Skip to main content
Erschienen in: Diabetology & Metabolic Syndrome 1/2019

Open Access 01.12.2019 | Review

The relationship between mean platelet volume and diabetic retinopathy: a systematic review and meta-analysis

verfasst von: ShuaiFei Ji, Jie Zhang, XiuDe Fan, XiQiang Wang, XiaoNa Ning, BaBo Zhang, Heng Shi, Hong Yan

Erschienen in: Diabetology & Metabolic Syndrome | Ausgabe 1/2019

Abstract

Background

Diabetic retinopathy (DR) is one of the most common diseases causing blindness in the world, and most patients are already in advanced stage. Recent years, many studies reported mean platelet volume (MPV) may be associated with development of DR, but there was no consistent conclusion reached.

Methods

Literature was retrieved by formally searching PubMed, Embase, Cochrane library and Scopus and by hand searching of reference lists of related articles. Finally, a total of 14 literatures included, and Review manager 5.3 and STATA 14.0 statistical software were utilized for processing.

Results

Meta-analysis showed that MPV values in DR were significantly higher than health controls [SMD (95% CI) = 0.92 (0.60–1.24)] and type 2 diabetes mellitus without diabetic retinopathy (T2DM without DR) [SMD (95% CI) = 0.36 (0.19–0.53)]. Subgroup analysis indicated that MPV level in proliferative diabetic retinopathy (PDR) patients was higher than T2DM without DR patients [SMD (95% CI) = 0.48 (0.28, 0.68)], but this difference didn’t appear in non-proliferative diabetic retinopathy (NPDR).

Conclusions

The study demonstrated that increased MPV level was significant associated with the development of DR, and it might reflect the severity of DR, which could be provided to monitor development and progression of DR clinically.
Hinweise
ShuaiFei Ji and Jie Zhang contributed equally to this work
Abkürzungen
MPV
mean platelet volume
DR
diabetic retinopathy
T2DM without DR
type 2 diabetes mellitus without diabetic retinopathy
PDR
proliferative diabetic retinopathy
NPDR
non-proliferative diabetic retinopathy
NOS
Newcastle–Ottawa scale
SMD
standard mean difference
CI
confidence interval

Background

Type 2 diabetes mellitus is a common metabolic disease with all kinds of microvascular diseases occurring. Diabetic retinopathy (DR), a kind of microvascular lesions occurring in fundus, accounts for 40 percent of diabetics over 40 years of age [1], and is the main cause of impaired vision and even blindness in diabetics [2]. The pathogenesis of diabetic retinopathy is not clear, relevant studies have shown that it may be associated with local microvascular injury and microcirculation disorders, and improving blood circulation of the retina effectively before or early in the emergence of DR may prevent it from developing [3, 4]. The diagnosis of diabetic retinopathy depends on fundus examination, but it’s not good for routine screening, and the patient’s compliance is poor. Therefore, it is especially important to find simple detection methods. Microthrombus formation caused by microcirculation changes is a pathogenic factor, in which platelet plays an important role [5, 6]. Mean platelet volume (MPV) reflects the average size and function of platelet in a person’s blood sample, of which the relationship with acute myocardial infarction and coronary artery has been shown [7, 8]. As parameters of platelet, high level MPV might be associated with increased thrombotic potential [9], which might participate in development of DR. However, conflicting data are available on MPV in DR, and there hasn’t been a systematic review to assess the relationship.
This study aims to assess and quantify differences in MPV comparing subjects with DR, type 2 diabetes mellitus without diabetic retinopathy (T2DM without DR) and control group, for exploring the relationship between MPV and DR.

Methods

Literature was retrieved by formal search of electronic databases (PubMed, Embase, Cochrane library and Scupos) and by hand searching of reference lists of related articles. These computer searches were limited to English language articles from the beginning of building database to December 2017, and Chinese language articles must be published on medline. The following keywords were used for searching: ‘‘diabetic retinopathy’’ AND ‘‘mean platelet volume’’. The retrieval strategy of Pubmed as follow: (((((Diabetic Retinopathies [Title/Abstract] OR Retinopathies, Diabetic [Title/Abstract] OR Retinopathy, Diabetic[Title/Abstract])) OR diabetic retinopathy[Title/Abstract]) OR “Diabetic Retinopathy”[Mesh])) AND ((((Mean Platelet Volumes[Title/Abstract] OR Platelet Volume, Mean[Title/Abstract] OR Platelet Volumes, Mean[Title/Abstract] OR Volume, Mean Platelet[Title/Abstract] OR Volumes, Mean Platelet[Title/Abstract])) OR mean platelet volume[Title/Abstract]) OR “Mean Platelet Volume”[Mesh]).

Selection criteria

The inclusion criteria were as follows: (1) published literature related to the association of MPV level with DR; (2) independent case–control studies or cross-section studies using either a hospital-based or a population-based design; (3) the original studies must provide the number of each group and the mean and standard of MPV. Excluded criteria: (1) duplicated data; (2) the original data could not be extracted.

Data extraction and quality assessment

Two authors (SF Ji and XD Fan) independently extracted the original data. Disagreement was resolved by discussion. If the two authors could not reach a consensus, the result was reviewed by a third author (XN Ning). The extracted data were consisted of the follow items: the first author’s name, publication year, population (Ethnicity), methods, study design, matching criteria, sex, total number of cases and controls, and age (years). Study quality was assessed by the Newcastle–Ottawa scale (NOS), which uses a ‘‘star’’ rating system to judge the quality of all observational studies. The NOS ranges between zero (worst) up to nine stars (best) and studies with a score equal to or higher than seven were considered to be of high quality. Two investigators (SF Ji and XD Fan) independently assessed the quality of the included studies, and the results were reviewed by a third investigator (J Zhang). Disagreement was resolved by discussion.

Statistical analysis

We utilized Review manager 5.3 and Stata 14.0 software to perform the meta-analysis in the present study. Heterogeneity among studies was assessed by I2 statistic, P < 0.10 and I2 > 50% indicated evidence of heterogeneity. If heterogeneity existed among the studies, the random effects model was used to estimate the pooled standard mean difference (SMD). Otherwise, the fixed effects model was adopted. The standard mean difference (SMD) and corresponding 95% confidence interval (CI) were utilized to assess the associations. The potential publication bias was investigated using Egger’s test and Funnel plot. Egger’s test (P < 0.05) was also considered to be representative of statistically significant publication bias, which was conducted with the Stata14.0 software. Subgroup analysis about study design, location, quality and DR sub-type were performed to further explore the heterogeneity and clinical significance.

Results

Study characteristics

We retrieved a total of 98 studies. After duplicates were removed, only 42 full-text studies were evaluated. After exclusion of review and no-related articles, a total of 14 studies [1023] were included in the final meta-analysis according to the inclusion criteria, including 2 cross-section studies [10, 14] and 11 case control studies [1113, 1523]. There are 1252 cases in the DR group, 1359 cases in T2DM without DR group and 1133 cases in control group. Table 1 shows the characteristics of included studies. Figure 1 shows the process of literature selection. As for the application of anticoagulation methods, ethylenediaminetetraacetic acid (ETDA) was used in 9 literature [11, 13, 15, 16, 1822], and 5 literature reported the collection and measurement time [1822]. One literature using citrate [23] and 4 literature have not specifically reported [10, 12, 14, 17].
Table 1
Characteristics of included studies
Authors
Location, year
DR
T2DM without DR
Control
-Tubes
NOS
N
MPV
N
MPV
N
MPV
Yilmaz et al.
Turkey, 2016
174
8.1 ± 0.83
88
7.81 ± 0.76
85
7.42 ± 0.68
EDTA
9
Ateş et al.
Turkey, 2009
90
7.96 ± 0.76
  
30
7.52 ± 1.01
EDTA
9
Dindar et al.
Turkey, 2013
24
11.26 ± 1.08
47
10.68 ± 1.68
50
10.23 ± 1.01
EDTA
9
Citirik et al.
Turkey, 2015
97
8.08 ± 0.71
43
7.94 ± 0.63
40
7.74 ± 0.78
EDTA
8
Demirtas et al.
Turkey, 2015
67
9.54 ± 0.88
240
9.2 ± 0.92
  
NR
8
Tetikoglu et al.
Turkey, 2016
136
8.71 ± 0.82
63
8.51 ± 1
76
8.32 ± 0.9
NR
7
Müberra et al.
Turkey, 2016
120
9.6 ± 1
158
9.7 ± 1.2
107
9.3 ± 1
EDTA
8
Gungor et al.
Turkey, 2016
52
9.3 ± 1
50
8.8 ± 1.1
50
8.3 ± 0.6
EDTA
9
Zhong et al.
China, 2011
200
10.09 ± 0.92
  
100
9.46 ± 0.93
NR
7
Li et al.
China, 2016
47
10.72 ± 1.57
52
10.39 ± 0.9
48
9.75 ± 0.89
EDTA
8
Zhou et al.
China, 2016
51
10.4 ± 1.1
328
10 ± 1.1
96
9.1 ± 0.8
NR
8
Radha et al.
India, 2016
14
9.2 ± 0.61
30
8.39 ± 0.68
100
8.02 ± 0.86
EDTA
8
Buch et al.
India, 2017
80
11.4 ± 1.96
162
9.91 ± 1.97
200
8.48 ± 1.01
EDTA
6
Papanas et al.
Greece, 2004
167
15.8 ± 1.3
98
10.9 ± 1.1
151
7.1 ± 1.2
Citrate
6
DR diabetic retinopathy, T2DM without DR type 2 diabetic mellitus without DR, N number of subjects, MPV mean platelet volume, NOS Newcastle–Ottawa scale, EDTA ethylenediaminetetraacetic acid, NR no report

Meta-analysis

The pooled SMD estimate showed that significant higher value of MPV in DR compared to control group [SMD (95% CI) = 1.38 (0.74, 2.02)] (Fig. 2) and T2DM without DR [SMD (95% CI) = 0.69 (0.19, 1.19)] (Fig. 3). I2 test indicated that the heterogeneity was that I2 = 98% (P < 0.00001) and I2 = 96% (P < 0.00001) respectively, therefore, given the significance, the random-effects model was applied to perform meta-analysis.

Subgroup analysis

To further explore the origin of heterogeneity and the clinical significance of MPV in assessing severity of DR, subgroups analysis about study design, quality, location and DR sub-type were performed. Unfortunately, we discovered heterogeneity of subgroup was generally high in the comparison to DR and control, low-quality studies in particular, which mean that the origin of heterogeneity was unclear. In the comparison to DR and T2DM without DR, we concluded that study design and low-quality studies generated heterogeneity obviously. Finally, we further explored the association between MPV level and DR type. We found, in terms of MPV level, both NPDR and PDR were significantly higher than control group [SMD (95% CI) = 0.41 (0.16, 0.65) P = 0.81 (0.48, 1.14)], PDR was higher than T2DM without DR [SMD (95% CI) = 0.48 (0.28, 0.68), P = 0.349] and NPDR [SMD (95% CI) = 0.41 (0.17, 0.64)], while NPDR was no difference with T2DM without DR [SMD (95% CI) = 0.04 (− 0.16, 0.24)]. We take gap in time between collection and measuring MPV-60 min to divide into subgroups, and the results showed that (Table 2), when ≤ 60 min, DR vs control, SMD = [0.39 (0.20–0.58), I2 = 0%], DR vs T2DM without DR, SMD = [0.02 (− 0.25 to 0.30), I2 = 43%], obviously the latter results no statistical significance. Then, when > 60 min, DR vs control, SMD = [0.99 (0.67–1.31), I2 = 41%], DR vs T2DM without DR, SMD = [0.37 (0.15–0.58), I2 = 0%], no significant difference appeared. Therefore, study design, low-quality articles, DR type and gap in time between collection and measuring MPV were the sources of heterogeneity, and high MPV level might reflect the severity of DR.
Table 2
Subgroup analysis of the relation between MPV and DR patients
Subgroup
Study
No. of studies
SMD
95% CI
Heterogeneity
P value
I2 (%)
DR vs control
 Location
Turkey
7
0.66
0.42–0.90
= 0.003
70
China
3
0.94
0.49–1.40
= 0.005
81
India
2
1.82
1.09–2.56
= 0.003
70
 Study quality
High
11
0.79
0.57–1.01
< 0.0001
76
Low
2
4.53
− 0.14 to 9.21
< 0.00001
99
DR vs T2DM without DR
 Location
Turkey
7
0.24
0.09–0.40
= 0.11
42
China
2
0.33
0.09–0.56
= 0.68
0
India
2
0.87
0.49–1.25
= 0.23
30
 Study design
Case–control
10
0.76
0.17–1.35
< 0.00001
97
Cross-sectional
2
0.37
0.11–0.62
= 0.95
0
 Study quality
High
10
0.30
0.15–0.45
= 0.03
51
Low
2
2.36
− 0.79 to 5.51
< 0.00001
99
 DR sub-type
NPDR vs control
4
0.41
0.16–0.65
= 0.182
38.3
PDR vs control
4
0.81
0.48–1.14
= 0.031
66.1
NPDR vs T2DM without DR
3
0.04
− 0.16 to 0.24
= 0.642
0
PDR vs T2DM without DR
3
0.48
0.28–0.68
= 0.349
5.1
PDR vs NPDR
4
0.41
0.17–0.64
= 0.193
36.6
Intervalsa
 ≤ 60 min
DR vs control
3
0.39
0.20–0.58
= 0.60
0
DR vs T2DM without DR
2
0.02
− 0.25 to 0.30
= 0.18
43
 > 60 min
DR vs control
2
0.99
0.67–1.31
= 0.19
41
DR vs T2DM without DR
2
0.37
0.15–0.58
= 0.53
0
MPV mean platelet volume, DR diabetic retinopathy, T2DM without DR type 2 diabetic mellitus without diabetic retinopathy, NPDR non-proliferative diabetic retinopathy, PDR proliferative diabetic retinopathy, SMD standard mean difference, CI confidence interval
aIntervals of MPV collection and measurement

Sensitive analysis

The contribution of each study to the pooled estimate was performed in order to assess the sensitivity analysis (Table 3). It was noteworthy that Papanas et al. [23] might cause heterogeneity, which was excluded at a time and recalculated the pooled result. After that, the heterogeneity in DR compared to T2DM without DR was decreased significantly to 66%. Meanwhile, the result was also decreased [SMD (95% CI) = 0.36 (0.19, 0.53)]. Further analysis revealed that the biggest difference between the study on Papanas et al. [23]. and other included literatures lies in the different anticoagulants used in the collection of platelet sample tubes. Only Papanas et al. [23] used citrate and the results didn’t change significantly after excluding Papanas et al. [DR vs control, SMD = 0.92 (0.60–1.24), I2 = 90%, DR vs T2DM without DR, SMD = 0.36 (0.19–0.53), I2 = 66%], which were considered as final results. Finally, the results of two comparisons exhibited that our meta-analysis was reliable, without inverse changes appearing.
Table 3
Sensitivity analysis (leave-one-out approach to) for MPV in DR
Study
SMD
95% CI
P value
I2 (%)
DR vs control
 Ates et al.
1.45
0.76–2.13
< 0.00001
98
 Buch et al.
1.31
0.65–1.98
< 0.00001
98
 Citirik et al.
1.46
0.77–2.14
< 0.00001
98
 Dindar et al.
1.41
0.73–2.09
< 0.00001
98
 Gungor et al.
1.39
0.71–2.08
< 0.00001
98
 Li et al.
1.43
0.74–2.12
< 0.00001
98
 Müberra et al.
1.47
0.77–2.17
< 0.00001
98
 Papanas et al.
0.92
0.60–1.24
< 0.00001
90
 Radha et al.
1.38
0.70–2.05
< 0.00001
98
 Tetikoglu et al.
1.46
0.76–2.16
< 0.00001
98
 Yilmaz et al.
1.42
0.71–2.14
< 0.00001
98
 Zhong et al.
1.44
0.72–2.16
< 0.00001
98
 Zhou et al.
1.38
0.68–2.07
< 0.00001
98
DR vs T2DM without DR
 Buch et al.
0.69
0.13–1.24
< 0.00001
97
 Citirik et al.
0.74
0.20–1.28
< 0.00001
97
 Demirtas et al.
0.72
0.19–1.25
< 0.00001
97
 Dindar et al.
0.72
0.17–1.28
< 0.00001
97
 Gungor et al.
0.71
0.17–1.25
< 0.00001
97
 Li et al.
0.73
0.20–1.27
< 0.00001
97
 Müberra et al.
0.77
0.23–1.31
< 0.00001
96
 Papanas et al.
0.36
0.19–0.53
= 0.001
66
 Radha et al.
0.65
0.13–1.17
< 0.00001
97
 Tetikoglu et al.
0.74
0.19–1.29
< 0.00001
97
 Yilmaz et al.
0.73
0.17–1.29
< 0.00001
97
 Zhou et al.
0.72
0.17–1.28
< 0.00001
97

Publication bias

The publication bias was evaluated using funnel plot and egger test. There was no publication bias existing in MPV level with DR compared to control group (Egger’s P = 0.36) and T2DM without DR group (Egger’s P = 0.15). The funnel plots were shown in Figs. 4 and 5 respectively.

Discussion

To our knowledge, this is the first study that systematically reviews and summarizes through a meta-analysis to explore the relationship between platelet parameters and DR. Our results evidenced statistically significantly higher values of MPV in DR compared with T2DM without DR and health.
Platelets were one of the causes of capillary nonperfusion in diabetes. Qualitative abnormalities and activation of platelet in DM have been reported [24], which has a close relationship with insulin resistance, hyperglycemia, and dyslipidemia [25, 26]. Larger platelets are more active because of elevated prothrombic contents, such as thromboxane A2, thromboxane B2, platelet factor 4, serotonin, and platelet-derived growth factor (PDGF) [27]. Some studies revealed that platelet participated in development of DR by thrombogenesis with microvascular lesions [12], and so far, the specific mechanisms of platelets in DR focuses on platelet-derived growth factor (PDGF), which is released from platelets. Eng et al. [28] reached a conclusion that pericyte loss caused by PDGF-B may also be a causal pathogenic event in human DR. Yokota et al. [29] found that hyperglycemia can increase PDGF-B levels in the retina, which mediated via PDGF-β receptors in part by protein kinase C (PKC) activation to upregulate expression of an essential factor endothelin-1 (ET-1) participated in pathophysiology of DR. Geraldes et al. [30] further found hyperglycemia persistently activated PKCδ and p38α MAPK to increase the expression of a novel target, Scr homology-2 domain containing phosphatase-1 (SHP-1), leading to PDGF receptor-β dephosphorylation and actions, and increased pericyte apoptosis, independent of NF-κB, and Chen et al. [31] reached the similar conclusion. Praidou et al. [32] discovered the correlation between PDGF and NPDR, and topical ketorolac tromethamine to treat PDR caused PDGF levels to decrease [33]. Therefore, platelets play an important role in formation of DR. However, clopidogrel (the selective antiplatelet drug), did not prevent neuronal apoptosis, glial reactivity, capillary cell apoptosis, or acellular capillaries in retinas of diabetic rats [34], suggesting that platelet do not initiate the pathology of early diabetic retinopathy.
MPV is positively correlated with platelet adhesion and aggregation, the higher level MPV, the higher rate and stronger function of platelets. Recent research found that MPV was strongly and independently associated with the presence and severity of diabetes [35], and there were great significance of cardio-vascular complications in diabetes mellitus [36], which may be associated with osmotic change [37]. Taurine is a key compound in osmoregulation, which plays an important role in maintaining cell volume [38, 39]. Taurine is found in high concentration in platelets [40], the level of which in platelets decreases during diabetes, and a clinical study involving oral administration of taurine to diabetes patients showed that the platelet hyperaggregation could be normalised [41, 42]. Therefore, increased MPV in patients with diabetic retinopathy may be associated with decreased taurine levels. Furthermore, a study in diabetic rats with an aldose reductase inhibitor showed that polyol pathway activity is involved in the hyperaggregability of platelets [43]. High plasma glucose could increase the intracellular glucose level, which leads to abnormal activation of aldose reductase, a key enzyme in the polyol pathway, reducing glucose to sorbitol [44, 45]. Sorbitol is a polyhydroxy alcohol, hydrophilic, not easy to penetrate the cell membrane, accumulating intracellularly with possible osmotic consequences [44]. The accumulation of sorbitol causes depletion of other osmolytes, such as taurine, causing dysfunction of cell volume regulation [46]. Retinal microvascular lesion of DR is characterized by thickening and microthrombosis of capillary base, and platelet dysfunction has an important influence on development of microvascular complications. The larger MPV, the more likely formation of thrombosis, and in other hand, vascular endothelial injury triggers platelet adhesion and aggregation to accelerate thrombosis. Subgroup analysis exhibited MPV level in NPDR was no difference with T2DM without DR, but in PDR was higher than both of them, which was consistent with theory that platelets do not initiate the pathology of early DR. We reached conclusions that DR grade resulted in the heterogeneity and MPV level was also upregulated in higher DR severity. In addition, in the pooled analysis of MPV, we discovered the heterogeneity was decreased significantly after excluding Papanas et al. [23]. What is special about this article is that only citrate is used in it, while other included articles using EDTA. Citrate is mainly used for hemostasis test and blood sedimentation test. Because its toxicity is small, also used in blood transfusion maintenance fluid. The anticoagulant mechanism is that citrate forms a soluble chelate with calcium ions in blood to prevent blood coagulation. However, the coagulation time of plasma from different sources of thrombin reagents can vary greatly for the same normal person or patient. The results did not change significantly after excluding it, so we took the results of exclusion. We hold the view that the reason why T2DM without DR patients of it might arise from other potential complications affecting real result of MPV, such as nephropathy [15]. However, the final result of MPV didn’t change, which suggested the reliability of our results. There were some articles reporting the relationship between other hematological indicators and diabetic retinopathy, such as NLR [47, 48]. A latest systematic review reported, similar to MPV, higher level NLR appears in DR compared to control and T2DM without DR [49], which may be useful for monitoring DR when combined with MPV.
Of course, there were some limits in our article. First of all, the definition and diagnosis of T2DM without DR and DR were not consistent completely. All of our included studies were case–control or cross-sectional studies, so we couldn’t suppress interference of other non-matched factors. Only English language was included in this meta-analysis, so some eligible studies, which were unpublished or reported in other languages, were likely missed. The intervals of MPV collection and measurement are not completely consistent. Some diabetes-related factors, such as glycaemic control, duration of diabetes and kidney complications, were difficult to be corrected. In addition, many studies have reported that drugs, including statins and metformin, also could affect platelets [5054], but none of the included articles mentioned patients’ medication status. All the factors mentioned above may be sources of heterogeneity, which should be paid attention to in future research design.

Conclusions

Fortunately, higher values of MPV in DR vs T2DM without DR were exhibited, hence, we concluded that platelets have a closed relationship with DR. MPV is easily accessible platelet volume parameters and reflect function of platelet, so it will be of great significance if we can monitor the development and progression of DR with it. Given the significance of MPV in DR grade, we need to attach importance to MPV in the development of DR. Taking account of the limits in this study, more rigorous and high-quality researches need to be implemented to further confirm our conclusions.

Authors’ contributions

SJ and JZ conceived and designed the methods, extracted the original data and drafted the manuscript. SJ, XF, XW, BZ and HS performed statistical analysis. JZ and XN interpreted results. HY revised the manuscript. HY had full access to all data in the study and take responsibility for the integrity of the data and the accuracy of data analysis. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

All data generated or analyzed during this study are included in this article.
Not applicable.
All analyses were based on previous published studies, thus no ethical approval and patient consent are required.

Funding

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Adamis AP. Is diabetic retinopathy an inflammatory disease? Brit J Ophthalmol. 2002;4:363–5.CrossRef Adamis AP. Is diabetic retinopathy an inflammatory disease? Brit J Ophthalmol. 2002;4:363–5.CrossRef
2.
Zurück zum Zitat Higgins JPT. Cochrane handbook for systematic reviews of interventions. Chichester: Wiley-Blackwell; 2008.CrossRef Higgins JPT. Cochrane handbook for systematic reviews of interventions. Chichester: Wiley-Blackwell; 2008.CrossRef
3.
Zurück zum Zitat Mehuys E, De Bolle L, Van Bortel L, Annemans L, Van Tongelen I, Remon JP, Giri M. Medication use and disease management of type 2 diabetes in Belgium. Pharm World Sci. 2008;30:51–6.CrossRef Mehuys E, De Bolle L, Van Bortel L, Annemans L, Van Tongelen I, Remon JP, Giri M. Medication use and disease management of type 2 diabetes in Belgium. Pharm World Sci. 2008;30:51–6.CrossRef
4.
Zurück zum Zitat Goldberg RB. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metab. 2009;9:3171–82.CrossRef Goldberg RB. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metab. 2009;9:3171–82.CrossRef
5.
Zurück zum Zitat Hekimsoy Z, Payzin B, Ornek T, Kandogan G. Mean platelet volume in Type 2 diabetic patients. J Diabetes Complicat. 2004;18:173–6.CrossRef Hekimsoy Z, Payzin B, Ornek T, Kandogan G. Mean platelet volume in Type 2 diabetic patients. J Diabetes Complicat. 2004;18:173–6.CrossRef
6.
Zurück zum Zitat Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL. Platelet dysfunction in type 2 diabetes. Diabetes Care. 2001;24:1476–85.CrossRef Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL. Platelet dysfunction in type 2 diabetes. Diabetes Care. 2001;24:1476–85.CrossRef
7.
Zurück zum Zitat Kodiatte T, Rao S, Manikyam U, Reddy M, Lakshmaiah V, Jagadish T, Lingaiah HK. Mean platelet volume in type 2 diabetes mellitus. J Lab Physicians. 2012;4:5.CrossRef Kodiatte T, Rao S, Manikyam U, Reddy M, Lakshmaiah V, Jagadish T, Lingaiah HK. Mean platelet volume in type 2 diabetes mellitus. J Lab Physicians. 2012;4:5.CrossRef
8.
Zurück zum Zitat Abali G, Akpinar O, Soylemez N. Correlation of the coronary severity scores and mean platelet volume in diabetes mellitus. Adv Ther. 2014;31:140–8.CrossRef Abali G, Akpinar O, Soylemez N. Correlation of the coronary severity scores and mean platelet volume in diabetes mellitus. Adv Ther. 2014;31:140–8.CrossRef
9.
Zurück zum Zitat Endler G, Klimesch A, Sunder-Plassmann H, Schillinger M, Exner M, Mannhalter C, Jordanova N, Christ G, Thalhammer R, Huber K, Sunder-Plassmann R. Mean platelet volume is an independent risk factor for myocardial infarction but not for coronary artery disease. Br J Haematol. 2002;117:399–404.CrossRef Endler G, Klimesch A, Sunder-Plassmann H, Schillinger M, Exner M, Mannhalter C, Jordanova N, Christ G, Thalhammer R, Huber K, Sunder-Plassmann R. Mean platelet volume is an independent risk factor for myocardial infarction but not for coronary artery disease. Br J Haematol. 2002;117:399–404.CrossRef
10.
Zurück zum Zitat Zhou XY, Liu Q, Bai HL, Liang L. Clinical significance of mean platelet volume and neutrophil-to-lymphocyte ratio in patients with diabetic retinopathy. Int Eye Sci. 2016;16:981–3. Zhou XY, Liu Q, Bai HL, Liang L. Clinical significance of mean platelet volume and neutrophil-to-lymphocyte ratio in patients with diabetic retinopathy. Int Eye Sci. 2016;16:981–3.
11.
Zurück zum Zitat Li S, Cao W, Sun X. Role of platelet parameters on neovascular glaucoma, A retrospective case–control study in China. PLoS ONE. 2016;11:e166893. Li S, Cao W, Sun X. Role of platelet parameters on neovascular glaucoma, A retrospective case–control study in China. PLoS ONE. 2016;11:e166893.
12.
Zurück zum Zitat Zhong ZL, Han M, Chen S. Risk factors associated with retinal neovascularization of diabetic retinopathy in type 2 diabetes mellitus. Int J Ophthalmol. 2011;4:182–5.PubMedPubMedCentral Zhong ZL, Han M, Chen S. Risk factors associated with retinal neovascularization of diabetic retinopathy in type 2 diabetes mellitus. Int J Ophthalmol. 2011;4:182–5.PubMedPubMedCentral
13.
Zurück zum Zitat Buch A, Kaur S, Nair R, Jain A. Platelet volume indices as predictive biomarkers for diabetic complications in type 2 diabetic patients. J Lab Physicians. 2017;9:84–8.CrossRef Buch A, Kaur S, Nair R, Jain A. Platelet volume indices as predictive biomarkers for diabetic complications in type 2 diabetic patients. J Lab Physicians. 2017;9:84–8.CrossRef
14.
Zurück zum Zitat Demirtas L, Degirmenci H, Akbas EM, Ozcicek A, Timuroglu A, Gurel A, Ozcicek F. Association of hematological indicies with diabetes, impaired glucose regulation and microvascular complications of diabetes. Int J Clin Exp Med. 2015;7:11420–7. Demirtas L, Degirmenci H, Akbas EM, Ozcicek A, Timuroglu A, Gurel A, Ozcicek F. Association of hematological indicies with diabetes, impaired glucose regulation and microvascular complications of diabetes. Int J Clin Exp Med. 2015;7:11420–7.
15.
Zurück zum Zitat Radha RK, Selvam D. MPV in uncontrolled & controlled diabetics- its role as an indicator of vascular complication. J Clin Diagn Res. 2016;10:EC22–6.CrossRef Radha RK, Selvam D. MPV in uncontrolled & controlled diabetics- its role as an indicator of vascular complication. J Clin Diagn Res. 2016;10:EC22–6.CrossRef
16.
Zurück zum Zitat Dindar S, Cinemre H, Sengul E, Annakkaya AN. Mean platelet volume is associated with glycaemic control and retinopathy in patients with type 2 diabetes mellitus. West Indian Med J. 2013;62:519–23.CrossRef Dindar S, Cinemre H, Sengul E, Annakkaya AN. Mean platelet volume is associated with glycaemic control and retinopathy in patients with type 2 diabetes mellitus. West Indian Med J. 2013;62:519–23.CrossRef
17.
Zurück zum Zitat Tetikoglu M, Aktas S, Sagdik HM, Yigitoglu ST, Ozcura F. Mean platelet volume is associated with diabetic macular edema in patients with type-2 diabetes mellitu. Semin Ophthalmol. 2017;32:651–4.CrossRef Tetikoglu M, Aktas S, Sagdik HM, Yigitoglu ST, Ozcura F. Mean platelet volume is associated with diabetic macular edema in patients with type-2 diabetes mellitu. Semin Ophthalmol. 2017;32:651–4.CrossRef
18.
Zurück zum Zitat Müberra A, Yasemin UB, Kagan H. The association of hematologic inflammatory markers with atherogenic index in type 2 diabetic retinopathy patients. Clin Ophthalmol. 2016;10:1797–801.CrossRef Müberra A, Yasemin UB, Kagan H. The association of hematologic inflammatory markers with atherogenic index in type 2 diabetic retinopathy patients. Clin Ophthalmol. 2016;10:1797–801.CrossRef
19.
Zurück zum Zitat Güngör AA, Gürsoy G, Güngör F, Bayram SM, Atalay E. The relationship of mean platelet volume with retinopathy in type 2 diabetes mellitus. Turk J Med Sci. 2016;46:1292–9.CrossRef Güngör AA, Gürsoy G, Güngör F, Bayram SM, Atalay E. The relationship of mean platelet volume with retinopathy in type 2 diabetes mellitus. Turk J Med Sci. 2016;46:1292–9.CrossRef
20.
Zurück zum Zitat Yilmaz T, Yilmaz A. Relationship between altered platelet morphological parameters and retinopathy in patients with type 2 diabetes mellitus. J Ophthalmol. 2016;2016:1–5. Yilmaz T, Yilmaz A. Relationship between altered platelet morphological parameters and retinopathy in patients with type 2 diabetes mellitus. J Ophthalmol. 2016;2016:1–5.
21.
Zurück zum Zitat Citirik M, Beyazyildiz E, Simsek M, Beyazyildiz O, Haznedaroglu IC. MPV may reflect subcinical platelet activation in diabetic patients with and without diabetic retinopathy. Eye (Lond). 2015;29:376–9.CrossRef Citirik M, Beyazyildiz E, Simsek M, Beyazyildiz O, Haznedaroglu IC. MPV may reflect subcinical platelet activation in diabetic patients with and without diabetic retinopathy. Eye (Lond). 2015;29:376–9.CrossRef
22.
Zurück zum Zitat Ate O, Kiki L, Bilen H, Kele M, Koçer İ, Kulaçoğlu DN, Baykal O. Association of mean platelet volume with the degree of retinopathy in patients with diabetes mellitus. Eur J Gen Med. 2009;9:99–102. Ate O, Kiki L, Bilen H, Kele M, Koçer İ, Kulaçoğlu DN, Baykal O. Association of mean platelet volume with the degree of retinopathy in patients with diabetes mellitus. Eur J Gen Med. 2009;9:99–102.
23.
Zurück zum Zitat Papanas N, Symeonidis G, Maltezos E, Mavridis G, Karavageli E, Vosnakidis T, Lakasas G. Mean platelet volume in patients with type 2 diabetes mellitus. Platelets. 2009;15:475–8.CrossRef Papanas N, Symeonidis G, Maltezos E, Mavridis G, Karavageli E, Vosnakidis T, Lakasas G. Mean platelet volume in patients with type 2 diabetes mellitus. Platelets. 2009;15:475–8.CrossRef
24.
Zurück zum Zitat El HM, Rosado JA. Platelet signalling abnormalities in patients with type 2 diabetes mellitus: a review. Blood Cells Mol Dis. 2008;41:119–23.CrossRef El HM, Rosado JA. Platelet signalling abnormalities in patients with type 2 diabetes mellitus: a review. Blood Cells Mol Dis. 2008;41:119–23.CrossRef
25.
Zurück zum Zitat Kim JH, Bae HY, Kim SY. Response: clinical marker of platelet hyperreactivity in diabetes mellitus. Diabetes Metab J. 2014;38:160–1.CrossRef Kim JH, Bae HY, Kim SY. Response: clinical marker of platelet hyperreactivity in diabetes mellitus. Diabetes Metab J. 2014;38:160–1.CrossRef
26.
Zurück zum Zitat Suslova TE, Sitozhevskii AV, Ogurkova ON, Kravchenko ES, Kologrivova IV, Anfinogenova Y, Karpov RS. Platelet hemostasis in patients with metabolic syndrome and type 2 diabetes mellitus: CGMP- and NO-dependent mechanisms in the insulin-mediated platelet aggregation. Front Physiol. 2015;5:501.CrossRef Suslova TE, Sitozhevskii AV, Ogurkova ON, Kravchenko ES, Kologrivova IV, Anfinogenova Y, Karpov RS. Platelet hemostasis in patients with metabolic syndrome and type 2 diabetes mellitus: CGMP- and NO-dependent mechanisms in the insulin-mediated platelet aggregation. Front Physiol. 2015;5:501.CrossRef
27.
Zurück zum Zitat Gasparyan AY, Ayvazyan L, Mikhailidis DP, Kitas GD. Mean platelet volume: a link between thrombosis and inflammation? Curr Pharm Des. 2011;17:47–58.CrossRef Gasparyan AY, Ayvazyan L, Mikhailidis DP, Kitas GD. Mean platelet volume: a link between thrombosis and inflammation? Curr Pharm Des. 2011;17:47–58.CrossRef
28.
Zurück zum Zitat Enge M, Bjarnegard M, Gerhardt H, Gustafsson E, Kalen M, Asker N, Hammes HP, Shani M, Fassler R, Betsholtz C. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J. 2002;21:4307–16.CrossRef Enge M, Bjarnegard M, Gerhardt H, Gustafsson E, Kalen M, Asker N, Hammes HP, Shani M, Fassler R, Betsholtz C. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J. 2002;21:4307–16.CrossRef
29.
Zurück zum Zitat Yokota T, Ma RC, Park JY, Isshiki K, Sotiropoulos KB, Rauniyar RK, Bornfeldt KE, King GL. Role of protein kinase C on the expression of platelet-derived growth factor and endothelin-1 in the retina of diabetic rats and cultured retinal capillary pericytes. Diabetes. 2003;52:838–45.CrossRef Yokota T, Ma RC, Park JY, Isshiki K, Sotiropoulos KB, Rauniyar RK, Bornfeldt KE, King GL. Role of protein kinase C on the expression of platelet-derived growth factor and endothelin-1 in the retina of diabetic rats and cultured retinal capillary pericytes. Diabetes. 2003;52:838–45.CrossRef
30.
Zurück zum Zitat Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, Clermont A, Leitges M, Marette A, Aiello LP, Kern TS, King GL. Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med. 2009;15:1298–306.CrossRef Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, Clermont A, Leitges M, Marette A, Aiello LP, Kern TS, King GL. Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med. 2009;15:1298–306.CrossRef
31.
Zurück zum Zitat Chen Y, Wang W, Liu F, Tang L, Tang R, Li W. 9-Cis-retinoic acid improves sensitivity to platelet-derived growth factor-BB via RXRalpha and SHP-1 in diabetic retinopathy. Biochem Biophys Res Commun. 2015;465:810–6.CrossRef Chen Y, Wang W, Liu F, Tang L, Tang R, Li W. 9-Cis-retinoic acid improves sensitivity to platelet-derived growth factor-BB via RXRalpha and SHP-1 in diabetic retinopathy. Biochem Biophys Res Commun. 2015;465:810–6.CrossRef
32.
Zurück zum Zitat Praidou A, Papakonstantinou E, Androudi S, Georgiadis N, Karakiulakis G, Dimitrakos S. Vitreous and serum levels of vascular endothelial growth factor and platelet-derived growth factor and their correlation in patients with non-proliferative diabetic retinopathy and clinically significant macula oedema. Acta Ophthalmol. 2011;89:248–54.CrossRef Praidou A, Papakonstantinou E, Androudi S, Georgiadis N, Karakiulakis G, Dimitrakos S. Vitreous and serum levels of vascular endothelial growth factor and platelet-derived growth factor and their correlation in patients with non-proliferative diabetic retinopathy and clinically significant macula oedema. Acta Ophthalmol. 2011;89:248–54.CrossRef
33.
Zurück zum Zitat Schoenberger SD, Kim SJ, Shah R, Sheng J, Cherney E. Reduction of interleukin 8 and platelet-derived growth factor levels by topical ketorolac, 0.45%, in patients with diabetic retinopathy. JAMA Ophthalmol. 2014;132:32–7.CrossRef Schoenberger SD, Kim SJ, Shah R, Sheng J, Cherney E. Reduction of interleukin 8 and platelet-derived growth factor levels by topical ketorolac, 0.45%, in patients with diabetic retinopathy. JAMA Ophthalmol. 2014;132:32–7.CrossRef
34.
Zurück zum Zitat Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbell JM, Gardner TW. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group. Diabetes. 1998;47:1953–9.CrossRef Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbell JM, Gardner TW. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group. Diabetes. 1998;47:1953–9.CrossRef
35.
Zurück zum Zitat Shah B, Sha D, Xie D, Mohler ER, Berger JS. The relationship between diabetes, metabolic syndrome, and platelet activity as measured by mean platelet volume: the national health and nutrition examination survey, 1999–2004. Diabetes Care. 2012;35:1074–8.CrossRef Shah B, Sha D, Xie D, Mohler ER, Berger JS. The relationship between diabetes, metabolic syndrome, and platelet activity as measured by mean platelet volume: the national health and nutrition examination survey, 1999–2004. Diabetes Care. 2012;35:1074–8.CrossRef
36.
Zurück zum Zitat Han JY, Choi DH, Choi SW, Kim BB, Ki YJ, Chung JW, Koh YY, Chang KS, Hong SP. Stroke or coronary artery disease prediction from mean platelet volume in patients with type 2 diabetes mellitus. Platelets. 2013;24:401–6.CrossRef Han JY, Choi DH, Choi SW, Kim BB, Ki YJ, Chung JW, Koh YY, Chang KS, Hong SP. Stroke or coronary artery disease prediction from mean platelet volume in patients with type 2 diabetes mellitus. Platelets. 2013;24:401–6.CrossRef
37.
Zurück zum Zitat Gende OA. Effect of hyperosmolarity on agonist-induced increases of intracellular calcium in human platelets. Thromb Res. 2003;110:33–7.CrossRef Gende OA. Effect of hyperosmolarity on agonist-induced increases of intracellular calcium in human platelets. Thromb Res. 2003;110:33–7.CrossRef
38.
Zurück zum Zitat Pasentes-Morales H, Schousboe A. Role of taurine in osmoregulation in brain cells: mechanisms and functional implications. Amino Acids. 1997;12:281–92.CrossRef Pasentes-Morales H, Schousboe A. Role of taurine in osmoregulation in brain cells: mechanisms and functional implications. Amino Acids. 1997;12:281–92.CrossRef
39.
Zurück zum Zitat Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Ussinger DH. Functional significance of cell volume regulatory mechanisms. Physiol Rev. 1998;78:247–306.CrossRef Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Ussinger DH. Functional significance of cell volume regulatory mechanisms. Physiol Rev. 1998;78:247–306.CrossRef
40.
Zurück zum Zitat Jacobsen JG, Smith LH. Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev. 1968;48:424–511.CrossRef Jacobsen JG, Smith LH. Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev. 1968;48:424–511.CrossRef
41.
Zurück zum Zitat Franconi F, Bennardini F, Mattana A, Miceli M, Ciuti M, Mian M, Gironi A, Anichini R, Seghieri G. Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: effects of taurine supplementation. Am J Clin Nutr. 1995;61:1115–9.CrossRef Franconi F, Bennardini F, Mattana A, Miceli M, Ciuti M, Mian M, Gironi A, Anichini R, Seghieri G. Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: effects of taurine supplementation. Am J Clin Nutr. 1995;61:1115–9.CrossRef
42.
Zurück zum Zitat Franconi F, Miceli M, Fazzini A, Seghieri G, Caputo S, DiLeo MA, Lepore D, Ghirlanda G. Taurine and diabetes—humans and experimental models. Adv Exp Med Biol. 1996;403:579–82.CrossRef Franconi F, Miceli M, Fazzini A, Seghieri G, Caputo S, DiLeo MA, Lepore D, Ghirlanda G. Taurine and diabetes—humans and experimental models. Adv Exp Med Biol. 1996;403:579–82.CrossRef
43.
Zurück zum Zitat Hara T, Nakamura J, Koh N, et al. An aldose reductase inhibitor, TAT, prevented hyperaggregation in diabetic rats. In: Hotta N, Greene DA, Ward JD, Sima AAF, Boulton AJM, editors. Diabetic neuropathy: new concepts and insights, vol. 1084., Int Congr SerAmsterdam: Excerpta medica; 1995. p. 137–41. Hara T, Nakamura J, Koh N, et al. An aldose reductase inhibitor, TAT, prevented hyperaggregation in diabetic rats. In: Hotta N, Greene DA, Ward JD, Sima AAF, Boulton AJM, editors. Diabetic neuropathy: new concepts and insights, vol. 1084., Int Congr SerAmsterdam: Excerpta medica; 1995. p. 137–41.
44.
Zurück zum Zitat Gabbay KH. The sorbitol pathway and the complications of diabetes. N Engl J Med. 1973;288:831–6.CrossRef Gabbay KH. The sorbitol pathway and the complications of diabetes. N Engl J Med. 1973;288:831–6.CrossRef
45.
Zurück zum Zitat Oates PJ. The polyol pathway and diabetic peripheral neuropathy. In: Tomlinson DR, editor. Neurobiology of diabetic neuropathy, vol. 5. London: International Review of Neurobiology, Academic Press; 2002. p. 325–92.CrossRef Oates PJ. The polyol pathway and diabetic peripheral neuropathy. In: Tomlinson DR, editor. Neurobiology of diabetic neuropathy, vol. 5. London: International Review of Neurobiology, Academic Press; 2002. p. 325–92.CrossRef
46.
Zurück zum Zitat Burg MB, Kador PF. Sorbitol, osmoregulation and the complications of diabetes. J Clin Invest. 1988;81:635–40.CrossRef Burg MB, Kador PF. Sorbitol, osmoregulation and the complications of diabetes. J Clin Invest. 1988;81:635–40.CrossRef
47.
Zurück zum Zitat Öztürk ZA, Kuyumcu ME, Yesil Y, Savas E, Yildiz H, Kepekçi Y, Arioğul S. Is there a link between neutrophil-lymphocyte ratio and microvascular complications in geriatric diabetic patients? J Endocrinol Invest. 2013;36:593–9.PubMed Öztürk ZA, Kuyumcu ME, Yesil Y, Savas E, Yildiz H, Kepekçi Y, Arioğul S. Is there a link between neutrophil-lymphocyte ratio and microvascular complications in geriatric diabetic patients? J Endocrinol Invest. 2013;36:593–9.PubMed
48.
Zurück zum Zitat Wang RT, Zhang JR, Li Y, Liu TM, Yu KJ. Neutrophil–lymphocyte ratio is associated with arterial stiffness in diabetic retinopathy in type 2 diabetes. J Diabetes Complicat. 2015;29:245–9.CrossRef Wang RT, Zhang JR, Li Y, Liu TM, Yu KJ. Neutrophil–lymphocyte ratio is associated with arterial stiffness in diabetic retinopathy in type 2 diabetes. J Diabetes Complicat. 2015;29:245–9.CrossRef
49.
Zurück zum Zitat Ji SF, Ning XN, Zhang J. Neutrophil to lymphocyte ratio for diagnosis of diabetic retinopathy: a meta-analysis. Ophthalmol China. 2018;27:442–6. Ji SF, Ning XN, Zhang J. Neutrophil to lymphocyte ratio for diagnosis of diabetic retinopathy: a meta-analysis. Ophthalmol China. 2018;27:442–6.
50.
Zurück zum Zitat Xian-Yu JB, Feng JF, Chen YC, Yang YW. Effects of simvastatin and atorvastatin on biochemical and hematological markers in patients with risk of cardiovascular diseases. Int J Clin Exp Med. 2015;8:13983–9.PubMedPubMedCentral Xian-Yu JB, Feng JF, Chen YC, Yang YW. Effects of simvastatin and atorvastatin on biochemical and hematological markers in patients with risk of cardiovascular diseases. Int J Clin Exp Med. 2015;8:13983–9.PubMedPubMedCentral
51.
Zurück zum Zitat Papanas N, Maltezos E. Rosuvastatin and mean platelet volume in diabetes. Angiology. 2016;67:113–5.CrossRef Papanas N, Maltezos E. Rosuvastatin and mean platelet volume in diabetes. Angiology. 2016;67:113–5.CrossRef
52.
Zurück zum Zitat Kucera M, Balaz D, Kruzliak P, Ciccocioppo R, Oravec S, Rodrigo L, Zulli A, Hirnerova E, Sabaka P, Komornikova A, Sabo J, Slezak P, Gaspar L. The effects of atorvastatin treatment on the mean platelet volume and red cell distribution width in patients with dyslipoproteinemia and comparison with plasma atherogenicity indicators—a pilot study. Clin Biochem. 2015;48:557–61.CrossRef Kucera M, Balaz D, Kruzliak P, Ciccocioppo R, Oravec S, Rodrigo L, Zulli A, Hirnerova E, Sabaka P, Komornikova A, Sabo J, Slezak P, Gaspar L. The effects of atorvastatin treatment on the mean platelet volume and red cell distribution width in patients with dyslipoproteinemia and comparison with plasma atherogenicity indicators—a pilot study. Clin Biochem. 2015;48:557–61.CrossRef
53.
Zurück zum Zitat Sivri N, Tekin G, Yalta K, Aksoy Y, Senen K, Yetkin E. Statins decrease mean platelet volume irrespective of cholesterol lowering effect. Kardiol Pol. 2013;71:1042–7.CrossRef Sivri N, Tekin G, Yalta K, Aksoy Y, Senen K, Yetkin E. Statins decrease mean platelet volume irrespective of cholesterol lowering effect. Kardiol Pol. 2013;71:1042–7.CrossRef
54.
Zurück zum Zitat Dolasik I, Sener SY, Celebi K, Aydin ZM, Korkmaz U, Canturk Z. The effect of metformin on mean platelet volume in diabetic patients. Platelets. 2013;24:118–21.CrossRef Dolasik I, Sener SY, Celebi K, Aydin ZM, Korkmaz U, Canturk Z. The effect of metformin on mean platelet volume in diabetic patients. Platelets. 2013;24:118–21.CrossRef
Metadaten
Titel
The relationship between mean platelet volume and diabetic retinopathy: a systematic review and meta-analysis
verfasst von
ShuaiFei Ji
Jie Zhang
XiuDe Fan
XiQiang Wang
XiaoNa Ning
BaBo Zhang
Heng Shi
Hong Yan
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Diabetology & Metabolic Syndrome / Ausgabe 1/2019
Elektronische ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-019-0420-3

Weitere Artikel der Ausgabe 1/2019

Diabetology & Metabolic Syndrome 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.