Skip to main content
Erschienen in: Journal of Neural Transmission 7/2016

23.05.2016 | Neurology and Preclinical Neurological Studies - Original Article

The primate pedunculopontine nucleus region: towards a dual role in locomotion and waking state

verfasst von: Laurent Goetz, Brigitte Piallat, Manik Bhattacharjee, Hervé Mathieu, Olivier David, Stéphan Chabardès

Erschienen in: Journal of Neural Transmission | Ausgabe 7/2016

Einloggen, um Zugang zu erhalten

Abstract

The mesencephalic reticular formation (MRF) mainly composed by the pedunculopontine and the cuneiform nuclei is involved in the control of several fundamental brain functions such as locomotion, rapid eye movement sleep and waking state. On the one hand, the role of MRF neurons in locomotion has been investigated for decades in different animal models, including in behaving nonhuman primate (NHP) using extracellular recordings. On the other hand, MRF neurons involved in the control of waking state have been consistently shown to constitute the cholinergic component of the reticular ascending system. However, a dual control of the locomotion and waking state by the same groups of neurons in NHP has never been demonstrated in NHP. Here, using microelectrode recordings in behaving NHP, we recorded 38 neurons in the MRF that were followed during transition between wakefulness (TWS) and sleep, i.e., until the emergence of sleep episodes characterized by typical cortical slow wave activity (SWA). We found that the MRF neurons, mainly located in the pedunculopontine nucleus region, modulated their activity during TWS with a decrease in firing rate during SWA. Of interest, we could follow some MRF neurons from locomotion to SWA and found that they also modulated their firing rate during locomotion and TWS. These new findings confirm the role of MRF neurons in both functions. They suggest that the MRF is an integration center that potentially allows to fine tune waking state and locomotor signals in order to establish an efficient locomotion.
Literatur
Zurück zum Zitat Androulidakis AG, Mazzone P, Litvak V, Penny W, Dileone M, Doyle Gaynor LMF, Tisch S, Di Lazzaro V, Brown P (2008) Oscillatory activity in the pedunculopontine area of patients with Parkinson’s disease. Exp Neurol 211:59–66CrossRefPubMed Androulidakis AG, Mazzone P, Litvak V, Penny W, Dileone M, Doyle Gaynor LMF, Tisch S, Di Lazzaro V, Brown P (2008) Oscillatory activity in the pedunculopontine area of patients with Parkinson’s disease. Exp Neurol 211:59–66CrossRefPubMed
Zurück zum Zitat Arnulf I, Ferraye M, Fraix V, Benabid A-L, Chabardès S, Goetz L, Pollak P, Debû B (2010) Sleep induced by stimulation in the human pedunculopontine nucleus area. Ann Neurol 67:546–549CrossRefPubMed Arnulf I, Ferraye M, Fraix V, Benabid A-L, Chabardès S, Goetz L, Pollak P, Debû B (2010) Sleep induced by stimulation in the human pedunculopontine nucleus area. Ann Neurol 67:546–549CrossRefPubMed
Zurück zum Zitat Belaid H, Adrien J, Laffrat E, Tandé D, Karachi C, Grabli D, Arnulf I, Clark SD, Drouot X, Hirsch EC, François C (2014) Sleep disorders in parkinsonian macaques: effects of l-dopa treatment and pedunculopontine nucleus lesion. J Neurosci 34:9124–9133CrossRefPubMedPubMedCentral Belaid H, Adrien J, Laffrat E, Tandé D, Karachi C, Grabli D, Arnulf I, Clark SD, Drouot X, Hirsch EC, François C (2014) Sleep disorders in parkinsonian macaques: effects of l-dopa treatment and pedunculopontine nucleus lesion. J Neurosci 34:9124–9133CrossRefPubMedPubMedCentral
Zurück zum Zitat Benarroch EE (2008) The midline and intralaminar thalamic nuclei—Anatomic and functional specificity and implications in neurologic disease. Neurology 71:944–949CrossRefPubMed Benarroch EE (2008) The midline and intralaminar thalamic nuclei—Anatomic and functional specificity and implications in neurologic disease. Neurology 71:944–949CrossRefPubMed
Zurück zum Zitat Boucetta S, Jones BE (2009) Activity profiles of cholinergic and intermingled GABAergic and putative glutamatergic neurons in the pontomesencephalic tegmentum of urethane-anesthetized rats. J Neurosci 29:4664–4674CrossRefPubMed Boucetta S, Jones BE (2009) Activity profiles of cholinergic and intermingled GABAergic and putative glutamatergic neurons in the pontomesencephalic tegmentum of urethane-anesthetized rats. J Neurosci 29:4664–4674CrossRefPubMed
Zurück zum Zitat Boucetta S, Cisse Y, Mainville L, Morales M, Jones BE (2014) Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 34:4708–4727CrossRefPubMedPubMedCentral Boucetta S, Cisse Y, Mainville L, Morales M, Jones BE (2014) Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 34:4708–4727CrossRefPubMedPubMedCentral
Zurück zum Zitat Cyr M, Parent MJ, Mechawar N, Rosa-Neto P, Soucy J-P, Clark SD, Aghourian M, Bedard M-A (2015) Deficit in sustained attention following selective cholinergic lesion of the pedunculopontine tegmental nucleus in rat, as measured with both post-mortem immunocytochemistry and in vivo PET imaging with [18F]fluoroethoxybenzovesamicol. Behav Brain Res 278:107–114CrossRefPubMed Cyr M, Parent MJ, Mechawar N, Rosa-Neto P, Soucy J-P, Clark SD, Aghourian M, Bedard M-A (2015) Deficit in sustained attention following selective cholinergic lesion of the pedunculopontine tegmental nucleus in rat, as measured with both post-mortem immunocytochemistry and in vivo PET imaging with [18F]fluoroethoxybenzovesamicol. Behav Brain Res 278:107–114CrossRefPubMed
Zurück zum Zitat Datta S, Siwek DF (2002) Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats. J Neurosci Res 70:611–621CrossRefPubMed Datta S, Siwek DF (2002) Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats. J Neurosci Res 70:611–621CrossRefPubMed
Zurück zum Zitat Datta S, O’Malley MW, Patterson EH (2011) Calcium/calmodulin kinase II in the pedunculopontine tegmental nucleus modulates the initiation and maintenance of wakefulness. J Neurosci 31:17007–17016CrossRefPubMedPubMedCentral Datta S, O’Malley MW, Patterson EH (2011) Calcium/calmodulin kinase II in the pedunculopontine tegmental nucleus modulates the initiation and maintenance of wakefulness. J Neurosci 31:17007–17016CrossRefPubMedPubMedCentral
Zurück zum Zitat Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34:4509–4518CrossRefPubMedPubMedCentral Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34:4509–4518CrossRefPubMedPubMedCentral
Zurück zum Zitat Deurveilher S, Hennevin E (2001) Lesions of the pedunculopontine tegmental nucleus reduce paradoxical sleep (PS) propensity: evidence from a short-term PS deprivation study in rats. Eur J Neurosci 13:1963–1976CrossRefPubMed Deurveilher S, Hennevin E (2001) Lesions of the pedunculopontine tegmental nucleus reduce paradoxical sleep (PS) propensity: evidence from a short-term PS deprivation study in rats. Eur J Neurosci 13:1963–1976CrossRefPubMed
Zurück zum Zitat Devergnas A, Piallat B, Prabhu S, Torres N, Louis Benabid A, David O, Chabardes S (2012) The subcortical hidden side of focal motor seizures: evidence from micro-recordings and local field potentials. Brain 135:2263–2276CrossRefPubMed Devergnas A, Piallat B, Prabhu S, Torres N, Louis Benabid A, David O, Chabardes S (2012) The subcortical hidden side of focal motor seizures: evidence from micro-recordings and local field potentials. Brain 135:2263–2276CrossRefPubMed
Zurück zum Zitat El Mansari M, Sakai K, Jouvet M (1989) Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats. Exp Brain Res 76:519–529CrossRefPubMed El Mansari M, Sakai K, Jouvet M (1989) Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats. Exp Brain Res 76:519–529CrossRefPubMed
Zurück zum Zitat Ferraye MU, Debû B, Fraix V, Goetz L, Ardouin C, Yelnik J, Henry-Lagrange C, Seigneuret E, Piallat B, Krack P, Le Bas J-F, Benabid A-L, Chabardès S, Pollak P (2010) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133:205–214CrossRefPubMed Ferraye MU, Debû B, Fraix V, Goetz L, Ardouin C, Yelnik J, Henry-Lagrange C, Seigneuret E, Piallat B, Krack P, Le Bas J-F, Benabid A-L, Chabardès S, Pollak P (2010) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133:205–214CrossRefPubMed
Zurück zum Zitat Fischer J, Schwiecker K, Bittner V, Heinze H-J, Voges J, Galazky I, Zaehle T (2015) Modulation of attentional processing by deep brain stimulation of the pedunculopontine nucleus region in patients with parkinsonian disorders. Neuropsychology 29:632–637CrossRefPubMed Fischer J, Schwiecker K, Bittner V, Heinze H-J, Voges J, Galazky I, Zaehle T (2015) Modulation of attentional processing by deep brain stimulation of the pedunculopontine nucleus region in patients with parkinsonian disorders. Neuropsychology 29:632–637CrossRefPubMed
Zurück zum Zitat Galvan A, Smith Y (2011) The primate thalamostriatal systems: anatomical organization, functional roles and possible involvement in Parkinson’s disease. Basal Ganglia 1:179–189CrossRefPubMedPubMedCentral Galvan A, Smith Y (2011) The primate thalamostriatal systems: anatomical organization, functional roles and possible involvement in Parkinson’s disease. Basal Ganglia 1:179–189CrossRefPubMedPubMedCentral
Zurück zum Zitat Garcia-Rill E (2015) Waking and the Reticular Activating System in Health and Disease. Academic Press, Amsterdam Garcia-Rill E (2015) Waking and the Reticular Activating System in Health and Disease. Academic Press, Amsterdam
Zurück zum Zitat Garcia-Rill E, Skinner RD (1988) Modulation of rhythmic function in the posterior midbrain. NSC 27:639–654 Garcia-Rill E, Skinner RD (1988) Modulation of rhythmic function in the posterior midbrain. NSC 27:639–654
Zurück zum Zitat Giladi N, Hausdorff JM (2006) The role of mental function in the pathogenesis of freezing of gait in Parkinson’s disease. J Neurol Sci 248:173–176CrossRefPubMed Giladi N, Hausdorff JM (2006) The role of mental function in the pathogenesis of freezing of gait in Parkinson’s disease. J Neurol Sci 248:173–176CrossRefPubMed
Zurück zum Zitat Goetz L, Piallat B, Thibaudier Y, Montigon O, David O, Chabardes S (2012) A non-human primate model of bipedal locomotion under restrained condition allowing gait studies and single unit brain recordings. J Neurosci Methods 204:306–317CrossRefPubMed Goetz L, Piallat B, Thibaudier Y, Montigon O, David O, Chabardes S (2012) A non-human primate model of bipedal locomotion under restrained condition allowing gait studies and single unit brain recordings. J Neurosci Methods 204:306–317CrossRefPubMed
Zurück zum Zitat Goetz L, Piallat B, Bhattacharjee M, Mathieu H, David O, Chabardes S (2016) On the role of the pedunculopontine nucleus and mesencephalic reticular formation in locomotion in nonhuman primates. J Neurosci 36:4917–4929CrossRefPubMed Goetz L, Piallat B, Bhattacharjee M, Mathieu H, David O, Chabardes S (2016) On the role of the pedunculopontine nucleus and mesencephalic reticular formation in locomotion in nonhuman primates. J Neurosci 36:4917–4929CrossRefPubMed
Zurück zum Zitat Golestanirad L, Elahi B, Graham SJ, Das S, Wald LL (2015) Efficacy and safety of pedunculopontine nuclei (PPN) deep brain stimulation in the treatment of gait disorders: a meta-analysis of clinical studies. Can J Neurol Sci 43:120–126CrossRef Golestanirad L, Elahi B, Graham SJ, Das S, Wald LL (2015) Efficacy and safety of pedunculopontine nuclei (PPN) deep brain stimulation in the treatment of gait disorders: a meta-analysis of clinical studies. Can J Neurol Sci 43:120–126CrossRef
Zurück zum Zitat Gut NK, Winn P (2015) Deep brain stimulation of different pedunculopontine targets in a novel rodent model of parkinsonism. J Neurosci 35:4792–4803CrossRefPubMedPubMedCentral Gut NK, Winn P (2015) Deep brain stimulation of different pedunculopontine targets in a novel rodent model of parkinsonism. J Neurosci 35:4792–4803CrossRefPubMedPubMedCentral
Zurück zum Zitat Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84:5976–5980CrossRefPubMedPubMedCentral Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84:5976–5980CrossRefPubMedPubMedCentral
Zurück zum Zitat Hong S, Hikosaka O (2014) Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons. NSC 282:139–155 Hong S, Hikosaka O (2014) Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons. NSC 282:139–155
Zurück zum Zitat Hsieh K-C, Robinson EL, Fuller CA (2008) Sleep architecture in unrestrained rhesus monkeys (Macaca mulatta) synchronized to 24-h light–dark cycles. Sleep 31:1239–1250PubMedPubMedCentral Hsieh K-C, Robinson EL, Fuller CA (2008) Sleep architecture in unrestrained rhesus monkeys (Macaca mulatta) synchronized to 24-h light–dark cycles. Sleep 31:1239–1250PubMedPubMedCentral
Zurück zum Zitat Karachi C, Grabli D, Bernard FA, Tandé D, Wattiez N, Belaid H, Bardinet E, Prigent A, Nothacker H-P, Hunot S, Hartmann A, Lehéricy S, Hirsch EC, François C (2010) Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Investig 120:2745–2754CrossRefPubMedPubMedCentral Karachi C, Grabli D, Bernard FA, Tandé D, Wattiez N, Belaid H, Bardinet E, Prigent A, Nothacker H-P, Hunot S, Hartmann A, Lehéricy S, Hirsch EC, François C (2010) Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Investig 120:2745–2754CrossRefPubMedPubMedCentral
Zurück zum Zitat Kinomura S, Larsson J, Gulyás B, Roland PE (1996) Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science 271:512–515CrossRefPubMed Kinomura S, Larsson J, Gulyás B, Roland PE (1996) Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science 271:512–515CrossRefPubMed
Zurück zum Zitat Kobayashi Y, Isa T (2002) Sensory-motor gating and cognitive control by the brainstem cholinergic system. Neural Netw 15:731–741CrossRefPubMed Kobayashi Y, Isa T (2002) Sensory-motor gating and cognitive control by the brainstem cholinergic system. Neural Netw 15:731–741CrossRefPubMed
Zurück zum Zitat Kobayashi Y, Inoue Y, Yamamoto M, Isa T, Aizawa H (2002) Contribution of pedunculopontine tegmental nucleus neurons to performance of visually guided saccade tasks in monkeys. J Neurophysiol 88:715–731PubMed Kobayashi Y, Inoue Y, Yamamoto M, Isa T, Aizawa H (2002) Contribution of pedunculopontine tegmental nucleus neurons to performance of visually guided saccade tasks in monkeys. J Neurophysiol 88:715–731PubMed
Zurück zum Zitat Lau B, Welter ML, Belaid H, Fernandez-Vidal S, Bardinet E, Grabli D, Karachi C (2015) The integrative role of the pedunculopontine nucleus in human gait. J Neural Transm 138:1284–1296 Lau B, Welter ML, Belaid H, Fernandez-Vidal S, Bardinet E, Grabli D, Karachi C (2015) The integrative role of the pedunculopontine nucleus in human gait. J Neural Transm 138:1284–1296
Zurück zum Zitat Lavoie B, Parent A (1994a) Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344:190–209CrossRefPubMed Lavoie B, Parent A (1994a) Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344:190–209CrossRefPubMed
Zurück zum Zitat Lavoie B, Parent A (1994b) Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344:210–231CrossRefPubMed Lavoie B, Parent A (1994b) Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344:210–231CrossRefPubMed
Zurück zum Zitat Lee AM, Hoy JL, Bonci A, Wilbrecht L, Stryker MP, Niell CM (2014) Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion. Neuron 83:455–466CrossRefPubMedPubMedCentral Lee AM, Hoy JL, Bonci A, Wilbrecht L, Stryker MP, Niell CM (2014) Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion. Neuron 83:455–466CrossRefPubMedPubMedCentral
Zurück zum Zitat Licence S, Smith R, McGuigan MP, Earnest CP (2015) Gait pattern alterations during walking, texting and walking and texting during cognitively distractive tasks while negotiating common pedestrian obstacles. PLoS One 10:e0133281–11CrossRef Licence S, Smith R, McGuigan MP, Earnest CP (2015) Gait pattern alterations during walking, texting and walking and texting during cognitively distractive tasks while negotiating common pedestrian obstacles. PLoS One 10:e0133281–11CrossRef
Zurück zum Zitat Lindsley DB, Bowden JW, Magoun HW (1949) Effect upon the EEG of acute injury to the brain stem activating system. Electroencephalogr Clin Neurophysiol 1:475–486CrossRefPubMed Lindsley DB, Bowden JW, Magoun HW (1949) Effect upon the EEG of acute injury to the brain stem activating system. Electroencephalogr Clin Neurophysiol 1:475–486CrossRefPubMed
Zurück zum Zitat Martin RF, Bowden DM (1996) A stereotaxic template atlas of the macaque brain for digital imaging and quantitative neuroanatomy. NeuroImage 4:119–150CrossRefPubMed Martin RF, Bowden DM (1996) A stereotaxic template atlas of the macaque brain for digital imaging and quantitative neuroanatomy. NeuroImage 4:119–150CrossRefPubMed
Zurück zum Zitat Matsumura M, Watanabe K, Ohye C (1997) Single-unit activity in the primate nucleus tegmenti pedunculopontinus related to voluntary arm movement. Neurosci Res 28:155–165CrossRefPubMed Matsumura M, Watanabe K, Ohye C (1997) Single-unit activity in the primate nucleus tegmenti pedunculopontinus related to voluntary arm movement. Neurosci Res 28:155–165CrossRefPubMed
Zurück zum Zitat Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. NeuroReport 16:1877–1881CrossRefPubMed Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. NeuroReport 16:1877–1881CrossRefPubMed
Zurück zum Zitat Mazzone P, Sposato S, Insola A, Scarnati E (2013) The clinical effects of deep brain stimulation of the pedunculopontine tegmental nucleus in movement disorders may not be related to the anatomical target, leads location, and setup of electrical stimulation. Neurosurgery 73:894–906CrossRefPubMed Mazzone P, Sposato S, Insola A, Scarnati E (2013) The clinical effects of deep brain stimulation of the pedunculopontine tegmental nucleus in movement disorders may not be related to the anatomical target, leads location, and setup of electrical stimulation. Neurosurgery 73:894–906CrossRefPubMed
Zurück zum Zitat Mazzone P, Filho OV, Viselli F, Insola A, Sposato S, Vitale F, Scarnati E (2016) Our first decade of experience in deep brain stimulation of the brainstem: elucidating the mechanism of action of stimulation of the ventrolateral pontine tegmentum. J Neural Transm. doi:10.1007/s00702-016-1518-5 PubMedCentral Mazzone P, Filho OV, Viselli F, Insola A, Sposato S, Vitale F, Scarnati E (2016) Our first decade of experience in deep brain stimulation of the brainstem: elucidating the mechanism of action of stimulation of the ventrolateral pontine tegmentum. J Neural Transm. doi:10.​1007/​s00702-016-1518-5 PubMedCentral
Zurück zum Zitat Mena-Segovia J, Bolam JP, Magill PJ (2004) Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci 27:585–588 Mena-Segovia J, Bolam JP, Magill PJ (2004) Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci 27:585–588
Zurück zum Zitat Mena-Segovia J, Sims HM, Magill PJ, Bolam JP (2008) Cholinergic brainstem neurons modulate cortical gamma activity during slow oscillations. J Physiol 586:2947–2960CrossRefPubMedPubMedCentral Mena-Segovia J, Sims HM, Magill PJ, Bolam JP (2008) Cholinergic brainstem neurons modulate cortical gamma activity during slow oscillations. J Physiol 586:2947–2960CrossRefPubMedPubMedCentral
Zurück zum Zitat Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1984) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. NSC 12:669–686 Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1984) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. NSC 12:669–686
Zurück zum Zitat Mesulam MM, Geula C, Bothwell MA, Hersh LB (1989) Human reticular formation: cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. J Comp Neurol 283:611–633CrossRefPubMed Mesulam MM, Geula C, Bothwell MA, Hersh LB (1989) Human reticular formation: cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. J Comp Neurol 283:611–633CrossRefPubMed
Zurück zum Zitat Morita H, Hass CJ, Moro E, Sudhyadhom A, Kumar R, Okun MS (2014) Pedunculopontine nucleus stimulation: where are we now and what needs to be done to move the field forward? Front Neurol 5:243CrossRefPubMedPubMedCentral Morita H, Hass CJ, Moro E, Sudhyadhom A, Kumar R, Okun MS (2014) Pedunculopontine nucleus stimulation: where are we now and what needs to be done to move the field forward? Front Neurol 5:243CrossRefPubMedPubMedCentral
Zurück zum Zitat Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473CrossRefPubMed Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473CrossRefPubMed
Zurück zum Zitat Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A (2011) Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 10:734–744CrossRefPubMed Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A (2011) Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 10:734–744CrossRefPubMed
Zurück zum Zitat Okada K-I, Kobayashi Y (2015) Rhythmic firing of pedunculopontine tegmental nucleus neurons in monkeys during eye movement task. PLoS One 10:e0128147CrossRefPubMedPubMedCentral Okada K-I, Kobayashi Y (2015) Rhythmic firing of pedunculopontine tegmental nucleus neurons in monkeys during eye movement task. PLoS One 10:e0128147CrossRefPubMedPubMedCentral
Zurück zum Zitat Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123(Pt 9):1767–1783CrossRefPubMed Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123(Pt 9):1767–1783CrossRefPubMed
Zurück zum Zitat Paré D, Smith Y, Parent A, Steriade M (1988) Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei. NSC 25:69–86 Paré D, Smith Y, Parent A, Steriade M (1988) Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei. NSC 25:69–86
Zurück zum Zitat Paus T, Zatorre RJ, Hofle N, Caramanos Z, Gotman J, Petrides M, Evans AC (1997) Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. J Cogn Neurosci 9:392–408CrossRefPubMed Paus T, Zatorre RJ, Hofle N, Caramanos Z, Gotman J, Petrides M, Evans AC (1997) Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. J Cogn Neurosci 9:392–408CrossRefPubMed
Zurück zum Zitat Paxinos G, Gulnul S, Huang XF, Watson C (2012) Organization of brainstem nuclei. In: Press AEA (ed) The human nervous system. Academic Press, Amsterdam, pp 260–327 Paxinos G, Gulnul S, Huang XF, Watson C (2012) Organization of brainstem nuclei. In: Press AEA (ed) The human nervous system. Academic Press, Amsterdam, pp 260–327
Zurück zum Zitat Peppe A, Pierantozzi M, Baiamonte V, Moschella V, Caltagirone C, Stanzione P, Stefani A (2012) Deep brain stimulation of pedunculopontine tegmental nucleus: role in sleep modulation in advanced parkinson disease patients—one-year follow-up. Sleep 35(12):1637–1642. doi:10.5665/sleep.2234 CrossRefPubMedPubMedCentral Peppe A, Pierantozzi M, Baiamonte V, Moschella V, Caltagirone C, Stanzione P, Stefani A (2012) Deep brain stimulation of pedunculopontine tegmental nucleus: role in sleep modulation in advanced parkinson disease patients—one-year follow-up. Sleep 35(12):1637–1642. doi:10.​5665/​sleep.​2234 CrossRefPubMedPubMedCentral
Zurück zum Zitat Petzold A, Valencia M, Pál B, Mena-Segovia J (2015) Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms. Front Neural Circuits 9:420CrossRef Petzold A, Valencia M, Pál B, Mena-Segovia J (2015) Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms. Front Neural Circuits 9:420CrossRef
Zurück zum Zitat Piallat B, Chabardes S, Torres N, Fraix V, Goetz L, Seigneuret E, Bardinet E, Ferraye M, Debu B, Krack P, Yelnik J, Pollak P, Benabid A-L (2009) Gait is associated with an increase in tonic firing of the sub-cuneiform nucleus neurons. NSC 158:1201–1205 Piallat B, Chabardes S, Torres N, Fraix V, Goetz L, Seigneuret E, Bardinet E, Ferraye M, Debu B, Krack P, Yelnik J, Pollak P, Benabid A-L (2009) Gait is associated with an increase in tonic firing of the sub-cuneiform nucleus neurons. NSC 158:1201–1205
Zurück zum Zitat Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. NeuroReport 16:1883–1887CrossRefPubMed Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. NeuroReport 16:1883–1887CrossRefPubMed
Zurück zum Zitat Reese NB, Garcia-Rill E, Skinner RD (1995) The pedunculopontine nucleus–auditory input, arousal and pathophysiology. Prog Neurobiol 47:105–133CrossRefPubMed Reese NB, Garcia-Rill E, Skinner RD (1995) The pedunculopontine nucleus–auditory input, arousal and pathophysiology. Prog Neurobiol 47:105–133CrossRefPubMed
Zurück zum Zitat Rinne JO, Ma SY, Lee MS, Collan Y, Röyttä M (2008) Loss of cholinergic neurons in the pedunculopontine nucleus in Parkinson’s disease is related to disability of the patients. Parkinsonism Relat Disord 14:553–557CrossRefPubMed Rinne JO, Ma SY, Lee MS, Collan Y, Röyttä M (2008) Loss of cholinergic neurons in the pedunculopontine nucleus in Parkinson’s disease is related to disability of the patients. Parkinsonism Relat Disord 14:553–557CrossRefPubMed
Zurück zum Zitat Roš H, Magill PJ, Moss J, Bolam JP, Mena-Segovia J (2010) Distinct types of non-cholinergic pedunculopontine neurons are differentially modulated during global brain states. Neuroscience 170:78–91CrossRefPubMedPubMedCentral Roš H, Magill PJ, Moss J, Bolam JP, Mena-Segovia J (2010) Distinct types of non-cholinergic pedunculopontine neurons are differentially modulated during global brain states. Neuroscience 170:78–91CrossRefPubMedPubMedCentral
Zurück zum Zitat Ryczko D, Dubuc R (2013) The multifunctional mesencephalic locomotor region. Curr Pharm Des 19(24):4448–4470CrossRefPubMed Ryczko D, Dubuc R (2013) The multifunctional mesencephalic locomotor region. Curr Pharm Des 19(24):4448–4470CrossRefPubMed
Zurück zum Zitat Shik ML, Severin FV, Orlovskiĭ GN (1966) Control of walking and running by means of electric stimulation of the midbrain. Biofizika 11:659–666PubMed Shik ML, Severin FV, Orlovskiĭ GN (1966) Control of walking and running by means of electric stimulation of the midbrain. Biofizika 11:659–666PubMed
Zurück zum Zitat Shute CC, Lewis PR (1967) The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain 90:497–520 Shute CC, Lewis PR (1967) The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain 90:497–520
Zurück zum Zitat Silber MH, Ancoli-Israel S, Bonnet MH, Chokroverty S, Grigg-Damberger MM, Hirshkowitz M, Kapen S, Keenan SA, Kryger MH, Penzel T, Pressman MR, Iber C (2007) The visual scoring of sleep in adults. J Clin Sleep Med 3:121–131PubMed Silber MH, Ancoli-Israel S, Bonnet MH, Chokroverty S, Grigg-Damberger MM, Hirshkowitz M, Kapen S, Keenan SA, Kryger MH, Penzel T, Pressman MR, Iber C (2007) The visual scoring of sleep in adults. J Clin Sleep Med 3:121–131PubMed
Zurück zum Zitat Skinner RD, Garcia-Rill E (1984) The mesencephalic locomotor region (MLR) in the rat. Brain Res 323:385–389CrossRefPubMed Skinner RD, Garcia-Rill E (1984) The mesencephalic locomotor region (MLR) in the rat. Brain Res 323:385–389CrossRefPubMed
Zurück zum Zitat Smith Y, Surmeier DJ, Redgrave P, Kimura M (2011) Thalamic contributions to basal ganglia-related behavioral switching and reinforcement. J Neurosci 31:16102–16106CrossRefPubMedPubMedCentral Smith Y, Surmeier DJ, Redgrave P, Kimura M (2011) Thalamic contributions to basal ganglia-related behavioral switching and reinforcement. J Neurosci 31:16102–16106CrossRefPubMedPubMedCentral
Zurück zum Zitat Steriade M, Datta S, Paré D, Oakson G, Curró Dossi RC (1990a) Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10:2541–2559PubMed Steriade M, Datta S, Paré D, Oakson G, Curró Dossi RC (1990a) Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10:2541–2559PubMed
Zurück zum Zitat Steriade M, Paré D, Datta S, Oakson G, DOSSI R (1990b) Different cellular types in mesopontine cholinergic nuclei related to pontogeniculooccipital waves. J Neurosci 10:2560–2579PubMed Steriade M, Paré D, Datta S, Oakson G, DOSSI R (1990b) Different cellular types in mesopontine cholinergic nuclei related to pontogeniculooccipital waves. J Neurosci 10:2560–2579PubMed
Zurück zum Zitat Stopczynski RE, Poloskey SL, Haber SN (2008) Cell proliferation in the striatum during postnatal development: preferential distribution in subregions of the ventral striatum. Brain Struct Funct 213:119–127CrossRefPubMedPubMedCentral Stopczynski RE, Poloskey SL, Haber SN (2008) Cell proliferation in the striatum during postnatal development: preferential distribution in subregions of the ventral striatum. Brain Struct Funct 213:119–127CrossRefPubMedPubMedCentral
Zurück zum Zitat Tattersall TL, Stratton PG, Coyne TJ, Cook R, Silberstein P, Silburn PA, Windels FCO, Sah P (2014) Imagined gait modulates neuronal network dynamics in the human pedunculopontine nucleus. Nat Neurosci 17(3):449–454. doi:10.1038/nn.3642 CrossRefPubMed Tattersall TL, Stratton PG, Coyne TJ, Cook R, Silberstein P, Silburn PA, Windels FCO, Sah P (2014) Imagined gait modulates neuronal network dynamics in the human pedunculopontine nucleus. Nat Neurosci 17(3):449–454. doi:10.​1038/​nn.​3642 CrossRefPubMed
Zurück zum Zitat Thevathasan W, Silburn PA, Brooker H, Coyne TJ, Khan S, Gill SS, Aziz TZ, Brown P (2010) The impact of low-frequency stimulation of the pedunculopontine nucleus region on reaction time in parkinsonism. J Neurol Neurosurg Psychiatr 81:1099–1104CrossRefPubMed Thevathasan W, Silburn PA, Brooker H, Coyne TJ, Khan S, Gill SS, Aziz TZ, Brown P (2010) The impact of low-frequency stimulation of the pedunculopontine nucleus region on reaction time in parkinsonism. J Neurol Neurosurg Psychiatr 81:1099–1104CrossRefPubMed
Zurück zum Zitat Urbano FJ, D’Onofrio SM, Luster BR, Beck PB, Hyde JR, Bisagno V, Garcia-Rill E (2014) Pedunculopontine nucleus gamma band activity-preconscious awareness, waking, and REM sleep. Front Neurol 5:210CrossRefPubMedPubMedCentral Urbano FJ, D’Onofrio SM, Luster BR, Beck PB, Hyde JR, Bisagno V, Garcia-Rill E (2014) Pedunculopontine nucleus gamma band activity-preconscious awareness, waking, and REM sleep. Front Neurol 5:210CrossRefPubMedPubMedCentral
Zurück zum Zitat Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev 39:107–140CrossRefPubMed Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev 39:107–140CrossRefPubMed
Zurück zum Zitat Weinberger M, Hamani C, Hutchison WD, Moro E, Lozano AM, Dostrovsky JO (2008) Pedunculopontine nucleus microelectrode recordings in movement disorder patients. Exp Brain Res 188:165–174CrossRefPubMed Weinberger M, Hamani C, Hutchison WD, Moro E, Lozano AM, Dostrovsky JO (2008) Pedunculopontine nucleus microelectrode recordings in movement disorder patients. Exp Brain Res 188:165–174CrossRefPubMed
Zurück zum Zitat Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. I. Functional properties in intact animals. J Neurophysiol 72:494–506PubMed Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. I. Functional properties in intact animals. J Neurophysiol 72:494–506PubMed
Zurück zum Zitat Yogev G, Giladi N, Peretz C, Springer S, Simon ES, Hausdorff JM (2005) Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding? Eur J Neurosci 22:1248–1256CrossRefPubMed Yogev G, Giladi N, Peretz C, Springer S, Simon ES, Hausdorff JM (2005) Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding? Eur J Neurosci 22:1248–1256CrossRefPubMed
Zurück zum Zitat Yogev-Seligmann G, Hausdorff JM, Giladi N (2008) The role of executive function and attention in gait. Mov Disord 23:329–342CrossRefPubMed Yogev-Seligmann G, Hausdorff JM, Giladi N (2008) The role of executive function and attention in gait. Mov Disord 23:329–342CrossRefPubMed
Metadaten
Titel
The primate pedunculopontine nucleus region: towards a dual role in locomotion and waking state
verfasst von
Laurent Goetz
Brigitte Piallat
Manik Bhattacharjee
Hervé Mathieu
Olivier David
Stéphan Chabardès
Publikationsdatum
23.05.2016
Verlag
Springer Vienna
Erschienen in
Journal of Neural Transmission / Ausgabe 7/2016
Print ISSN: 0300-9564
Elektronische ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-016-1577-7

Weitere Artikel der Ausgabe 7/2016

Journal of Neural Transmission 7/2016 Zur Ausgabe

Neurology and Preclinical Neurological Studies - Review Article

The rationale for deep brain stimulation in Alzheimer’s disease

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.