zurück zum Zitat Grant MP, Leigh RJ, Seidman SH, Riley DE, Hanna JP. Comparison of predictable smooth ocular and combined eye-head tracking behaviour in patients with lesions affecting the brainstem and cerebellum. Brain. 1992;115:1323–42.PubMedCrossRef Grant MP, Leigh RJ, Seidman SH, Riley DE, Hanna JP. Comparison of predictable smooth ocular and combined eye-head tracking behaviour in patients with lesions affecting the brainstem and cerebellum. Brain. 1992;115:1323–42.PubMedCrossRef
59.
Zurück zum Zitat Townsend J, Courchesne E, Covington J, Westerfield M, Harris NS, Lyden P, et al. Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neurosci. 1999;19:5632–43.PubMed Townsend J, Courchesne E, Covington J, Westerfield M, Harris NS, Lyden P, et al. Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neurosci. 1999;19:5632–43.PubMed
60.
Zurück zum Zitat Lilja A, Hamalainen P, Kaitaranta E, Rinne R. Cognitive impairment in spinocerebellar ataxia type 8. J Neurol Sci. 2005;237(1–2):31–8.PubMedCrossRef Lilja A, Hamalainen P, Kaitaranta E, Rinne R. Cognitive impairment in spinocerebellar ataxia type 8. J Neurol Sci. 2005;237(1–2):31–8.PubMedCrossRef
61.
Zurück zum Zitat Kawai Y, Suenaga M, Watanabe H, Ito M, Kato K, Kato T, et al. Prefrontal hypoperfusion and cognitive dysfunction correlates in spinocerebellar ataxia type 6. J Neurol Sci. 2008;271(1–2):68–74.PubMedCrossRef Kawai Y, Suenaga M, Watanabe H, Ito M, Kato K, Kato T, et al. Prefrontal hypoperfusion and cognitive dysfunction correlates in spinocerebellar ataxia type 6. J Neurol Sci. 2008;271(1–2):68–74.PubMedCrossRef
62.
Zurück zum Zitat Suenaga M, Kawai Y, Watanabe H, Atsuta N, Ito M, Tanaka F, et al. Cognitive impairment in spinocerebellar ataxia type 6. J Neurol Neurosurg Psychiatry. 2008;79(5):496–9.PubMedCrossRef Suenaga M, Kawai Y, Watanabe H, Atsuta N, Ito M, Tanaka F, et al. Cognitive impairment in spinocerebellar ataxia type 6. J Neurol Neurosurg Psychiatry. 2008;79(5):496–9.PubMedCrossRef
63.
Zurück zum Zitat Garrard P, Martin NH, Giunti P, Cipolotti L. Cognitive and social cognitive functioning in spinocerebellar ataxia—a preliminary characterization. J Neurol. 2008;255(3):398–405.PubMedCrossRef Garrard P, Martin NH, Giunti P, Cipolotti L. Cognitive and social cognitive functioning in spinocerebellar ataxia—a preliminary characterization. J Neurol. 2008;255(3):398–405.PubMedCrossRef
64.
Zurück zum Zitat Werner S, Bock O, et al. The effect of cerebellar cortical degeneration on adaptive plasticity and movement control. Exp Brain Res. 2009;193(2):189–96.PubMedCrossRef Werner S, Bock O, et al. The effect of cerebellar cortical degeneration on adaptive plasticity and movement control. Exp Brain Res. 2009;193(2):189–96.PubMedCrossRef
65.
Zurück zum Zitat Huang C. Implications on cerebellar function from information coding. Cerebellum. 2008;7(3):314–31.PubMedCrossRef Huang C. Implications on cerebellar function from information coding. Cerebellum. 2008;7(3):314–31.PubMedCrossRef
Metadaten
Titel
The Neural Substrate of Predictive Motor Timing in Spinocerebellar Ataxia
verfasst von
Martin Bares
Ovidiu V. Lungu
Tao Liu
Tobias Waechter
Christopher M. Gomez
James Ashe
Publikationsdatum
01.06.2011
Verlag
Springer-Verlag
Erschienen in
The Cerebellum / Ausgabe 2/2011
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-010-0237-y

Weitere Artikel der Ausgabe 2/2011

The Cerebellum 2/2011 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.