Skip to main content
Erschienen in: Molecular Cancer 1/2019

Open Access 01.12.2019 | Review

The role of extracellular vesicles from different origin in the microenvironment of head and neck cancers

verfasst von: Changqing Xie, Ning Ji, Zhangui Tang, Jing Li, Qianming Chen

Erschienen in: Molecular Cancer | Ausgabe 1/2019

Abstract

The proliferation and metastasis ability of tumors are mediate by the "mutual dialogue" between cells in the tumor microenvironment (TME). Extracellular vesicles (EVs), mainly exosomes and microvesicles, play an important role in achieving intercellular substance transport and information transfer in the TME. Initially considered "garbage dumpsters" and later referred to as "signal boxes", EVs carry "cargo" (proteins, lipids, or nucleic acids) that can redirect the function of a recipient cell. Currently, the molecular mechanisms and clinical applications of EVs in head and neck cancers (HNCs) are still at an early stage and need to be further investigate. In this review, we provide insight into the TME of HNCs, classifying and summarizing EVs derived from different cell types and illuminating their complex signaling networks involved in mediating tumor proliferation, invasion and metastasis, vascular angiogenesis and cancer drug resistance. In addition, we highlight the application of EVs in HNCs, underlining the special pathological and physiological environment of HNCs. The application of tumor heterogeneous EVs in saliva and circulating blood diagnostics will provide a new perspective for the early screening, real-time monitoring and prognostic risk assessment of HNCs. Given the concept of precise and individual therapy, nanostructured EVs are equipped with superior characteristics of biocompatibility, low immunogenicity, loadability and modification ability, making these molecules one of the new strategies for HNCs treatment.
Abkürzungen
AJCC
American Joint Committee on Cancer
AKT
AKT serine/threonine kinase
ALIX
Apoptosis-linked gene 2-interacting protein X
ARF6
ADP ribosylation factor 6
CAFs
Cancer-associated fibroblasts
CHD9
Chromodomain helicase DNA binding protein 9
CTCs
Circulating tumor cells
ctDNA
Circulating tumor DNA
CXCLs
Chemokine (C-X-C motif) ligand
DENND2D
DENN/MADD Domain Containing 2D
Dsg-2
C-terminal fragment of desmoglein 2
EBV
Epstein-Barr virus
ECM
Extracellular matrix
EGFR
Epidermal growth factor receptor
EMT
Epithelial-mesenchymal transition
ERK
Extracellular regulated mitogen-activated protein kinase
ESCRT
Sorting complex required for transport
EVs
Extracellular vesicles
Fas-L
Fas ligand
FGF
Fibroblast growth factor
FGF-11
Fibroblast growth factor 11
FGF-19
Fibroblast growth factor 19
FGF-2
Fibroblast growth factor 2
FGF-4
Fibroblast growth factor 4
GLI1
GLI family zinc finger 1
HIF-1α
Hypoxia inducible factor 1 subunit alpha
HIF-2α
Hypoxia inducible factor 2 subunit alpha
HIFs
Hypoxia-inducible factors
HNCs
Head and neck cancers
HPV
Human papilloma virus
HSP-90
Heat shock protein 90
HSPs
Heat shock proteins
IARC
International Agency for Research on Cancer
ICAM-1
Intercellular adhesion molecule 1
IFNs
Interferons
IFN-γ
Interferon gamma
IL-1β
Interleukin 1 beta
IL-6
Interleukin-6
IL-8
Interleukin-8
ILVs
Intraluminal vesicles
IRF-3
Interferon regulatory factor 3
LMP1
Latent membrane protein
LPS
Lipopolysaccharides
MAPK
Mitogen-activated protein kinase
MDSCs
Myeloid-derived suppressor cells
MFAP5
Microfibril associated protein 5
MHC
Major histocompatibility complex
MMP-2/9/13
Matrix metallopeptidase 2/9/13
MMPs
Matrix metallopeptidases
MUC16
Mucin 16, cell surface associated
MVBs
Multivesicular bodies
MVEs
Multivesicular endosomes
NAP1
Kinase-associated protein 1; nSMase
neutral sphingomyelinase
NF-kB
Nuclear factor kappa B
NPC
Nasopharyngeal carcinoma
OPC
Opharyngeal cancer
OSCC
Oral squamous cell carcinoma
PDCD4
Programmed cell death 4
PDGF
Fibroblast growth factor
PFKFB3
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
PI3K
Phosphoinositide-3-kinase
PLP
Proteolipid protein
PM
Plasma membrane
PTEN
Phosphatase and tensin homolog
RAB
Ras-related protein
RAB11
Ras-related protein 11
RAB22A
Ras-related protein 22A
RAB27
Ras-related protein 27
RAB35
Ras-related protein 35
ROS
Reactive oxygen species
SCCs
Squamous cell carcinomas
Shh
Sonic hedgehog
SIRPA
Signal regulatory protein alpha
STAT
Signal transducer and activator of transcription
STAT-1
Signal transducer and activator of transcription 1
STAT-3
Signal transducer and activator of transcription 3
STAT-5
Signal transducer and activator of transcription 5
TfR
Transferrin receptor
TGFBR1
Transforming growth factor beta receptor 1
TGF-β
Transforming growth factor beta
TGN
Trans-Golgi neteok
TME
Tumor microenvironment
TNF-α
Tumor necrosis factor alpha
TRAP1
TNF receptor associated protein 1
TSG101
Tumor susceptibility 101
TSGA10
Testis specific 10
TSP-1
Tumor suppressor region 1
TβRII
Transforming growth factor beta receptor II
UCH-L1
Ubiquitin C-terminal hydrolase L1
VEGF
Vascular endothelial growth factor
VEGF-A
Vascular endothelial growth factor A
VPS4
Vacuolar protein sorting 4 homolog
WRN
Werner syndrome RecQ like helicase
ZO-1
Tight junction protein 1
α-SM
Actin, alpha 2, smooth muscle, aorta

Introduction

Head and neck cancers (HNCs) is one of the most common malignant tumors in the world. The head and neck section addresses nonmelanoma skin cancer (NMSCs) of the head and neck as well as those malignancies that arise from the mucosal surfaces of the upper aero-digestive tract (UADT) and salivary glands, thyroid cancers are part of a separate section in the AJCC Cancer Staging Manual, eighth edition [1]. The HNCs described herein will mainly include almost all mucous malignancies of the oral cavity (e.g., tongue, buccal, gingiva, lip, and palate), oropharynx, larynx and nasopharynx [1]. In addition, the jaw, salivary glands, and maxillary sinuses are also included, and more than 90% HNCs are squamous cell carcinomas (SCCs) [2, 3]. Data from the International Agency for Research on Cancer (IARC), based on GLOBOCAN worldwide estimates, show that approximately 600,000 new cancer cases are reported (accounting for approximately 3% to 5% of all malignancies), and 350,000 cancer-related deaths occur (accounting for approximately 4% of the world total) worldwide each year, bringing serious challenges to social and public health [46].
Numerous epidemiological studies have reached a consensus that tobacco and alcohol consumption, both of which have synergistic effects, are the major risk factors for HNCs. In high-income countries, 71% and 37% of patients with oral cancer died from smoking and alcohol, respectively, compared with 33% and 14% in low- and middle-income countries [5, 7, 8]. A growing number of studies have suggested that betel-quid chewing with or without tobacco [9, 10], and human papilloma virus (HPV) infection (HPV16/18) are intimately related to the occurrence of HNCs. These two risk factors may lead to the younger age distribution and the increased rate of females in HNCs in recent years [11].
The treatment of local and early HNCs mainly involves resection with clear 1- to 2-cm margins [3]. In patients with advanced stage cancers and cervical lymph node metastasis, radical surgery combined with radiotherapy/chemotherapy adjunctive therapy is required [2, 3]. The strong invasion, migration and metastasis of HNCs leads to clinical treatment difficulty and poor prognosis. Over the past several decades, although there has been many innovations in HNCs treatment strategies, the overall 5-year survival rate is still only approximately 60% [2, 3, 5, 12]. Consequently, investigating the molecular mechanism and screening precise biomolecular markers of HNCs development is a tremendous challenge and opportunity.
Increasing numbers of studies have demonstrated that the interaction between tumor cells and the tumor microenvironment plays a crucial role in manipulating the tumor immune response, tumor progression and metastasis [13]. The tumor microenvironment has unique heterogeneity and diversity, which not only refers to the homeostatic intracellular environment of tumor cells but also the extracellular stromal cells (for example, fibroblasts, mesenchymal stem cells, various immune cells, vascular endothelial cells, etc.) and multiple tumor-promoting bioactive molecules [14]. Compared to the normal tissue environment, the tumor microenvironment has many different physical and chemical properties, which characterized by low oxygen, low pH and high interstitial pressure [1518]. Due to this peculiarity, complex network signal communication between cells in the tumor microenvironment is triggered via several growth factors, cytokines, proteolytic enzymes and other active factors and is initially beneficial to tumor cell proliferation, migration, invasion, angiogenesis and radiotherapy/chemotherapy resistance. Among these biological mediators, extracellular vesicles (EVs), which function as information messengers, have gradually attracted the attention of researchers.

Background of extracellular vesicles (EVs)

EVs are a subcellular structure of phospholipid bilayers membrane-enclosed vesicles. Numerous studies have shown that the cells of virtually all organisms (from prokaryotes to eukaryotes) can release the EVs to extra-environment in an autocrine or paracrine manner [19]. Initially considered "garbage dumpsters" and later referred to as "signal boxes", the entire history of the development of EVs can be divided into three periods. The first period was in the 1960s. Researchers extracted a precipitate from normal blood by high-speed centrifugation and confirmed that this precipitate, similar to the thromboplastic protein fraction, which is the predecessor of EVs, can reverse coagulation dysfunction [20]. Subsequently, it was further confirmed that activated platelets can release lipid-rich particles, referred to as “platelet dust”, which contain platelet factor 3 and can accelerate coagulation [21]. The second period was the 1970s and 1980s. Multiple studies have demonstrated the presence of membrane-like vesicle structures in other solid tissues, physiological fluids, and cell culture supernatants [2224]. In addition to vesicles that originate directly from membrane shedding, researchers have revealed that vesicle structures are also derived from the intracellular secretion pathway of multivesicular endosomes (MVEs) or multivesicular bodies (MVBs), which are named exosomes [25, 26]. The third period is after the 1990s, during which the cell-cell communication function of EVs has gradually gained value, beginning with a landmark discovery of Epstein-Barr virus (EBV) infected B-cells capable of secreting molecules for the enrichment of major histocompatibility complex (MHC) class II-stimulated CD4+ T lymphocytes involved in the immune response [27, 28]. EVs are rich in lipids, polypeptides, proteins, RNA, DNA and other bioactive substances. EVs could be involved in various physiological and pathological processes, including cell cycle, apoptosis [29], angiogenesis [30], thrombosis formation [31], immune inflammation [32], fibrosis [33], and tumor development [34, 35].
The extraction methods for EVs have been very mature and commercialized [36]. Classical methods widely recognized by academic researchers, include ultracentrifugation [37], gel exclusion chromatography [38], immunoprecipitation [39], high performance liquid chromatography [40], flow cytometry [41], microfluidic chip [42] and other technologies, can acquire different subsets EVs. Western blotting, transmission electron microscopy, dynamic light scattering, and nanoparticle tracking analysis can identify these molecules. However, these methods cannot completely purify specific subpopulations, the products are often enriched with mixed vesicles in which one subgroup is dominant. These vesicles have more or less overlapping or similar particle sizes, morphologies, origins, contents, and functions. At present, the most classical EVs are mainly of two major types: exosomes and microvesicles [43].

Biogenesis of exosomes

Exosomes are endosome-derived vesicles with a particle diameter of 30-100 nm (or 150 nm) and are cup- or disc-shaped under electron microscopy [19, 27, 44]. The formation of endosomes is the result of the dynamic equilibrium of membrane regeneration and degradation [45] (Fig. 1a). The formation of early endosomes originating from membrane retraction accompanied the continuous inward generation and enrichment of intraluminal vesicles (ILVs), which could be consider as exosomes [28]. Early endosomes can evolve into MVEs or MVBs, which ultimately fuse with cell membranes to excrete intrinsic exosomes and other active substances or undergo degradation in lysosomes and autophagosomes [46, 47].
A variety of proteins and molecules are involved in the formation, content assembly and secretion of exosomes. The most explicit mechanism is the endosomal sorting complex required for transport (ESCRT) complex and its associated accessory proteins (ALIX, VPS4, and TSG101) [28, 48]. The general process is as follows. First, the ESCRT complex (0, I, and II) actively recognizes and sequester ubiquitinates proteins on the endosomal membrane and then inward regenerates the buds to form the ILV/exosome structure through membrane remodeling. Finally, ESCRT-III performs a cutting function to free the ILV/exosome [44]. Studies have also confirmed that the formation of exosomes can be independent of the ESCRT pathway. For example, tetraspanins CD63 [49] and lipid metabolism enzymes neutral sphingomyelinase (nSMase) [50] can also induce and assemble exosome contents.
The key protein that regulates the intracellular trafficking of exosomes is the RAB family proteins, which consists of more than 60 GTPases [28]. The diversity of individual RAB binding partner determines the specific vesicle transport route and creates the complexity of membrane trafficking [28, 51]. RAB5 and RAB21 are involved in early endosome transport and mediate endocytosis pathway while RAB7 regulates cargo trafficking from early endosome to late endosome and subsequently to lysosome for degradation [52]. RAB27 is consider as a pivot protein involving in tumor-associated vesicle trafficking and highly expressed in many tumors. In addition, a lot of RAB proteins are associated with exocytic pathway including RAB 3, RAB11, RAB26, RAB27, RAB37, RAB35 and RAB38 [19]. Another vesicle transport route is from trans-Golgi network (TGN) to the plasma membrane, which is mediate by RAB22 and RAB31. Different RAB subtype proteins can selectively regulate the transport of different exosomes and anchor MVBs on the cell membrane [53]. For example: RAB27 regulates the transport and release of exosomes from advanced endosomes rich in CD63, ALIX, TSG101 [54], whereas the release of early nuclear endosomes rich in Wnt, PLP, and TfR is associated with RAB11 and RAB35 [55]. Ultimately, MVBs fuse with the membrane for the release of exosomes into the extracellular environment.

Biogenesis of microvesicles

Compared to exosomes, the biogenesis of microvesicles (ectosomes, microparticles) is relatively simple. These vesicles are formed directly from the budding or shedding of the plasma membrane (PM) and have particle diameters ranging from 50 nm to 10 μm [56]. The biogenesis of PM-derived vesicles are diverse and homologous to the exosomes (Fig. 1b). The crosslinking of membrane surface receptors induces membrane retraction through the ESCRT pathway to form early endosomes that differentiate into exosomes or sprouting to form PM-derived vesicles [28]. In addition, external stress (DNA damage and irradiation), changes in intracellular calcium levels [57], and GTPase ARF6 overexpression also can trigger the release of PM-derived EVs by remodeling the cytoskeleton [58].

Dysregulation of EVs in the tumor microenvironment (TME)

Compared to the normal state,there is a difference between the population and contents of EVs in the pathological microenvironment [59]. When cells exposed to various stress responses (e.g. hypoxia, acidity, and nutritional deficiencies), the biogenesis, content sorting and release of the EVs could change, and these molecules become the active factors that initiate the signaling pathway. For example, GTPase RAB22A regulates the secretion of extracellular vesicles depending on the hypoxia-inducible factors (HIFs) in a hypoxic environment [60]. Additionally, fat production-related pathways could be activate, and this abnormal fat metabolism is conducive to the formation and release of cancer cell exosomes [61]. However, triglyceride accumulation in exosomes results in an "energy storehouse", which can influence epithelial remodeling and connectivity functions [62, 63], and therefore promote the proliferation and infiltration of cancer cells. Hypoxic-EVs contain various oncogenic molecules that participate in the blood vessel formation, cell metastasis and other signaling pathways that ultimately affect the development of cancer [62, 64, 65]. Moreover, under the stimulation of inflammatory factors, such as TNF-α, IL-1β, IFN-γ and LPS, endothelial cells can upregulate exosome secretion in a concentration-dependent manner [66]. Proteomic and gene expression analyses have shown that superoxide dismutase, VEGF, immune activation factor, and NF-kB signaling molecules were overexpress in EVs compared to normal endothelial cells [66, 67].
In summary, the mechanism of EVs produced by different cells and the characteristics of EVs produced under physiological and pathological conditions are different. Based on the specificity anatomy of the head and neck (e.g., the initial segment of the digestive tract and respiratory tract, the coexisting hard tissue and mucosal soft tissue, and the dynamic microenvironment of saliva and plaque microbes), EVs in the HNCs microenvironment have unique characteristics. Sequencing or proteomic analysis data could show the specificity results of HNCs-derived EVs (Table 1).
Table 1
Sequencing or array and proteomic analysis datas results from different samples of HNCs-derived Evs
https://static-content.springer.com/image/art%3A10.1186%2Fs12943-019-0985-3/MediaObjects/12943_2019_985_Tab1_HTML.png
Oral Squamous Cell Carcinoma (OSCC) cell line: HSC-3, SQUU-A, Cal-27, SCC-4, SCC-9, SCC-25, H413, HOC313. Head and Neck cancers (HNCs) cell lines: SQUU, BHY,Tu167, HN60, SCC0209, Detroit 562, FaDu, TW03, C666-1. AFs: adjacent tissue fibroblasts. DOK: oral dysplastic cell line. NP69, NP460: immortalized nasopharyngeal epithelial cells

Function of EVs in head and neck cancers

Traditionally, tumor cells play a central leading role in the TME. However, in recent decades, studies have revealed that the successful proliferation and metastasis of cancer are inseparable from the "mutual dialogue" between tumor cells and stroma (Fig. 2 and Table 2).
Table 2
The function of different cell-derived EVs in the microenvironment of HNCs
https://static-content.springer.com/image/art%3A10.1186%2Fs12943-019-0985-3/MediaObjects/12943_2019_985_Tab2_HTML.png

EVs in cancer-to-cancer communication

Heterogenous tumor cells can increase the motility and angiogenic activity of surrounding tumor cells by secreting EVs and creating a premetastatic microenvironment [59, 68], which is one of the key mechanisms of tumor recurrence and metastasis. By artificially mimicking the OSCC TME (arranging tumor cells in a three-dimensional myoma or collagen gel model), it was found that tumor-derived exosomes play an important role in regulating tumor epithelial morphology and function [69]. Exosomes could promote the formation of tumor epithelial islands and of the expression of interstitial cell characteristics, such as upregulating N-cadherin, downregulating E-cadherin and GLI-1, and eventually promoting the epithelial-mesenchymal transition (EMT) [70, 71]. Shinya Sento et al. demonstrated that OSCC-derived exosomes can self-uptake or become absorbed by surrounding tumor cells and then accelerate cell proliferation and invasion by activating AKT, MAPK/ERK, and JNK signaling pathways [72].
However, it is unclear what kind of active molecules in HNC-derived EVs play a role in the regulation of tumor progression. Proteomic analyses revealed that OSCC-derived EVs contain a series of tumor-associated proteins, including TRAP1, EGFR, HSP-90, and MMP-13. These proteins are significantly associated with the clinical stage and prognosis of OSCC patients and may serve as potential biomakers for metastatic phenotype and treatment of OSCC [7375]. LMP1-positive exosomes and exosomal HIF-1α can also increase motility and invasiveness of HNCs via the EMT [76]. Andrew M. Overmiller et al. found that HNC-derived exosomes are rich in Dsg-2 [77]. The overexpression of Dsg-2 may promote tumor progression by degrading caveolins and matrix metalloproteinases could enhance EVs biogenesis and mitogenic effects [7779].
Noncoding RNAs in HNCs-derived EVs are involved in the regulation of tumor progression [80, 81]. These noncoding RNAs may play an important function in promoting tumor development or inhibiting tumor progression. Hypoxia-induced OSCC exosomes can increase cancer cell migration and infiltration capacity. MiRNA-21 is significantly upregulated in hypoxic-derived OSCC exosomes, which is dependent on HIF-1α and HIF-2α pathways. MiRNA-21-enrich exosomes increase the expression of Snail and Vimentin proteins and downregulate E-cadherin levels in tumor cells, suggesting that OSCC can create a niche for distant transfer through the EMT [75, 82]. Highly metastatic and invasion oral cancer cells can transport exosome-derived miRNA-1246 and miRNA-200c-3p to the parental OSCC, which could target and bind to DENN/MADD Domain Containing 2D (DENND2D) and CHD9/WRN to promote tumor cell proliferation, metastasis, and invasion [83, 84]. More interestingly, the expression of miRNAs in EVs is a "selective" but not random process. OSCC cell lines can selectively package and discard miR-142-3p in exosomes. This process can activate the TGFBR1 pathway, which promotes endothelial cell angiogenesis and maintains the malignant states of tumor cells [85, 86].
Drug resistance is the main reason for the failure of chemotherapy in cancer patients. Interestingly, the exposure of head and neck tumor cells to some chemotherapy drugs (cisplatin, doxorubicin, and ROS-associated drugs) can lead to an imbalance of oncogenic contents in EVs and reduce the anti-proliferation and anti-metastatic effect of chemotherapy drugs [87, 88]. High chemoresistance OSCC cells can enhance drug resistance and reduce DNA damage by encapsulating miRNA-21 in exosomes and transporting it to target PTEN and PDCD4 [87, 89]. Radiation stress could increase the secretion of exosomes, and which could absorbed by unexposed tumor cells, hence increasing tumor cell migration and radiotherapy tolerance by provoking AKT-related signaling pathways or participating the repair of DNA double-strand break [90, 91].

EVs in cancer-to-stroma communication

Tumor cell-derived extracellular vesicles, in addition to their uptake, can also transported to tumor stromal cells in a paracrine manner. Illumination of the mechanism of tumor-derived exosomes in mediating cell-cell communication could definitely provide a new perspective for the development of tumors.

Cancer-to-endothelial cells

Folkman proposed the concept of "tumor growth depends on angiogenesis" as early as the 1970s [92]. Tumor angiogenesis activity has important value for histopathological grading, radiotherapy evaluation and prognosis. Therefore, patients undergoing surgery, radiotherapy and chemotherapy combined with tumor vascular blocking could effectively prevent the proliferation and metastasis of tumors. At present, studies on the mechanism of tumor angiogenesis have mainly focuses on a variety of pro-angiogenic factors (e.g., VEGF, FGF, PDGF) [93], but EVs also play an important role in the regulation of tumor angiogenesis [94].
The EVs derived from HNC cell can promote the malignant phenotype of tumor cells by delivering exosomal PFKFB3, Shh and other angiogenic proteins and activating the relevant model pathway to induce endothelial proliferation and tube formation [95, 96]. In addition, nasopharyngeal carcinoma (NPC) cell-derived exosomal miRNA-23a directly target the TSGA10 region to promote endothelial cell proliferation, migration and tube formation to regulate tumor growth [97]. Recent studies have shown that epiegulin-, MMP-13-, ICAM-1- or TSP-1-enriched exosomes could strengthen the release of vascular endothelial growth factors (VEGF-A, FGF-2, IL-8) and then downregulate junction-related proteins (claudins and ZO-1) that promote tumor angiogenesis and vascular permeability, becoming a potential passway system for distant metastasis of tumor cells [70, 71, 73, 98].

Cancer-to-fibroblast cells

Cancer-associated fibroblasts (CAFs) are the major stromal cells in the TME [99]. Under physiological conditions, fibroblasts secrete a variety of factors (collagens, fibronectin, etc.) that play a role in maintaining the homeostasis of the extracellular matrix (ECM). In tumor microenvironment, fibroblasts cloud activated by tumor-associated chemokines (e.g., TGF-β, IL-6, and IL-8) and subsequently converted to CAFs. Tumor cell-derived exosomes can also assist in fibroblast translation to CAFs, resulting in a premetastatic microenvironment [100, 101]. Oral tumor cells can package their "undesirable" or "unhealthy" substances in EVs to relieve the damage caused by external environmental stimuli and simultaneously promote high expression of α-SMA and Twist by fibroblasts, suggesting that exosomes may mediate the EMT and regulate the conversion of fibroblasts into CAFs [79]. In order to adapt the hypoxia and hypo-nutrient conditions, tumor cells can achieve metabolic reprogramming by regulating the release EVs [102]. Hypoxia induces oral tumor cells or CAFs to secrete caveolin-1, trafficking by extracellular vesicles, which as a direct transcriptional target of HIF-1α and HIF-2α. On the one hand, EVs derived from tumor cells cause a crisis on oxidative stress of the TME. On the other hand, caveolin-1-null CAFs, induced by exocytosis or other pathways, provide multiple metabolic substrates (e.g., lactate, pyruvate, ketone) for tumor tissues. In brief, EVs may be involved in the construction of pseudo-hypoxic conditions of the TME and contribute to tumor development. Moreover, EVs from HNSCC encapsulate a large number of mitogenic proteins that regulate the proliferation of fibroblasts by various types of pathways such as EGFR, AKT, and ERK1/2, in a concentration-dependent manner [77].

Cancer-to-immune cell

The effective amplification and metastasis of cancer cannot separated from the immune escape ability of cancer cell or treatment-mediated immune surveillance. Tumor cell-derived EVs are indispensable targets in the complex network of tumor immunity [103]. Tumor cell-derived EVs can suppress immune function, promote the differentiation of regulatory T cells and tumor-associated macrophages, and even replace tumor cells with immune cell attack to assist tumor cell immune tolerance and immune escape [104106].
HNC-derived exosomes can prevent the proliferation of T lymphocytes and inhibit their differentiation into Th-1 and Th-17 cell subtypes and promote their conversion to Treg lymphocytes and myeloid-derived suppressor cells (MDSCs) [107]. Compared to other T-cell subtypes, Tregs are more susceptible to regulation by tumor-derived exosomes, leading to of the increased production of immunosuppressive adenosine [108]. HNC-derived exosomes enriched galectin-1 mediate the downregulation of STAT-1/-3 phosphorylation and upregulation of STAT-5 phosphorylation via the MAPK/ERK pathway or decrease expression of CD27/28-induced CD8+ T cells, displaying a suppressor phenotype [109]. Similar research proves that hypoxia inducing the upregulation of exosomal miRNA-24-3p in HNCs, which can repress FGF-11 to inhibit phosphorylation of the ERK and STAT proteins of T cell [110]. HNC-derived EVs function by endocytosis and activate T-cell surface receptors to regulate the transcription of immune-related genes. The surface proteins Fas-L and MHC-I of HNC-derived EVs mediate the apoptosis of CD8+ T lymphocytes [111114]. The effects of oral tumor cell-derived exosomes on macrophages are uncertain. These vesicles can induce the polarization of THP-1 cell to tumor-associated macrophages M2 but have no significant effect on primary human macrophages [115]. Under certain conditions, EVs can also mediated antitumor immune responses. HNC-derived exosomes can upregulation NF-κB-activating NAP1 expression in NK cells, activate the expression and phosphorylation of IRF-3, and release multiple antitumor inflammatory factors (IFNs, CD40/80/86, and CXCLs) [116]. Overall, HNC-derived EVs mediate the bidirectional regulation of tumor immunity, suggesting that future immunotherapy may be based on the tumor microenvironment or individualized treatment of circulating EVs.

EVs in stroma-to-cancer communication

The transfer of EVs between tumor cells and stroma cells is not unidirectional but rather occurs through dynamic bidirectional and multidirectional complex signal network (Fig. 3 ). Stromal cells are not a passive bystander in the development of tumors. Practically, stromal-derived EVs play a critical role in the reconstruction of ECM [59], dictate local and distant metastasis [117] and regulation of drug resistance in tumor cells [118].
TGFβ type II receptor (TβRII) in CAFs-derived exosomes can reactivate the TGF-β signaling pathway in OSCC cells, which is closely related to tumor heterogeneity and tumor progression [119]. The coculture of oral tumor cells with CAFs or their supernatants can drive the transformation of tumor cell cycle to S and G2-M phases, downregulate the expression of E-caderin, and promote the invasion and migration of OSCC cells through EMT [120]. Protein profiling revealed that the high expression of MFAP5, a protein component of extracellular microfibrils, in CAFs-derived exosomes triggers the activation of MAPK and AKT signaling pathways and promotes the proliferation and metastasis of OSCC cells [121] (Fig. 3a). In addition, FGF-19 is highly expressed in mesenchymal stem cell-derived exosomes (Fig. 3b), which can induce the EMT through activation of the NPC cell FGF-19/FGFR-4 signaling pathway and promote tumor cell progression [122].

EVs derived from other sources

The head and neck are located in the beginning of the digestive and respiratory tract. Distinctive anatomical location makes the malignant tumor originating in this area to the pathogenic microbial environment. In recently decades, the ratio of HPV-positive oropharyngeal cancer (OPC) [3, 11] and EBV-infection NPC in HNC patients has increased (Fig. 3c).
Several studies have verified that HPV-positive cancer cells can dictate the expression levels of tumor genes and proteins in EVs to exert proliferative, anti-apoptotic and anti-senescent effects on surrounding cells [123, 124]. The persistent expression of E6/E7 protein in HPV-positive cancer cells can alter the miRNA pool in intracellular and exosomes; for example, the upregulated miRNA-17 family can inhibit P53/P21 expression levels and regulate tumor cell proliferation [125]. HPV-associated oropharyngeal cancer-derived exosomes packing MUC16, SIRPA and HPV-16-E7 proteins enhance the invasion of epithelial cells via the EMT [126].
EBV can hijack cancer-derived EVs production to regulate cell-to-cell communication and package viral components, such as LMP1 and CD63, which modulate the TME and promote tumor development [127, 128]. EVs released by EBV-positive NPC activate the ERK and PI3K/AKT proliferation pathway in cancer and endothelial cells via selective transport of LMP1, EGFR, virus-encoded miRNAs (BART miRNAs) [129, 130]. The C-terminal farnesylation of UCH-L1 is consider as a potential mechanism for EBV-positive NPC to release exosomes. Blocking the farnesylation of UCH-L1 can downregulate the release of LMP1-positive exosomes and inhibit tumor cell migration and colony formation [131]. In addition, EBV-positive exosomes promote galectin-9/tim-3 interactions and exert Th-1 suppressive functions [132].

Potential application of EVs in head and neck cancers

Application in the screening and diagnosis of head and neck cancers

As a tool for liquid biopsy, EVs have unique advantages over circulating tumor DNA (ctDNA) and Circulating Tumor Cells (CTCs) [133, 134]. EVs highly reserve the original source of cellular biological information and easier to enrich and acquire [81]. More importantly, the protective effect of the double-layered membrane structure of EVs overcomes the problem of easy degradation of nucleic acids. In recent years, technology for search potential biomarkers of oral tumors in saliva EVs (Fig. 3d) and circulating EVs (Fig. 3e) has become increasingly mature [135]. Additionally, in the tumor microenvironment, either donor or recipient cells of EVs in the TME undoubtedly undergo genetic and epigenetic changes. Although primary tumor sample is standard starting material to perform genetic analyses, limiting factor is the obtained DNA cannot indicate genetic and epigenetic changes, such as acquired resistance to EGFR inhibitor, which is a major issue worldwide. Liquid biopsy is becoming a common alternative approach to perform molecular analyses, since it is less invasive than tumor biopsy and it is easily repeatable. cfDNA in EVs could be used to evaluate genetic and epigenetic changes in tumor before treatment but also to monitor clinical responses.
Compared with other solid tumors, in addition to substance exchange with circulating body fluids (blood, lymph), oral tumors also undergo saliva (including gingival crevicular fluid) erosion and biological effects. In oral tumor microenvironment, tumor-associated biomolecules can enter the saliva through blood circulation or directly through saliva components [136, 137]. Saliva components similar to blood, containing a large number of proteins and genetic material [138141]. Previously, saliva was mainly diagnostic for HNCs (especially oral cancer), and an increasing number of experiments confirmed that saliva components can also be used to monitor and screen other tumors, such as pancreatic cancer [142], lung cancer [143], breast cancer [144]. The concentration of saliva-derived exosomes in oral cancer patients significantly increased compared to that in healthy populations and displays irregular morphologies and larger particle sizes [140, 145147]. OSCC-derived saliva exosomes contain a variety of tumor-associated proteins involved in multiple signaling pathways, including tumor immune responses, cell proliferation, and metal transport [148]. Recent studies have shown that miRNA-512-3p and miRNA-412-3p were highly expressed in saliva exosomes of OSCC patients. Receiver operating characteristic curves show that these two miRNAs have a good discrimination power for OSCC diagnosis and may serve as potential candidate biomarker [149]. Oral cancer-derived salivary exosomes significant increase in the expression of CD63 and decrease in the expression of CD9 and CD81, which could serve as an indicator for cancer, even in the early stages of the disease [147]. Therefore, salivary fluid diagnosis has the virtues of convenient sampling, real-time performance, and noninvasiveness. Therefore, this technique has unique advantages in the early diagnosis of tumors, the detection of tumor progression and drug treatment evaluation [80, 150, 151].
The obvious upregulation of circulating EVs population in oral cancer patients positively correlated with IL-6 and TNF-α in tumor tissues. Tumor-derived microparticles can enhance the coagulation function of microparticles free plasma, which may promote venous thrombosis and involved in tumorigenesis [152]. High levels of miRNA-21 and lncRNA (HOTAIR) in serum-derived exosomes can reflect the clinical stage and lymph node metastasis of laryngeal squamous cell carcinoma, and evaluation of the expression of both molecules can increase diagnostic efficiency and accuracy [153]. A recent study showed that the plasma-derived exosomes in HNCs patients promote tumor cell proliferation, migration and invasion via the EMT. However, after photodynamic therapy, the patient plasma-derived exosomes can reverse this process and suppress malignant tumor cell characterization [154]. Plasma-derived exosomes from HNCs can also induce immune disorders to regulate the tumor microenvironment [155].

Application in prognostic risk evaluation

The prognostic evaluation of patients with metastatic tumors, including HNCs, is undoubtedly important for predicting tumor treatment outcomes, reducing recurrence and mortality, and prolonging survival. The inclusion of EVs as a prognostic factor for HNCs may become a trend of near future. Some EV-derived proteins (caveolin-1, HIF-1α, HSP-90, and MMP-2/9/13) shown closely related to the survival rate of patients with HNCs [74, 75, 79]. The level of extracellular vesicles in the serum may related to the immune function of patients, which could also indicate a poor prognosis for HNCs [112]. With the continuous updating and deepening of research, EV-associated DNA, protein, noncoding RNA, etc., expected to become useful for prognostic monitoring for HNCs, providing an effective basis for precise treatment.

Application in therapy strategy

As a natural intercellular information carrier, EVs have great application potential in the field of tumor therapy with its nanolevel molecular structure, unique host fingerprint, and properties of good biocompatibility [156]. Currently, the application of extracellular vesicles in clinical treatment can divided into the following areas. First, direct targeting of EV therapy prevents absorption by directly inhibiting the synthesis and secretion of tumor-associated EVs. However, such aggressive measures may produce side effects in patients, thus further investigations with larger clinical cohorts are required prior to EV therapy in the future. Second, EV-based immunization vaccines, involving the isolation and purification of autoimmune cell-derived EVs from tumor patients and antigen modification for subsequent return to the patient, can activate the ability of the immune system to kill tumor cells [157]. Third, an EV-based vector for cancer treatment drugs attributed to the low immunogenicity and stability of EVs [158]. Efficient and versatile EV anti-tumor delivery can circumvent the physiological barrier system to achieve the targeted treatment of drugs. Last, EV-based regenerative treatment is a research hotspot based on the use of EVs to solve the problem of stem cell survival and reduction in treatment [159].Some of these treatments have entered the clinical trial period. Unfortunately, there is no clear report on the use of EVs in the treatment of HNCs. We firmly believe that the application of EVs may be a solid supplement to the treatment of HNCs and should encourage further studies in this field.

Conclusions

In summary, EV research is an emerging field that has been rapidly developing and has made some progress. However, the explicit molecular mechanism of EV biogenesis, content loading, intracellular and extracellular transport, and ultimately the regulation of disease progression has not yet explained. EVs are like a "double-edged sword" and have a close relationship with HNCs. On the one hand, EVs, as "alliances" of cancer, can promote the proliferation of cancer cells, assist the escape of cancer cells from the immune system or drug killing, and create a suitable microenvironment for the metastasis of cancer, which plays an important role in the development and progression of cancer. On the other hand, facilitating the occurrence of cancer exposes the existence of cancer and has become an effective means for the diagnosis and treatment of this disease. Currently, there is a debate about the definition of EVs and classification of subtypes and lack of standardization and unification of extraction techniques, which is a tricky issue for studies of EVs. With the advancement of precise and individual treatment, the use of EVs to establish the early screening and diagnosis of head and neck cancers enhance the evaluation of the prognosis and treatment effect, and promote the development of new anti-tumor drugs will be the aims of future exploration.

Acknowledgement

None.

Funding

This work was supported by grand from National Natural Science Foundation of China (81872211, 81672675, 81671003, 81621062, 81520108009), 111 Project of MOE (B14038) China.

Availability of data and materials

Not applicable.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Lydiatt WM, Patel SG, O'Sullivan B, Brandwein MS, Ridge JA, Migliacci JC, Loomis AM, Shah JP. Head and Neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(2):122–37.PubMedCrossRef Lydiatt WM, Patel SG, O'Sullivan B, Brandwein MS, Ridge JA, Migliacci JC, Loomis AM, Shah JP. Head and Neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(2):122–37.PubMedCrossRef
2.
Zurück zum Zitat Neville BW, Day TA. Oral cancer and precancerous lesions. CA Cancer J Clin. 2002;52(4):195–215.PubMedCrossRef Neville BW, Day TA. Oral cancer and precancerous lesions. CA Cancer J Clin. 2002;52(4):195–215.PubMedCrossRef
3.
Zurück zum Zitat Chi AC, Day TA, Neville BW. Oral cavity and oropharyngeal squamous cell carcinoma--an update. CA Cancer J Clin. 2015;65(5):401–21.PubMedCrossRef Chi AC, Day TA, Neville BW. Oral cavity and oropharyngeal squamous cell carcinoma--an update. CA Cancer J Clin. 2015;65(5):401–21.PubMedCrossRef
4.
Zurück zum Zitat Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.PubMedCrossRef Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.PubMedCrossRef
5.
Zurück zum Zitat Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.PubMedCrossRef Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.PubMedCrossRef
6.
7.
Zurück zum Zitat Danaei G, Vander Hoorn S, Lopez AD, Murray CJL, Ezzati M. Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. The Lancet. 2005;366(9499):1784–93.CrossRef Danaei G, Vander Hoorn S, Lopez AD, Murray CJL, Ezzati M. Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. The Lancet. 2005;366(9499):1784–93.CrossRef
8.
Zurück zum Zitat Blot WJ, McLaughlin JK, Winn DM, Austin DF, Greenberg RS, Preston-Martin S, Bernstein L, Schoenberg JB, Stemhagen A, Fraumeni JF Jr. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res. 1988;48(11):3282–7.PubMed Blot WJ, McLaughlin JK, Winn DM, Austin DF, Greenberg RS, Preston-Martin S, Bernstein L, Schoenberg JB, Stemhagen A, Fraumeni JF Jr. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res. 1988;48(11):3282–7.PubMed
9.
Zurück zum Zitat Liao CT, Wallace CG, Lee LY, Hsueh C, Lin CY, Fan KH, Wang HM, Ng SH, Lin CH, Tsao CK, et al. Clinical evidence of field cancerization in patients with oral cavity cancer in a betel quid chewing area. Oral Oncol. 2014;50(8):721–31.PubMedCrossRef Liao CT, Wallace CG, Lee LY, Hsueh C, Lin CY, Fan KH, Wang HM, Ng SH, Lin CH, Tsao CK, et al. Clinical evidence of field cancerization in patients with oral cavity cancer in a betel quid chewing area. Oral Oncol. 2014;50(8):721–31.PubMedCrossRef
10.
Zurück zum Zitat Madathil SA, Rousseau M-C, Wynant W, Schlecht NF, Netuveli G, Franco EL, Nicolau B. Nonlinear association between betel quid chewing and oral cancer: Implications for prevention. Oral Oncol. 2016;60:25–31.PubMedCrossRef Madathil SA, Rousseau M-C, Wynant W, Schlecht NF, Netuveli G, Franco EL, Nicolau B. Nonlinear association between betel quid chewing and oral cancer: Implications for prevention. Oral Oncol. 2016;60:25–31.PubMedCrossRef
11.
Zurück zum Zitat Chaturvedi AK, Anderson WF, Lortet-Tieulent J, Curado MP, Ferlay J, Franceschi S, Rosenberg PS, Bray F, Gillison ML. Worldwide Trends in Incidence Rates for Oral Cavity and Oropharyngeal Cancers. J Clin Oncol. 2013;31(36):4550–9.PubMedPubMedCentralCrossRef Chaturvedi AK, Anderson WF, Lortet-Tieulent J, Curado MP, Ferlay J, Franceschi S, Rosenberg PS, Bray F, Gillison ML. Worldwide Trends in Incidence Rates for Oral Cavity and Oropharyngeal Cancers. J Clin Oncol. 2013;31(36):4550–9.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Epstein JB, Thariat J, Bensadoun RJ, Barasch A, Murphy BA, Kolnick L, Popplewell L, Maghami E. Oral complications of cancer and cancer therapy: from cancer treatment to survivorship. CA Cancer J Clin. 2012;62(6):400–22.PubMedCrossRef Epstein JB, Thariat J, Bensadoun RJ, Barasch A, Murphy BA, Kolnick L, Popplewell L, Maghami E. Oral complications of cancer and cancer therapy: from cancer treatment to survivorship. CA Cancer J Clin. 2012;62(6):400–22.PubMedCrossRef
14.
Zurück zum Zitat Hanahan D, Weinberg Robert A. Hallmarks of Cancer: The Next Generation. Cell. 2011;144(5):646–74.PubMedCrossRef Hanahan D, Weinberg Robert A. Hallmarks of Cancer: The Next Generation. Cell. 2011;144(5):646–74.PubMedCrossRef
15.
Zurück zum Zitat Casey SC, Vaccari M, Al-Mulla F, Al-Temaimi R, Amedei A, Barcellos-Hoff MH, Brown DG, Chapellier M, Christopher J, Curran CS, et al. The effect of environmental chemicals on the tumor microenvironment. Carcinogenesis. 2015;36(Suppl 1):S160–83.PubMedPubMedCentralCrossRef Casey SC, Vaccari M, Al-Mulla F, Al-Temaimi R, Amedei A, Barcellos-Hoff MH, Brown DG, Chapellier M, Christopher J, Curran CS, et al. The effect of environmental chemicals on the tumor microenvironment. Carcinogenesis. 2015;36(Suppl 1):S160–83.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17(9):559–72.PubMedPubMedCentralCrossRef Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17(9):559–72.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Huber V, Camisaschi C, Berzi A, Ferro S, Lugini L, Triulzi T, Tuccitto A, Tagliabue E, Castelli C, Rivoltini L. Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin Cancer Biol. 2017;43:74–89.PubMedCrossRef Huber V, Camisaschi C, Berzi A, Ferro S, Lugini L, Triulzi T, Tuccitto A, Tagliabue E, Castelli C, Rivoltini L. Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin Cancer Biol. 2017;43:74–89.PubMedCrossRef
20.
Zurück zum Zitat Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem. 1946;166:189–97.PubMed Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem. 1946;166:189–97.PubMed
21.
Zurück zum Zitat Worlf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13:269–88.CrossRef Worlf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13:269–88.CrossRef
22.
Zurück zum Zitat Dvorak HF, Quay SC, Orenstein NS, Dvorak AM, Hahn P, Bitzer AM, Carvalho AC. Tumor shedding and coagulation. Science. 1981;212(4497):923–4.PubMedCrossRef Dvorak HF, Quay SC, Orenstein NS, Dvorak AM, Hahn P, Bitzer AM, Carvalho AC. Tumor shedding and coagulation. Science. 1981;212(4497):923–4.PubMedCrossRef
23.
Zurück zum Zitat George JN, Thoi LL, McManus LM, Reimann TA. Isolation of human platelet membrane microparticles from plasma and serum. Blood. 1982;60(4):834–40.PubMed George JN, Thoi LL, McManus LM, Reimann TA. Isolation of human platelet membrane microparticles from plasma and serum. Blood. 1982;60(4):834–40.PubMed
24.
Zurück zum Zitat Crawford N. The presence of contractile proteins in platelet microparticles isolated from human and animal platelet-free plasma. Br J Haematol. 1971;21(1):53–69.PubMedCrossRef Crawford N. The presence of contractile proteins in platelet microparticles isolated from human and animal platelet-free plasma. Br J Haematol. 1971;21(1):53–69.PubMedCrossRef
25.
Zurück zum Zitat Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97(2):329–39.PubMedCrossRef Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97(2):329–39.PubMedCrossRef
26.
Zurück zum Zitat Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;33(3):967–78.PubMedCrossRef Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;33(3):967–78.PubMedCrossRef
27.
Zurück zum Zitat Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183(3):1161–72.PubMedCrossRef Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183(3):1161–72.PubMedCrossRef
28.
Zurück zum Zitat Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.PubMedCrossRef Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.PubMedCrossRef
29.
Zurück zum Zitat Takasugi M, Okada R, Takahashi A, Virya Chen D, Watanabe S, Hara E. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat Commun. 2017;8:15729.PubMedPubMedCentralCrossRef Takasugi M, Okada R, Takahashi A, Virya Chen D, Watanabe S, Hara E. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat Commun. 2017;8:15729.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Song W, Yan D, Wei T, Liu Q, Zhou X, Liu J. Tumor-derived extracellular vesicles in angiogenesis. Biomed Pharmacother. 2018;102:1203–8.PubMedCrossRef Song W, Yan D, Wei T, Liu Q, Zhou X, Liu J. Tumor-derived extracellular vesicles in angiogenesis. Biomed Pharmacother. 2018;102:1203–8.PubMedCrossRef
31.
Zurück zum Zitat Hell L, Wisgrill L, Ay C, Spittler A, Schwameis M, Jilma B, Pabinger I, Altevogt P, Thaler J. Procoagulant extracellular vesicles in amniotic fluid. Transl Res. 2017;184:12–20 e11.PubMedCrossRefPubMedCentral Hell L, Wisgrill L, Ay C, Spittler A, Schwameis M, Jilma B, Pabinger I, Altevogt P, Thaler J. Procoagulant extracellular vesicles in amniotic fluid. Transl Res. 2017;184:12–20 e11.PubMedCrossRefPubMedCentral
32.
Zurück zum Zitat Turpin D, Truchetet M-E, Faustin B, Augusto J-F, Contin-Bordes C, Brisson A, Blanco P, Duffau P. Role of extracellular vesicles in autoimmune diseases. Autoimmun Rev. 2016;15(2):174–83.PubMedCrossRef Turpin D, Truchetet M-E, Faustin B, Augusto J-F, Contin-Bordes C, Brisson A, Blanco P, Duffau P. Role of extracellular vesicles in autoimmune diseases. Autoimmun Rev. 2016;15(2):174–83.PubMedCrossRef
33.
Zurück zum Zitat Chen W, Yan Y, Song C, Ding Y, Du T. Microvesicles derived from human Wharton's Jelly mesenchymal stem cells ameliorate ischemia-reperfusion-induced renal fibrosis by releasing from G2/M cell cycle arrest. Biochem J. 2017;474(24):4207–18.PubMedCrossRef Chen W, Yan Y, Song C, Ding Y, Du T. Microvesicles derived from human Wharton's Jelly mesenchymal stem cells ameliorate ischemia-reperfusion-induced renal fibrosis by releasing from G2/M cell cycle arrest. Biochem J. 2017;474(24):4207–18.PubMedCrossRef
34.
Zurück zum Zitat Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546(7659):498–503.PubMedPubMedCentralCrossRef Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546(7659):498–503.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, Li P, Li M, Wang X, Zhang C, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527(7576):100–4.PubMedPubMedCentralCrossRef Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, Li P, Li M, Wang X, Zhang C, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527(7576):100–4.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New Technologies for Analysis of Extracellular Vesicles. Chem Rev. 2018;118(4):1917–50.PubMedPubMedCentralCrossRef Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New Technologies for Analysis of Extracellular Vesicles. Chem Rev. 2018;118(4):1917–50.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;3(3):22.PubMed Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;3(3):22.PubMed
38.
Zurück zum Zitat Mol EA, Goumans M-J, Doevendans PA, Sluijter JPG, Vader P. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomed: Nanotechnol Biol Med. 2017;13(6):2061–5. Mol EA, Goumans M-J, Doevendans PA, Sluijter JPG, Vader P. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomed: Nanotechnol Biol Med. 2017;13(6):2061–5.
39.
Zurück zum Zitat Heinzelman P. Magnetic Particle-Based Immunoprecipitation of Nanoscale Extracellular Vesicles from Biofluids. Methods Mol Biol. 1740;2018:85–107. Heinzelman P. Magnetic Particle-Based Immunoprecipitation of Nanoscale Extracellular Vesicles from Biofluids. Methods Mol Biol. 1740;2018:85–107.
40.
Zurück zum Zitat Huang T, He J. Characterization of Extracellular Vesicles by Size-Exclusion High-Performance Liquid Chromatography (HPLC). Methods Mol Biol. 1660;2017:191–9. Huang T, He J. Characterization of Extracellular Vesicles by Size-Exclusion High-Performance Liquid Chromatography (HPLC). Methods Mol Biol. 1660;2017:191–9.
41.
Zurück zum Zitat Wiklander O, Bostancioglu R, Welsh J, Zickler A, Murke F, Corso G, Felldin U, Hagey D, Evertsson B, Liang X, et al. Systematic Methodological Evaluation of a Multiplex Bead-Based Flow Cytometry Assay for Detection of Extracellular Vesicle Surface Signatures. Front Immunol. 2018;9:1326.PubMedPubMedCentralCrossRef Wiklander O, Bostancioglu R, Welsh J, Zickler A, Murke F, Corso G, Felldin U, Hagey D, Evertsson B, Liang X, et al. Systematic Methodological Evaluation of a Multiplex Bead-Based Flow Cytometry Assay for Detection of Extracellular Vesicle Surface Signatures. Front Immunol. 2018;9:1326.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Gholizadeh S, Shehata Draz M, Zarghooni M, Sanati-Nezhad A, Ghavami S, Shafiee H, Akbari M. Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: Current status and future directions. Biosens Bioelectron. 2017;91:588–605.PubMedCrossRef Gholizadeh S, Shehata Draz M, Zarghooni M, Sanati-Nezhad A, Ghavami S, Shafiee H, Akbari M. Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: Current status and future directions. Biosens Bioelectron. 2017;91:588–605.PubMedCrossRef
43.
Zurück zum Zitat Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.PubMedCrossRef Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.PubMedCrossRef
44.
Zurück zum Zitat Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.PubMedCrossRef Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.PubMedCrossRef
46.
Zurück zum Zitat Villarroya-Beltri C, Baixauli F, Mittelbrunn M, Fernandez-Delgado I, Torralba D, Moreno-Gonzalo O, Baldanta S, Enrich C, Guerra S, Sanchez-Madrid F. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun. 2016;7:13588.PubMedPubMedCentralCrossRef Villarroya-Beltri C, Baixauli F, Mittelbrunn M, Fernandez-Delgado I, Torralba D, Moreno-Gonzalo O, Baldanta S, Enrich C, Guerra S, Sanchez-Madrid F. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun. 2016;7:13588.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 2018;188:1–11.CrossRef Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 2018;188:1–11.CrossRef
48.
Zurück zum Zitat Hanson PI, Cashikar A. Multivesicular body morphogenesis. Annu Rev Cell Dev Biol. 2012;28:337–62.PubMedCrossRef Hanson PI, Cashikar A. Multivesicular body morphogenesis. Annu Rev Cell Dev Biol. 2012;28:337–62.PubMedCrossRef
49.
Zurück zum Zitat van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, Marks MS, Rubinstein E, Raposo G. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell. 2011;21(4):708–21.PubMedPubMedCentralCrossRef van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, Marks MS, Rubinstein E, Raposo G. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell. 2011;21(4):708–21.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B, Simons M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319(5867):1244–7.PubMedCrossRef Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B, Simons M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319(5867):1244–7.PubMedCrossRef
51.
Zurück zum Zitat Fukuda M. Regulation of secretory vesicle traffic by Rab small GTPases. Cell Mol Life Sci. 2008;65(18):2801–13.PubMedCrossRef Fukuda M. Regulation of secretory vesicle traffic by Rab small GTPases. Cell Mol Life Sci. 2008;65(18):2801–13.PubMedCrossRef
52.
Zurück zum Zitat van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.PubMedCrossRef van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.PubMedCrossRef
53.
Zurück zum Zitat Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, Tyska MJ, Weaver AM. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol. 2016;214(2):197–213.PubMedPubMedCentralCrossRef Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, Tyska MJ, Weaver AM. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol. 2016;214(2):197–213.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Ostrowski M, Carmo N, Krumeich S, Fanget I, Raposo G, Savina A, Moita C, Schauer K, Hume A, Freitas R, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19–30.PubMedCrossRef Ostrowski M, Carmo N, Krumeich S, Fanget I, Raposo G, Savina A, Moita C, Schauer K, Hume A, Freitas R, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19–30.PubMedCrossRef
55.
Zurück zum Zitat Abrami L, Brandi L, Moayeri M, Brown MJ, Krantz BA, Leppla SH, van der Goot FG. Hijacking multivesicular bodies enables long-term and exosome-mediated long-distance action of anthrax toxin. Cell Rep. 2013;5(4):986–96.PubMedCrossRef Abrami L, Brandi L, Moayeri M, Brown MJ, Krantz BA, Leppla SH, van der Goot FG. Hijacking multivesicular bodies enables long-term and exosome-mediated long-distance action of anthrax toxin. Cell Rep. 2013;5(4):986–96.PubMedCrossRef
56.
Zurück zum Zitat Gould S, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013;2:20389.CrossRef Gould S, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013;2:20389.CrossRef
57.
Zurück zum Zitat Hugel B, Martinez MC, Kunzelmann C, Freyssinet JM. Membrane microparticles: two sides of the coin. Physiology (Bethesda). 2005;20:22–7. Hugel B, Martinez MC, Kunzelmann C, Freyssinet JM. Membrane microparticles: two sides of the coin. Physiology (Bethesda). 2005;20:22–7.
58.
Zurück zum Zitat Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, D'Souza-Schorey C. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol. 2009;19(22):1875–85.PubMedPubMedCentralCrossRef Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, D'Souza-Schorey C. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol. 2009;19(22):1875–85.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Tkach M, Thery C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell. 2016;164(6):1226–32.PubMedCrossRef Tkach M, Thery C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell. 2016;164(6):1226–32.PubMedCrossRef
60.
Zurück zum Zitat Wang T, Gilkes D, Takano N, Xiang L, Luo W, Bishop C, Chaturvedi P, Green J, Semenza G. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci USA. 2014;111(31):E3234–42.PubMedCrossRefPubMedCentral Wang T, Gilkes D, Takano N, Xiang L, Luo W, Bishop C, Chaturvedi P, Green J, Semenza G. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci USA. 2014;111(31):E3234–42.PubMedCrossRefPubMedCentral
61.
Zurück zum Zitat Schlaepfer IR, Nambiar DK, Ramteke A, Kumar R, Dhar D, Agarwal C, Bergman B, Graner M, Maroni P, Singh RP, et al. Hypoxia induces triglycerides accumulation in prostate cancer cells and extracellular vesicles supporting growth and invasiveness following reoxygenation. Oncotarget. 2015;6(26):22836–56.PubMedPubMedCentralCrossRef Schlaepfer IR, Nambiar DK, Ramteke A, Kumar R, Dhar D, Agarwal C, Bergman B, Graner M, Maroni P, Singh RP, et al. Hypoxia induces triglycerides accumulation in prostate cancer cells and extracellular vesicles supporting growth and invasiveness following reoxygenation. Oncotarget. 2015;6(26):22836–56.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Ramteke A, Ting H, Agarwal C, Mateen S, Somasagara R, Hussain A, Graner M, Frederick B, Agarwal R, Deep G. Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol Carcinog. 2015;54(7):554–65.PubMedCrossRef Ramteke A, Ting H, Agarwal C, Mateen S, Somasagara R, Hussain A, Graner M, Frederick B, Agarwal R, Deep G. Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol Carcinog. 2015;54(7):554–65.PubMedCrossRef
63.
Zurück zum Zitat Szabo-Taylor K, Ryan B, Osteikoetxea X, Szabo TG, Sodar B, Holub M, Nemeth A, Paloczi K, Pallinger E, Winyard P, et al. Oxidative and other posttranslational modifications in extracellular vesicle biology. Semin Cell Dev Biol. 2015;40:8–16.PubMedCrossRef Szabo-Taylor K, Ryan B, Osteikoetxea X, Szabo TG, Sodar B, Holub M, Nemeth A, Paloczi K, Pallinger E, Winyard P, et al. Oxidative and other posttranslational modifications in extracellular vesicle biology. Semin Cell Dev Biol. 2015;40:8–16.PubMedCrossRef
64.
Zurück zum Zitat Hsu Y, Hung J, Chang W, Jian S, Lin Y, Pan Y, Wu C, Kuo P. Hypoxic Lung-Cancer-Derived Extracellular Vesicle MicroRNA-103a Increases the Oncogenic Effects of Macrophages by Targeting PTEN. Mol Ther. 2018;26(2):568–81.PubMedCrossRef Hsu Y, Hung J, Chang W, Jian S, Lin Y, Pan Y, Wu C, Kuo P. Hypoxic Lung-Cancer-Derived Extracellular Vesicle MicroRNA-103a Increases the Oncogenic Effects of Macrophages by Targeting PTEN. Mol Ther. 2018;26(2):568–81.PubMedCrossRef
65.
Zurück zum Zitat Noman M, Janji B, Berchem G, Chouaib S. miR-210 and hypoxic microvesicles: Two critical components of hypoxia involved in the regulation of killer cells function. Cancer Lett. 2016;380(1):257–62.PubMedCrossRef Noman M, Janji B, Berchem G, Chouaib S. miR-210 and hypoxic microvesicles: Two critical components of hypoxia involved in the regulation of killer cells function. Cancer Lett. 2016;380(1):257–62.PubMedCrossRef
66.
Zurück zum Zitat Yamamoto S, Niida S, Azuma E, Yanagibashi T, Muramatsu M, Huang TT, Sagara H, Higaki S, Ikutani M, Nagai Y, et al. Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes. Sci Rep. 2015;5:8505.PubMedPubMedCentralCrossRef Yamamoto S, Niida S, Azuma E, Yanagibashi T, Muramatsu M, Huang TT, Sagara H, Higaki S, Ikutani M, Nagai Y, et al. Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes. Sci Rep. 2015;5:8505.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, Schiffelers RM, Gucek M, van Balkom BW. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. 2012;1:18396.CrossRef de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, Schiffelers RM, Gucek M, van Balkom BW. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. 2012;1:18396.CrossRef
68.
Zurück zum Zitat Wang DC, Wang X. Systems heterogeneity: An integrative way to understand cancer heterogeneity. Semin Cell Dev Biol. 2017;64:1–4.PubMedCrossRef Wang DC, Wang X. Systems heterogeneity: An integrative way to understand cancer heterogeneity. Semin Cell Dev Biol. 2017;64:1–4.PubMedCrossRef
69.
Zurück zum Zitat Dayan D, Salo T, Salo S, Nyberg P, Nurmenniemi S, Costea DE, Vered M. Molecular crosstalk between cancer cells and tumor microenvironment components suggests potential targets for new therapeutic approaches in mobile tongue cancer. Cancer Med. 2012;1(2):128–40.PubMedPubMedCentralCrossRef Dayan D, Salo T, Salo S, Nyberg P, Nurmenniemi S, Costea DE, Vered M. Molecular crosstalk between cancer cells and tumor microenvironment components suggests potential targets for new therapeutic approaches in mobile tongue cancer. Cancer Med. 2012;1(2):128–40.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Yang WW, Yang LQ, Zhao F, Chen CW, Xu LH, Fu J, Li SL, Ge XY. Epiregulin Promotes Lung Metastasis of Salivary Adenoid Cystic Carcinoma. Theranostics. 2017;7(15):3700–14.PubMedPubMedCentralCrossRef Yang WW, Yang LQ, Zhao F, Chen CW, Xu LH, Fu J, Li SL, Ge XY. Epiregulin Promotes Lung Metastasis of Salivary Adenoid Cystic Carcinoma. Theranostics. 2017;7(15):3700–14.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Hou J, Wang F, Liu X, Song M, Yin X. Tumor-derived exosomes enhance invasion and metastasis of salivary adenoid cystic carcinoma cells. J Oral Pathol Med. 2018;47(2):144–51.PubMedCrossRef Hou J, Wang F, Liu X, Song M, Yin X. Tumor-derived exosomes enhance invasion and metastasis of salivary adenoid cystic carcinoma cells. J Oral Pathol Med. 2018;47(2):144–51.PubMedCrossRef
72.
Zurück zum Zitat Sento S, Sasabe E, Yamamoto T. Application of a Persistent Heparin Treatment Inhibits the Malignant Potential of Oral Squamous Carcinoma Cells Induced by Tumor Cell-Derived Exosomes. PLoS One. 2016;11(2):e0148454.PubMedPubMedCentralCrossRef Sento S, Sasabe E, Yamamoto T. Application of a Persistent Heparin Treatment Inhibits the Malignant Potential of Oral Squamous Carcinoma Cells Induced by Tumor Cell-Derived Exosomes. PLoS One. 2016;11(2):e0148454.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat You Y, Shan Y, Chen J, Yue H, You B, Shi S, Li X, Cao X. Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis. Cancer Science. 2015;106(12):1669–77.PubMedPubMedCentralCrossRef You Y, Shan Y, Chen J, Yue H, You B, Shi S, Li X, Cao X. Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis. Cancer Science. 2015;106(12):1669–77.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Ono K, Eguchi T, Sogawa C, Calderwood SK, Futagawa J, Kasai T, Seno M, Okamoto K, Sasaki A, Kozaki KI. HSP-enriched properties of extracellular vesicles involve survival of metastatic oral cancer cells. J Cell Biochem. 2018. Ono K, Eguchi T, Sogawa C, Calderwood SK, Futagawa J, Kasai T, Seno M, Okamoto K, Sasaki A, Kozaki KI. HSP-enriched properties of extracellular vesicles involve survival of metastatic oral cancer cells. J Cell Biochem. 2018.
75.
Zurück zum Zitat Shan Y, You B, Shi S, Shi W, Zhang Z, Zhang Q, Gu M, Chen J, Bao L, Liu D, et al. Hypoxia-Induced Matrix Metalloproteinase-13 Expression in Exosomes from Nasopharyngeal Carcinoma Enhances Metastases. Cell Death Dis. 2018;9(3):382.PubMedPubMedCentralCrossRef Shan Y, You B, Shi S, Shi W, Zhang Z, Zhang Q, Gu M, Chen J, Bao L, Liu D, et al. Hypoxia-Induced Matrix Metalloproteinase-13 Expression in Exosomes from Nasopharyngeal Carcinoma Enhances Metastases. Cell Death Dis. 2018;9(3):382.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Aga M, Bentz GL, Raffa S, Torrisi MR, Kondo S, Wakisaka N, Yoshizaki T, Pagano JS, Shackelford J. Exosomal HIF1alpha supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene. 2014;33(37):4613–22.PubMedPubMedCentralCrossRef Aga M, Bentz GL, Raffa S, Torrisi MR, Kondo S, Wakisaka N, Yoshizaki T, Pagano JS, Shackelford J. Exosomal HIF1alpha supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene. 2014;33(37):4613–22.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Overmiller AM, Pierluissi JA, Wermuth PJ, Sauma S, Martinez-Outschoorn U, Tuluc M, Luginbuhl A, Curry J, Harshyne LA, Wahl JK 3rd, et al. Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes. FASEB J. 2017;31(8):3412–24.PubMedPubMedCentralCrossRef Overmiller AM, Pierluissi JA, Wermuth PJ, Sauma S, Martinez-Outschoorn U, Tuluc M, Luginbuhl A, Curry J, Harshyne LA, Wahl JK 3rd, et al. Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes. FASEB J. 2017;31(8):3412–24.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Brennan D, Peltonen S, Dowling A, Medhat W, Green KJ, Wahl JK 3rd, Del Galdo F, Mahoney MG. A role for caveolin-1 in desmoglein binding and desmosome dynamics. Oncogene. 2012;31(13):1636–48.PubMedCrossRef Brennan D, Peltonen S, Dowling A, Medhat W, Green KJ, Wahl JK 3rd, Del Galdo F, Mahoney MG. A role for caveolin-1 in desmoglein binding and desmosome dynamics. Oncogene. 2012;31(13):1636–48.PubMedCrossRef
79.
Zurück zum Zitat Vered M, Lehtonen M, Hotakainen L, Pirila E, Teppo S, Nyberg P, Sormunen R, Zlotogorski-Hurvitz A, Salo T, Dayan D. Caveolin-1 accumulation in the tongue cancer tumor microenvironment is significantly associated with poor prognosis: an in-vivo and in-vitro study. BMC Cancer. 2015;15:25.PubMedPubMedCentralCrossRef Vered M, Lehtonen M, Hotakainen L, Pirila E, Teppo S, Nyberg P, Sormunen R, Zlotogorski-Hurvitz A, Salo T, Dayan D. Caveolin-1 accumulation in the tongue cancer tumor microenvironment is significantly associated with poor prognosis: an in-vivo and in-vitro study. BMC Cancer. 2015;15:25.PubMedPubMedCentralCrossRef
80.
81.
Zurück zum Zitat Lousada-Fernandez F, Rapado-Gonzalez O, Lopez-Cedrun JL, Lopez-Lopez R, Muinelo-Romay L, Suarez-Cunqueiro MM. Liquid Biopsy in Oral Cancer. Int J Mol Sci. 2018;19(6):1704.PubMedCentralCrossRef Lousada-Fernandez F, Rapado-Gonzalez O, Lopez-Cedrun JL, Lopez-Lopez R, Muinelo-Romay L, Suarez-Cunqueiro MM. Liquid Biopsy in Oral Cancer. Int J Mol Sci. 2018;19(6):1704.PubMedCentralCrossRef
82.
Zurück zum Zitat Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, Li X, Chen J, Liu K, Li C, et al. Exosomes Derived from Hypoxic Oral Squamous Cell Carcinoma Cells Deliver miR-21 to Normoxic Cells to Elicit a Prometastatic Phenotype. Cancer Res. 2016;76(7):1770–80.PubMedCrossRef Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, Li X, Chen J, Liu K, Li C, et al. Exosomes Derived from Hypoxic Oral Squamous Cell Carcinoma Cells Deliver miR-21 to Normoxic Cells to Elicit a Prometastatic Phenotype. Cancer Res. 2016;76(7):1770–80.PubMedCrossRef
83.
Zurück zum Zitat Sakha S, Muramatsu T, Ueda K, Inazawa J. Exosomal microRNA miR-1246 induces cell motility and invasion through the regulation of DENND2D in oral squamous cell carcinoma. Sci Rep. 2016;6:38750.PubMedPubMedCentralCrossRef Sakha S, Muramatsu T, Ueda K, Inazawa J. Exosomal microRNA miR-1246 induces cell motility and invasion through the regulation of DENND2D in oral squamous cell carcinoma. Sci Rep. 2016;6:38750.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Kawakubo-Yasukochi T, Morioka M, Hazekawa M, Yasukochi A, Nishinakagawa T, Ono K, Kawano S, Nakamura S, Nakashima M. miR-200c-3p spreads invasive capacity in human oral squamous cell carcinoma microenvironment. Mol Carcinog. 2018;57(2):295–302.PubMedCrossRef Kawakubo-Yasukochi T, Morioka M, Hazekawa M, Yasukochi A, Nishinakagawa T, Ono K, Kawano S, Nakamura S, Nakashima M. miR-200c-3p spreads invasive capacity in human oral squamous cell carcinoma microenvironment. Mol Carcinog. 2018;57(2):295–302.PubMedCrossRef
85.
Zurück zum Zitat Dickman C, Lawson J, Jabalee J, MacLellan S, LePard N, Bennewith K, Garnis C. Selective extracellular vesicle exclusion of miR-142-3p by oral cancer cells promotes both internal and extracellular malignant phenotypes. Oncotarget. 2017;8(9):15252–66.PubMedPubMedCentralCrossRef Dickman C, Lawson J, Jabalee J, MacLellan S, LePard N, Bennewith K, Garnis C. Selective extracellular vesicle exclusion of miR-142-3p by oral cancer cells promotes both internal and extracellular malignant phenotypes. Oncotarget. 2017;8(9):15252–66.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Ostenfeld M, Jeppesen D, Laurberg J, Boysen A, Bramsen J, Primdal-Bengtson B, Hendrix A, Lamy P, Dagnaes-Hansen F, Rasmussen M, et al. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res. 2014;74(20):5758–71.PubMedCrossRef Ostenfeld M, Jeppesen D, Laurberg J, Boysen A, Bramsen J, Primdal-Bengtson B, Hendrix A, Lamy P, Dagnaes-Hansen F, Rasmussen M, et al. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res. 2014;74(20):5758–71.PubMedCrossRef
87.
Zurück zum Zitat Harmati M, Tarnai Z, Decsi G, Kormondi S, Szegletes Z, Janovak L, Dekany I, Saydam O, Gyukity-Sebestyen E, Dobra G, et al. Stressors alter intercellular communication and exosome profile of nasopharyngeal carcinoma cells. J Oral Pathol Med. 2017;46(4):259–66.PubMedCrossRef Harmati M, Tarnai Z, Decsi G, Kormondi S, Szegletes Z, Janovak L, Dekany I, Saydam O, Gyukity-Sebestyen E, Dobra G, et al. Stressors alter intercellular communication and exosome profile of nasopharyngeal carcinoma cells. J Oral Pathol Med. 2017;46(4):259–66.PubMedCrossRef
88.
Zurück zum Zitat Jelonek K, Wojakowska A, Marczak L, Muer A, Tinhofer-Keilholz I, Lysek-Gladysinska M, Widlak P, Pietrowska M. Ionizing radiation affects protein composition of exosomes secreted in vitro from head and neck squamous cell carcinoma. Acta Biochim Pol. 2015;62(2):265–72.PubMedCrossRef Jelonek K, Wojakowska A, Marczak L, Muer A, Tinhofer-Keilholz I, Lysek-Gladysinska M, Widlak P, Pietrowska M. Ionizing radiation affects protein composition of exosomes secreted in vitro from head and neck squamous cell carcinoma. Acta Biochim Pol. 2015;62(2):265–72.PubMedCrossRef
89.
Zurück zum Zitat Liu T, Chen G, Sun D, Lei M, Li Y, Zhou C, Li X, Xue W, Wang H, Liu C, et al. Exosomes containing miR-21 transfer the characteristic of cisplatin resistance by targeting PTEN and PDCD4 in oral squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai). 2017;49(9):808–16.CrossRef Liu T, Chen G, Sun D, Lei M, Li Y, Zhou C, Li X, Xue W, Wang H, Liu C, et al. Exosomes containing miR-21 transfer the characteristic of cisplatin resistance by targeting PTEN and PDCD4 in oral squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai). 2017;49(9):808–16.CrossRef
90.
Zurück zum Zitat Mutschelknaus L, Peters C, Winkler K, Yentrapalli R, Heider T, Atkinson MJ, Moertl S. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation. PLoS One. 2016;11(3):e0152213.PubMedPubMedCentralCrossRef Mutschelknaus L, Peters C, Winkler K, Yentrapalli R, Heider T, Atkinson MJ, Moertl S. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation. PLoS One. 2016;11(3):e0152213.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Mutschelknaus L, Azimzadeh O, Heider T, Winkler K, Vetter M, Kell R, Tapio S, Merl-Pham J, Huber SM, Edalat L, et al. Radiation alters the cargo of exosomes released from squamous head and neck cancer cells to promote migration of recipient cells. Sci Rep. 2017;7(1):12423.PubMedPubMedCentralCrossRef Mutschelknaus L, Azimzadeh O, Heider T, Winkler K, Vetter M, Kell R, Tapio S, Merl-Pham J, Huber SM, Edalat L, et al. Radiation alters the cargo of exosomes released from squamous head and neck cancer cells to promote migration of recipient cells. Sci Rep. 2017;7(1):12423.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.PubMedCrossRef Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.PubMedCrossRef
94.
95.
Zurück zum Zitat Gu M, Li L, Zhang Z, Chen J, Zhang W, Zhang J, Han L, Tang M, You B, Zhang Q, et al. PFKFB3 promotes proliferation, migration and angiogenesis in nasopharyngeal carcinoma. J Cancer. 2017;8(18):3887–96.PubMedPubMedCentralCrossRef Gu M, Li L, Zhang Z, Chen J, Zhang W, Zhang J, Han L, Tang M, You B, Zhang Q, et al. PFKFB3 promotes proliferation, migration and angiogenesis in nasopharyngeal carcinoma. J Cancer. 2017;8(18):3887–96.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Xiao H, Feng Y, Tao Y, Zhao P, Shang W, Song K. Microvesicles releasing by oral cancer cells enhance endothelial cell angiogenesis via Shh/RhoA signaling pathway. Cancer Biol Ther. 2017;18(10):783–91.CrossRef Xiao H, Feng Y, Tao Y, Zhao P, Shang W, Song K. Microvesicles releasing by oral cancer cells enhance endothelial cell angiogenesis via Shh/RhoA signaling pathway. Cancer Biol Ther. 2017;18(10):783–91.CrossRef
97.
Zurück zum Zitat Bao L, You B, Shi S, Shan Y, Zhang Q, Yue H, Zhang J, Zhang W, Shi Y, Liu Y, et al. Metastasis-associated miR-23a from nasopharyngeal carcinoma-derived exosomes mediates angiogenesis by repressing a novel target gene TSGA10. Oncogene. 2018;37(21):2873–89.PubMedPubMedCentralCrossRef Bao L, You B, Shi S, Shan Y, Zhang Q, Yue H, Zhang J, Zhang W, Shi Y, Liu Y, et al. Metastasis-associated miR-23a from nasopharyngeal carcinoma-derived exosomes mediates angiogenesis by repressing a novel target gene TSGA10. Oncogene. 2018;37(21):2873–89.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Chan YK, Zhang H, Liu P, Tsao SW, Lung ML, Mak NK, Ngok-Shun Wong R, Ying-Kit Yue P. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins. Int J Cancer. 2015;137(8):1830–41.PubMedCrossRef Chan YK, Zhang H, Liu P, Tsao SW, Lung ML, Mak NK, Ngok-Shun Wong R, Ying-Kit Yue P. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins. Int J Cancer. 2015;137(8):1830–41.PubMedCrossRef
99.
Zurück zum Zitat Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98.PubMedCrossRef Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98.PubMedCrossRef
100.
Zurück zum Zitat Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 2010;70(23):9621–30.PubMedCrossRef Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 2010;70(23):9621–30.PubMedCrossRef
101.
Zurück zum Zitat Webber JP, Spary LK, Sanders AJ, Chowdhury R, Jiang WG, Steadman R, Wymant J, Jones AT, Kynaston H, Mason MD, et al. Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene. 2015;34(3):290–302.PubMedCrossRef Webber JP, Spary LK, Sanders AJ, Chowdhury R, Jiang WG, Steadman R, Wymant J, Jones AT, Kynaston H, Mason MD, et al. Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene. 2015;34(3):290–302.PubMedCrossRef
102.
103.
Zurück zum Zitat Gao L, Wang L, Dai T, Jin K, Zhang Z, Wang S, Xie F, Fang P, Yang B, Huang H, et al. Tumor-derived exosomes antagonize innate antiviral immunity. Nat Immunol. 2018;19(3):233–45.PubMedCrossRef Gao L, Wang L, Dai T, Jin K, Zhang Z, Wang S, Xie F, Fang P, Yang B, Huang H, et al. Tumor-derived exosomes antagonize innate antiviral immunity. Nat Immunol. 2018;19(3):233–45.PubMedCrossRef
104.
Zurück zum Zitat Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581–93.PubMedCrossRef Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581–93.PubMedCrossRef
105.
Zurück zum Zitat Webber J, Yeung V, Clayton A. Extracellular vesicles as modulators of the cancer microenvironment. Semin Cell Dev Biol. 2015;40:27–34.PubMedCrossRef Webber J, Yeung V, Clayton A. Extracellular vesicles as modulators of the cancer microenvironment. Semin Cell Dev Biol. 2015;40:27–34.PubMedCrossRef
106.
Zurück zum Zitat Greening D, Gopal S, Xu R, Simpson R, Chen W. Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol. 2015;40:72–81.PubMedCrossRef Greening D, Gopal S, Xu R, Simpson R, Chen W. Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol. 2015;40:72–81.PubMedCrossRef
107.
Zurück zum Zitat Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans. 2013;41(1):245–51.PubMedPubMedCentralCrossRef Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans. 2013;41(1):245–51.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Muller L, Mitsuhashi M, Simms P, Gooding WE, Whiteside TL. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets. Sci Rep. 2016;6:20254.PubMedPubMedCentralCrossRef Muller L, Mitsuhashi M, Simms P, Gooding WE, Whiteside TL. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets. Sci Rep. 2016;6:20254.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Maybruck BT, Pfannenstiel LW, Diaz-Montero M, Gastman BR. Tumor-derived exosomes induce CD8(+) T cell suppressors. J Immunother Cancer. 2017;5(1):65.PubMedPubMedCentralCrossRef Maybruck BT, Pfannenstiel LW, Diaz-Montero M, Gastman BR. Tumor-derived exosomes induce CD8(+) T cell suppressors. J Immunother Cancer. 2017;5(1):65.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Ye S, Zhang H, Cai T, Liu Y, Ni J, He J, Peng J, Chen Q, Mo H. Jun-Cui n et al: Exosomal miR-24-3p impedes T-cell function by targeting FGF11 and serves as a potential prognostic biomarker for nasopharyngeal carcinoma. J Pathol. 2016;240(3):329–40.PubMedCrossRef Ye S, Zhang H, Cai T, Liu Y, Ni J, He J, Peng J, Chen Q, Mo H. Jun-Cui n et al: Exosomal miR-24-3p impedes T-cell function by targeting FGF11 and serves as a potential prognostic biomarker for nasopharyngeal carcinoma. J Pathol. 2016;240(3):329–40.PubMedCrossRef
111.
Zurück zum Zitat Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol. 2009;183(6):3720–30.PubMedCrossRef Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol. 2009;183(6):3720–30.PubMedCrossRef
112.
Zurück zum Zitat Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res. 2005;11(3):1010–20.PubMed Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res. 2005;11(3):1010–20.PubMed
113.
Zurück zum Zitat Ye S, Li Z, Luo D, Huang B, Chen Y, Zhang X, Cui J, Zeng Y, Li J. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5(14):5439–52.PubMedPubMedCentralCrossRef Ye S, Li Z, Luo D, Huang B, Chen Y, Zhang X, Cui J, Zeng Y, Li J. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5(14):5439–52.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Mrizak D, Martin N, Barjon C, Jimenez-Pailhes A, Mustapha R, Niki T, Guigay J, Pancré V, de Launoit Y, Busson P, et al. Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells. J Natl Cancer Inst. 2015;107(1):363.PubMedCrossRef Mrizak D, Martin N, Barjon C, Jimenez-Pailhes A, Mustapha R, Niki T, Guigay J, Pancré V, de Launoit Y, Busson P, et al. Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells. J Natl Cancer Inst. 2015;107(1):363.PubMedCrossRef
115.
Zurück zum Zitat Al-Samadi A, Awad S, Tuomainen K, Zhao Y, Salem A, Parikka M, Salo T. Crosstalk between tongue carcinoma cells, extracellular vesicles, and immune cells in and models. Oncotarget. 2017;8(36):60123–34.PubMedPubMedCentralCrossRef Al-Samadi A, Awad S, Tuomainen K, Zhao Y, Salem A, Parikka M, Salo T. Crosstalk between tongue carcinoma cells, extracellular vesicles, and immune cells in and models. Oncotarget. 2017;8(36):60123–34.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Wang Y, Qin X, Zhu X, Chen W, Zhang J, Chen W. Oral cancer-derived exosomal NAP1 enhances cytotoxicity of natural killer cells via the IRF-3 pathway. Oral Oncology. 2018;76:34–41.PubMedCrossRef Wang Y, Qin X, Zhu X, Chen W, Zhang J, Chen W. Oral cancer-derived exosomal NAP1 enhances cytotoxicity of natural killer cells via the IRF-3 pathway. Oral Oncology. 2018;76:34–41.PubMedCrossRef
117.
Zurück zum Zitat De Wever O, Van Bockstal M, Mareel M, Hendrix A, Bracke M. Carcinoma-associated fibroblasts provide operational flexibility in metastasis. Semin Cancer Biol. 2014;25:33–46.PubMedCrossRef De Wever O, Van Bockstal M, Mareel M, Hendrix A, Bracke M. Carcinoma-associated fibroblasts provide operational flexibility in metastasis. Semin Cancer Biol. 2014;25:33–46.PubMedCrossRef
118.
Zurück zum Zitat Au Yeung C, Co N, Tsuruga T, Yeung T, Kwan S, Leung C, Li Y, Lu E, Kwan K, Wong K, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 2016;7:11150.PubMedPubMedCentralCrossRef Au Yeung C, Co N, Tsuruga T, Yeung T, Kwan S, Leung C, Li Y, Lu E, Kwan K, Wong K, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 2016;7:11150.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Languino L, Singh A, Prisco M, Inman G, Luginbuhl A, Curry J, South A. Exosome-mediated transfer from the tumor microenvironment increases TGFβ signaling in squamous cell carcinoma. Am J Transl Res. 2016;8(5):2432–7.PubMedPubMedCentral Languino L, Singh A, Prisco M, Inman G, Luginbuhl A, Curry J, South A. Exosome-mediated transfer from the tumor microenvironment increases TGFβ signaling in squamous cell carcinoma. Am J Transl Res. 2016;8(5):2432–7.PubMedPubMedCentral
120.
Zurück zum Zitat Li H, Zhang J, Chen S-W, Liu L-L, Li L, Gao F, Zhuang S-M, Wang L-P, Li Y, Song M. Cancer-associated fibroblasts provide a suitable microenvironment for tumor development and progression in oral tongue squamous cancer. J Transl Med. 2015;13(1):198. Li H, Zhang J, Chen S-W, Liu L-L, Li L, Gao F, Zhuang S-M, Wang L-P, Li Y, Song M. Cancer-associated fibroblasts provide a suitable microenvironment for tumor development and progression in oral tongue squamous cancer. J Transl Med. 2015;13(1):198.
121.
Zurück zum Zitat Principe S, Mejia-Guerrero S, Ignatchenko V, Sinha A, Ignatchenko A, Shi W, Pereira K, Su S, Huang SH, O'Sullivan B, et al. Proteomic Analysis of Cancer-Associated Fibroblasts Reveals a Paracrine Role for MFAP5 in Human Oral Tongue Squamous Cell Carcinoma. J Proteome Res. 2018;17(6):2045–59.PubMedCrossRef Principe S, Mejia-Guerrero S, Ignatchenko V, Sinha A, Ignatchenko A, Shi W, Pereira K, Su S, Huang SH, O'Sullivan B, et al. Proteomic Analysis of Cancer-Associated Fibroblasts Reveals a Paracrine Role for MFAP5 in Human Oral Tongue Squamous Cell Carcinoma. J Proteome Res. 2018;17(6):2045–59.PubMedCrossRef
122.
Zurück zum Zitat Shi S, Zhang Q, Xia Y, You B, Shan Y, Bao L, Li L, You Y, Gu Z. Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression. Am J Cancer Res. 2016;6(2):459–72.PubMedPubMedCentral Shi S, Zhang Q, Xia Y, You B, Shan Y, Bao L, Li L, You Y, Gu Z. Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression. Am J Cancer Res. 2016;6(2):459–72.PubMedPubMedCentral
123.
Zurück zum Zitat Guenat D, Hermetet F, Prétet J-L, Mougin C. Exosomes and Other Extracellular Vesicles in HPV Transmission and Carcinogenesis. Viruses. 2017;9(8):211.PubMedCentralCrossRef Guenat D, Hermetet F, Prétet J-L, Mougin C. Exosomes and Other Extracellular Vesicles in HPV Transmission and Carcinogenesis. Viruses. 2017;9(8):211.PubMedCentralCrossRef
124.
Zurück zum Zitat Harden ME, Munger K. Human papillomavirus 16 E6 and E7 oncoprotein expression alters microRNA expression in extracellular vesicles. Virology. 2017;508:63–9.PubMedCrossRef Harden ME, Munger K. Human papillomavirus 16 E6 and E7 oncoprotein expression alters microRNA expression in extracellular vesicles. Virology. 2017;508:63–9.PubMedCrossRef
125.
Zurück zum Zitat Honegger A, Schilling D, Bastian S, Sponagel J, Kuryshev V, Sultmann H, Scheffner M, Hoppe-Seyler K, Hoppe-Seyler F. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog. 2015;11(3):e1004712.PubMedPubMedCentralCrossRef Honegger A, Schilling D, Bastian S, Sponagel J, Kuryshev V, Sultmann H, Scheffner M, Hoppe-Seyler K, Hoppe-Seyler F. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog. 2015;11(3):e1004712.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Kannan A, Hertweck KL, Philley JV, Wells RB, Dasgupta S. Genetic Mutation and Exosome Signature of Human Papilloma Virus Associated Oropharyngeal Cancer. Sci Rep. 2017;7:46102.PubMedPubMedCentralCrossRef Kannan A, Hertweck KL, Philley JV, Wells RB, Dasgupta S. Genetic Mutation and Exosome Signature of Human Papilloma Virus Associated Oropharyngeal Cancer. Sci Rep. 2017;7:46102.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Hurwitz S, Nkosi D, Conlon M, York S, Liu X, Tremblay D, Meckes D. CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-κB Signaling. J Virol. 2017;91(5):e02251–16. Hurwitz S, Nkosi D, Conlon M, York S, Liu X, Tremblay D, Meckes D. CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-κB Signaling. J Virol. 2017;91(5):e02251–16.
128.
Zurück zum Zitat Yoshizaki T, Kondo S, Wakisaka N, Murono S, Endo K, Sugimoto H, Nakanishi S, Tsuji A, Ito M. Pathogenic role of Epstein-Barr virus latent membrane protein-1 in the development of nasopharyngeal carcinoma. Cancer Lett. 2013;337(1):1–7.PubMedCrossRef Yoshizaki T, Kondo S, Wakisaka N, Murono S, Endo K, Sugimoto H, Nakanishi S, Tsuji A, Ito M. Pathogenic role of Epstein-Barr virus latent membrane protein-1 in the development of nasopharyngeal carcinoma. Cancer Lett. 2013;337(1):1–7.PubMedCrossRef
129.
Zurück zum Zitat Meckes DG Jr, Shair KH, Marquitz AR, Kung CP, Edwards RH, Raab-Traub N. Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci U S A. 2010;107(47):20370–5.PubMedPubMedCentralCrossRef Meckes DG Jr, Shair KH, Marquitz AR, Kung CP, Edwards RH, Raab-Traub N. Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci U S A. 2010;107(47):20370–5.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Gourzones C, Gelin A, Bombik I, Klibi J, Verillaud B, Guigay J, Lang P, Temam S, Schneider V, Amiel C, et al. Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells. Virol J. 2010;7:271.PubMedPubMedCentralCrossRef Gourzones C, Gelin A, Bombik I, Klibi J, Verillaud B, Guigay J, Lang P, Temam S, Schneider V, Amiel C, et al. Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells. Virol J. 2010;7:271.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Kobayashi E, Aga M, Kondo S, Whitehurst C, Yoshizaki T, Pagano JS, Shackelford J. C-Terminal Farnesylation of UCH-L1 Plays a Role in Transport of Epstein-Barr Virus Primary Oncoprotein LMP1 to Exosomes. mSphere. 2018;3(1):e00030–18. Kobayashi E, Aga M, Kondo S, Whitehurst C, Yoshizaki T, Pagano JS, Shackelford J. C-Terminal Farnesylation of UCH-L1 Plays a Role in Transport of Epstein-Barr Virus Primary Oncoprotein LMP1 to Exosomes. mSphere. 2018;3(1):e00030–18.
132.
Zurück zum Zitat Klibi J, Niki T, Riedel A, Pioche-Durieu C, Souquere S, Rubinstein E, Le Moulec S, Guigay J, Hirashima M, Guemira F, et al. Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood. 2009;113(9):1957–66.PubMedCrossRef Klibi J, Niki T, Riedel A, Pioche-Durieu C, Souquere S, Rubinstein E, Le Moulec S, Guigay J, Hirashima M, Guemira F, et al. Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood. 2009;113(9):1957–66.PubMedCrossRef
133.
Zurück zum Zitat Economopoulou P, Kotsantis I, Kyrodimos E, Lianidou ES, Psyrri A. Liquid biopsy: An emerging prognostic and predictive tool in Head and Neck Squamous Cell Carcinoma (HNSCC). Focus on Circulating Tumor Cells (CTCs). Oral Oncol. 2017;74:83–9.PubMedCrossRef Economopoulou P, Kotsantis I, Kyrodimos E, Lianidou ES, Psyrri A. Liquid biopsy: An emerging prognostic and predictive tool in Head and Neck Squamous Cell Carcinoma (HNSCC). Focus on Circulating Tumor Cells (CTCs). Oral Oncol. 2017;74:83–9.PubMedCrossRef
134.
Zurück zum Zitat Shah R, Patel T, Freedman JE. Circulating Extracellular Vesicles in Human Disease. N Engl J Med. 2018;379(10):958–66.PubMedCrossRef Shah R, Patel T, Freedman JE. Circulating Extracellular Vesicles in Human Disease. N Engl J Med. 2018;379(10):958–66.PubMedCrossRef
135.
Zurück zum Zitat Schmidt H, Kulasinghe A, Kenny L, Punyadeera C. The development of a liquid biopsy for head and neck cancers. Oral Oncol. 2016;61:8–11.PubMedCrossRef Schmidt H, Kulasinghe A, Kenny L, Punyadeera C. The development of a liquid biopsy for head and neck cancers. Oral Oncol. 2016;61:8–11.PubMedCrossRef
136.
Zurück zum Zitat Zheng X, Chen F, Zhang J, Zhang Q, Lin J. Exosome analysis: a promising biomarker system with special attention to saliva. J Membr Biol. 2014;247(11):1129–36.PubMedCrossRef Zheng X, Chen F, Zhang J, Zhang Q, Lin J. Exosome analysis: a promising biomarker system with special attention to saliva. J Membr Biol. 2014;247(11):1129–36.PubMedCrossRef
137.
Zurück zum Zitat Langevin S, Kuhnell D, Parry T, Biesiada J, Huang S, Wise-Draper T, Casper K, Zhang X, Medvedovic M, Kasper S. Comprehensive microRNA-sequencing of exosomes derived from head and neck carcinoma cells reveals common secretion profiles and potential utility as salivary biomarkers. Oncotarget. 2017;8(47):82459–74.PubMedPubMedCentralCrossRef Langevin S, Kuhnell D, Parry T, Biesiada J, Huang S, Wise-Draper T, Casper K, Zhang X, Medvedovic M, Kasper S. Comprehensive microRNA-sequencing of exosomes derived from head and neck carcinoma cells reveals common secretion profiles and potential utility as salivary biomarkers. Oncotarget. 2017;8(47):82459–74.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Sivadasan P, Gupta MK, Sathe GJ, Balakrishnan L, Palit P, Gowda H, Suresh A, Kuriakose MA, Sirdeshmukh R. Human salivary proteome--a resource of potential biomarkers for oral cancer. J Proteomics. 2015;127:89–95.PubMedCrossRef Sivadasan P, Gupta MK, Sathe GJ, Balakrishnan L, Palit P, Gowda H, Suresh A, Kuriakose MA, Sirdeshmukh R. Human salivary proteome--a resource of potential biomarkers for oral cancer. J Proteomics. 2015;127:89–95.PubMedCrossRef
139.
Zurück zum Zitat Momen-Heravi F, Trachtenberg AJ, Kuo WP, Cheng YS. Genomewide Study of Salivary MicroRNAs for Detection of Oral Cancer. J Dent Res. 2014;93(7 Suppl):86S–93S.PubMedPubMedCentralCrossRef Momen-Heravi F, Trachtenberg AJ, Kuo WP, Cheng YS. Genomewide Study of Salivary MicroRNAs for Detection of Oral Cancer. J Dent Res. 2014;93(7 Suppl):86S–93S.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Ogawa Y, Miura Y, Harazono A, Kanai-Azuma M, Akimoto Y, Kawakami H, Yamaguchi T, Toda T, Endo T, Tsubuki M, et al. Proteomic analysis of two types of exosomes in human whole saliva. Biol Pharm Bull. 2011;34(1):13–23.PubMedCrossRef Ogawa Y, Miura Y, Harazono A, Kanai-Azuma M, Akimoto Y, Kawakami H, Yamaguchi T, Toda T, Endo T, Tsubuki M, et al. Proteomic analysis of two types of exosomes in human whole saliva. Biol Pharm Bull. 2011;34(1):13–23.PubMedCrossRef
141.
Zurück zum Zitat Rabinowits G, Bowden M, Flores LM, Verselis S, Vergara V, Jo VY, Chau N, Lorch J, Hammerman PS, Thomas T, et al. Comparative Analysis of MicroRNA Expression among Benign and Malignant Tongue Tissue and Plasma of Patients with Tongue Cancer. Front Oncol. 2017;7:191.PubMedPubMedCentralCrossRef Rabinowits G, Bowden M, Flores LM, Verselis S, Vergara V, Jo VY, Chau N, Lorch J, Hammerman PS, Thomas T, et al. Comparative Analysis of MicroRNA Expression among Benign and Malignant Tongue Tissue and Plasma of Patients with Tongue Cancer. Front Oncol. 2017;7:191.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Katsiougiannis S, Chia D, Kim Y, Singh R, Wong D. Saliva exosomes from pancreatic tumor-bearing mice modulate NK cell phenotype and antitumor cytotoxicity. FASEB J. 2017;31(3):998–1010.PubMedCrossRef Katsiougiannis S, Chia D, Kim Y, Singh R, Wong D. Saliva exosomes from pancreatic tumor-bearing mice modulate NK cell phenotype and antitumor cytotoxicity. FASEB J. 2017;31(3):998–1010.PubMedCrossRef
143.
Zurück zum Zitat Reclusa P, Taverna S, Pucci M, Durendez E, Calabuig S, Manca P, Serrano MJ, Sober L, Pauwels P, Russo A, et al. Exosomes as diagnostic and predictive biomarkers in lung cancer. J Thorac Dis. 2017;9(Suppl 13):S1373–82.PubMedPubMedCentralCrossRef Reclusa P, Taverna S, Pucci M, Durendez E, Calabuig S, Manca P, Serrano MJ, Sober L, Pauwels P, Russo A, et al. Exosomes as diagnostic and predictive biomarkers in lung cancer. J Thorac Dis. 2017;9(Suppl 13):S1373–82.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Lau CS, Wong DT. Breast cancer exosome-like microvesicles and salivary gland cells interplay alters salivary gland cell-derived exosome-like microvesicles in vitro. PLoS One. 2012;7(3):e33037.PubMedPubMedCentralCrossRef Lau CS, Wong DT. Breast cancer exosome-like microvesicles and salivary gland cells interplay alters salivary gland cell-derived exosome-like microvesicles in vitro. PLoS One. 2012;7(3):e33037.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Sharma S, Gillespie BM, Palanisamy V, Gimzewski JK. Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes. Langmuir. 2011;27(23):14394–400.PubMedPubMedCentralCrossRef Sharma S, Gillespie BM, Palanisamy V, Gimzewski JK. Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes. Langmuir. 2011;27(23):14394–400.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT. Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS One. 2010;5(1):e8577.PubMedPubMedCentralCrossRef Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT. Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS One. 2010;5(1):e8577.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Salo T, Vered M. Morphological and molecular features of oral fluid-derived exosomes: oral cancer patients versus healthy individuals. J Cancer Res Clin Oncol. 2016;142(1):101–10.PubMedCrossRef Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Salo T, Vered M. Morphological and molecular features of oral fluid-derived exosomes: oral cancer patients versus healthy individuals. J Cancer Res Clin Oncol. 2016;142(1):101–10.PubMedCrossRef
148.
Zurück zum Zitat Winck FV, Prado Ribeiro AC, Ramos Domingues R, Ling LY, Riano-Pachon DM, Rivera C, Brandao TB, Gouvea AF, Santos-Silva AR, Coletta RD, et al. Insights into immune responses in oral cancer through proteomic analysis of saliva and salivary extracellular vesicles. Sci Rep. 2015;5:16305.PubMedPubMedCentralCrossRef Winck FV, Prado Ribeiro AC, Ramos Domingues R, Ling LY, Riano-Pachon DM, Rivera C, Brandao TB, Gouvea AF, Santos-Silva AR, Coletta RD, et al. Insights into immune responses in oral cancer through proteomic analysis of saliva and salivary extracellular vesicles. Sci Rep. 2015;5:16305.PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Gai C, Camussi F, Broccoletti R, Gambino A, Cabras M, Molinaro L, Carossa S, Camussi G, Arduino PG. Salivary extracellular vesicle-associated miRNAs as potential biomarkers in oral squamous cell carcinoma. BMC Cancer. 2018;18(1):439.PubMedPubMedCentralCrossRef Gai C, Camussi F, Broccoletti R, Gambino A, Cabras M, Molinaro L, Carossa S, Camussi G, Arduino PG. Salivary extracellular vesicle-associated miRNAs as potential biomarkers in oral squamous cell carcinoma. BMC Cancer. 2018;18(1):439.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Yakob M, Fuentes L, Wang M, Abemayor E, Wong D. Salivary biomarkers for detection of oral squamous cell carcinoma - current state and recent advances. Curr Oral Health Rep. 2014;1(2):133–41.PubMedPubMedCentralCrossRef Yakob M, Fuentes L, Wang M, Abemayor E, Wong D. Salivary biomarkers for detection of oral squamous cell carcinoma - current state and recent advances. Curr Oral Health Rep. 2014;1(2):133–41.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Wang X, Kaczor-Urbanowicz KE, Wong DT. Salivary biomarkers in cancer detection. Med Oncol. 2017;34(1):7.PubMedCrossRef Wang X, Kaczor-Urbanowicz KE, Wong DT. Salivary biomarkers in cancer detection. Med Oncol. 2017;34(1):7.PubMedCrossRef
152.
Zurück zum Zitat Ren JG, Man QW, Zhang W, Li C, Xiong XP, Zhu JY, Wang WM, Sun ZJ, Jia J, Zhang WF, et al. Elevated Level of Circulating Platelet-derived Microparticles in Oral Cancer. J Dent Res. 2016;95(1):87–93.PubMedCrossRef Ren JG, Man QW, Zhang W, Li C, Xiong XP, Zhu JY, Wang WM, Sun ZJ, Jia J, Zhang WF, et al. Elevated Level of Circulating Platelet-derived Microparticles in Oral Cancer. J Dent Res. 2016;95(1):87–93.PubMedCrossRef
153.
Zurück zum Zitat Wang J, Zhou Y, Lu J, Sun Y, Xiao H, Liu M, Tian L. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med Oncol. 2014;31(9):148.PubMedCrossRef Wang J, Zhou Y, Lu J, Sun Y, Xiao H, Liu M, Tian L. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med Oncol. 2014;31(9):148.PubMedCrossRef
154.
Zurück zum Zitat Theodoraki MN, Yerneni SS, Brunner C, Theodorakis J, Hoffmann TK, Whiteside TL. Plasma-derived Exosomes Reverse Epithelial-to-Mesenchymal Transition after Photodynamic Therapy of Patients with Head and Neck Cancer. Oncoscience. 2018;5(3-4):75–87.PubMedPubMedCentral Theodoraki MN, Yerneni SS, Brunner C, Theodorakis J, Hoffmann TK, Whiteside TL. Plasma-derived Exosomes Reverse Epithelial-to-Mesenchymal Transition after Photodynamic Therapy of Patients with Head and Neck Cancer. Oncoscience. 2018;5(3-4):75–87.PubMedPubMedCentral
155.
Zurück zum Zitat Ludwig S, Floros T, Theodoraki MN, Hong CS, Jackson EK, Lang S, Whiteside TL. Suppression of Lymphocyte Functions by Plasma Exosomes Correlates with Disease Activity in Patients with Head and Neck Cancer. Clin Cancer Res. 2017;23(16):4843–54.PubMedPubMedCentralCrossRef Ludwig S, Floros T, Theodoraki MN, Hong CS, Jackson EK, Lang S, Whiteside TL. Suppression of Lymphocyte Functions by Plasma Exosomes Correlates with Disease Activity in Patients with Head and Neck Cancer. Clin Cancer Res. 2017;23(16):4843–54.PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat Andaloussi SE, Mäger I, Breakefield XO, Wood MJA. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–57.CrossRef Andaloussi SE, Mäger I, Breakefield XO, Wood MJA. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–57.CrossRef
157.
Zurück zum Zitat Campos JH, Soares RP, Ribeiro K, Andrade AC, Batista WL, Torrecilhas AC. Extracellular Vesicles: Role in Inflammatory Responses and Potential Uses in Vaccination in Cancer and Infectious Diseases. J Immunol Res. 2015;2015:832057.PubMedPubMedCentralCrossRef Campos JH, Soares RP, Ribeiro K, Andrade AC, Batista WL, Torrecilhas AC. Extracellular Vesicles: Role in Inflammatory Responses and Potential Uses in Vaccination in Cancer and Infectious Diseases. J Immunol Res. 2015;2015:832057.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560(7718):382–6.PubMedPubMedCentralCrossRef Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560(7718):382–6.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Malda J, Boere J, van de Lest CH, van Weeren P, Wauben MH. Extracellular vesicles - new tool for joint repair and regeneration. Nat Rev Rheumatol. 2016;12(4):243–9.PubMedCrossRefPubMedCentral Malda J, Boere J, van de Lest CH, van Weeren P, Wauben MH. Extracellular vesicles - new tool for joint repair and regeneration. Nat Rev Rheumatol. 2016;12(4):243–9.PubMedCrossRefPubMedCentral
Metadaten
Titel
The role of extracellular vesicles from different origin in the microenvironment of head and neck cancers
verfasst von
Changqing Xie
Ning Ji
Zhangui Tang
Jing Li
Qianming Chen
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2019
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-019-0985-3

Weitere Artikel der Ausgabe 1/2019

Molecular Cancer 1/2019 Zur Ausgabe

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.