Skip to main content
Erschienen in: Clinical and Translational Oncology 3/2023

08.11.2022 | Review Article

The role of long non-coding RNA HCG18 in cancer

verfasst von: Zhiqiang Wang, Rui Ran, Shunbai Zhang, Wenming Zhou, Jiayang Lv, Chunwei Ma, Haihong Zhang

Erschienen in: Clinical and Translational Oncology | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Abstract

The incidence of cancer is increasing worldwide and is becoming the most common cause of death. Identifying new biomarkers for cancer diagnosis and prognosis is important for developing cancer treatment strategies and reducing mortality. Long non-coding RNAs (lncRNAs) are non-coding, single-stranded RNAs that play an important role as oncogenes or tumor suppressors in the occurrence and development of human tumors. Abnormal expression of human leukocyte antigen complex group 18 (HCG18) is observed in many types of cancer, and its imbalance is closely related to cancer progression. HCG18 regulates cell proliferation, invasion, metastasis, and anti-apoptosis through a variety of mechanisms. Therefore, HCG18 is a potential tumor biomarker and therapeutic target. However, the therapeutic significance of HCG18 has not been well studied, and future research may develop new intervention strategies to combat cancer. In this study, we reviewed the biological function, mechanism, and potential clinical significance of HCG18 in various cancers to provide a reference for future research.
Literatur
1.
Zurück zum Zitat Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed
2.
Zurück zum Zitat Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.PubMedCrossRef Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.PubMedCrossRef
3.
Zurück zum Zitat Wei W, Zeng H, Zheng R, Zhang S, An L, Chen R, et al. Cancer registration in China and its role in cancer prevention and control. Lancet Oncol. 2020;21(7):e342–9.PubMedCrossRef Wei W, Zeng H, Zheng R, Zhang S, An L, Chen R, et al. Cancer registration in China and its role in cancer prevention and control. Lancet Oncol. 2020;21(7):e342–9.PubMedCrossRef
4.
Zurück zum Zitat Chen ZH, Lin L, Wu CF, Li CF, Xu RH, Sun Y. Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine. Cancer Commun (Lond). 2021;41(11):1100–15.PubMedCrossRef Chen ZH, Lin L, Wu CF, Li CF, Xu RH, Sun Y. Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine. Cancer Commun (Lond). 2021;41(11):1100–15.PubMedCrossRef
5.
Zurück zum Zitat Tsimberidou AM, Fountzilas E, Nikanjam M, Kurzrock R. Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat Rev. 2020;86: 102019.PubMedPubMedCentralCrossRef Tsimberidou AM, Fountzilas E, Nikanjam M, Kurzrock R. Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat Rev. 2020;86: 102019.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Zhao W, Geng D, Li S, Chen Z, Sun M. LncRNA HOTAIR influences cell growth, migration, invasion, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer. Cancer Med. 2018;7(3):842–55.PubMedPubMedCentralCrossRef Zhao W, Geng D, Li S, Chen Z, Sun M. LncRNA HOTAIR influences cell growth, migration, invasion, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer. Cancer Med. 2018;7(3):842–55.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Kong X, Duan Y, Sang Y, Li Y, Zhang H, Liang Y, et al. LncRNA-CDC6 promotes breast cancer progression and function as ceRNA to target CDC6 by sponging microRNA-215. J Cell Physiol. 2019;234(6):9105–17.PubMedCrossRef Kong X, Duan Y, Sang Y, Li Y, Zhang H, Liang Y, et al. LncRNA-CDC6 promotes breast cancer progression and function as ceRNA to target CDC6 by sponging microRNA-215. J Cell Physiol. 2019;234(6):9105–17.PubMedCrossRef
10.
Zurück zum Zitat Zhuang C, Ma Q, Zhuang C, Ye J, Zhang F, Gui Y. LncRNA GClnc1 promotes proliferation and invasion of bladder cancer through activation of MYC. Faseb j. 2019;33(10):11045–59.PubMedCrossRef Zhuang C, Ma Q, Zhuang C, Ye J, Zhang F, Gui Y. LncRNA GClnc1 promotes proliferation and invasion of bladder cancer through activation of MYC. Faseb j. 2019;33(10):11045–59.PubMedCrossRef
11.
Zurück zum Zitat Chen J, Huang X, Wang W, Xie H, Li J, Hu Z, et al. LncRNA CDKN2BAS predicts poor prognosis in patients with hepatocellular carcinoma and promotes metastasis via the miR-153-5p/ARHGAP18 signaling axis. Aging (Albany NY). 2018;10(11):3371–81.PubMedCrossRef Chen J, Huang X, Wang W, Xie H, Li J, Hu Z, et al. LncRNA CDKN2BAS predicts poor prognosis in patients with hepatocellular carcinoma and promotes metastasis via the miR-153-5p/ARHGAP18 signaling axis. Aging (Albany NY). 2018;10(11):3371–81.PubMedCrossRef
12.
Zurück zum Zitat McCabe EM, Rasmussen TP. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin Cancer Biol. 2021;75:38–48.PubMedCrossRef McCabe EM, Rasmussen TP. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin Cancer Biol. 2021;75:38–48.PubMedCrossRef
13.
Zurück zum Zitat Zhao J, Du P, Cui P, Qin Y, Hu C, Wu J, et al. LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer. Oncogene. 2018;37(30):4094–109.PubMedCrossRef Zhao J, Du P, Cui P, Qin Y, Hu C, Wu J, et al. LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer. Oncogene. 2018;37(30):4094–109.PubMedCrossRef
15.
Zurück zum Zitat Ghafouri-Fard S, Taheri M. UCA1 long non-coding RNA: an update on its roles in malignant behavior of cancers. Biomed Pharmacother. 2019;120: 109459.PubMedCrossRef Ghafouri-Fard S, Taheri M. UCA1 long non-coding RNA: an update on its roles in malignant behavior of cancers. Biomed Pharmacother. 2019;120: 109459.PubMedCrossRef
16.
Zurück zum Zitat Li CH, Chen Y. Insight into the role of long noncoding RNA in cancer development and progression. Int Rev Cell Mol Biol. 2016;326:33–65.PubMedCrossRef Li CH, Chen Y. Insight into the role of long noncoding RNA in cancer development and progression. Int Rev Cell Mol Biol. 2016;326:33–65.PubMedCrossRef
17.
Zurück zum Zitat Xi Y, Jiang T, Wang W, Yu J, Wang Y, Wu X, et al. Long non-coding HCG18 promotes intervertebral disc degeneration by sponging miR-146a-5p and regulating TRAF6 expression. Sci Rep. 2017;7(1):13234.PubMedPubMedCentralCrossRef Xi Y, Jiang T, Wang W, Yu J, Wang Y, Wu X, et al. Long non-coding HCG18 promotes intervertebral disc degeneration by sponging miR-146a-5p and regulating TRAF6 expression. Sci Rep. 2017;7(1):13234.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Xu Z, Huang B, Zhang Q, He X, Wei H, Zhang D. NOTCH1 regulates the proliferation and migration of bladder cancer cells by cooperating with long non-coding RNA HCG18 and microRNA-34c-5p. J Cell Biochem. 2019;120(4):6596–604.PubMedCrossRef Xu Z, Huang B, Zhang Q, He X, Wei H, Zhang D. NOTCH1 regulates the proliferation and migration of bladder cancer cells by cooperating with long non-coding RNA HCG18 and microRNA-34c-5p. J Cell Biochem. 2019;120(4):6596–604.PubMedCrossRef
19.
Zurück zum Zitat Li S, Wang X, Wang T, Zhang H, Lu X, Liu L, et al. Identification of the regulatory role of lncRNA HCG18 in myasthenia gravis by integrated bioinformatics and experimental analyses. J Transl Med. 2021;19(1):468.PubMedPubMedCentralCrossRef Li S, Wang X, Wang T, Zhang H, Lu X, Liu L, et al. Identification of the regulatory role of lncRNA HCG18 in myasthenia gravis by integrated bioinformatics and experimental analyses. J Transl Med. 2021;19(1):468.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Che M, Gong W, Zhao Y, Liu M. Long noncoding RNA HCG18 inhibits the differentiation of human bone marrow-derived mesenchymal stem cells in osteoporosis by targeting miR-30a-5p/NOTCH1 axis. Mol Med. 2020;26(1):106.PubMedPubMedCentralCrossRef Che M, Gong W, Zhao Y, Liu M. Long noncoding RNA HCG18 inhibits the differentiation of human bone marrow-derived mesenchymal stem cells in osteoporosis by targeting miR-30a-5p/NOTCH1 axis. Mol Med. 2020;26(1):106.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Zhao W, Zhang Y, Zhang M, Zhi Y, Li X, Liu X. Effects of total glucosides of paeony on acute renal injury following ischemia-reperfusion via the lncRNA HCG18/miR-16-5p/Bcl-2 axis. Immunobiology. 2022;227(2): 152179.PubMedCrossRef Zhao W, Zhang Y, Zhang M, Zhi Y, Li X, Liu X. Effects of total glucosides of paeony on acute renal injury following ischemia-reperfusion via the lncRNA HCG18/miR-16-5p/Bcl-2 axis. Immunobiology. 2022;227(2): 152179.PubMedCrossRef
22.
Zurück zum Zitat Xia Y, Zhang Y, Wang H. Upregulated lncRNA HCG18 in patients with non-alcoholic fatty liver disease and its regulatory effect on insulin resistance. Diabetes Metab Syndr Obes. 2021;14:4747–56.PubMedPubMedCentralCrossRef Xia Y, Zhang Y, Wang H. Upregulated lncRNA HCG18 in patients with non-alcoholic fatty liver disease and its regulatory effect on insulin resistance. Diabetes Metab Syndr Obes. 2021;14:4747–56.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Ren W, Xi G, Li X, Zhao L, Yang K, Fan X, et al. Long non-coding RNA HCG18 promotes M1 macrophage polarization through regulating the miR-146a/TRAF6 axis, facilitating the progression of diabetic peripheral neuropathy. Mol Cell Biochem. 2021;476(1):471–82.PubMedCrossRef Ren W, Xi G, Li X, Zhao L, Yang K, Fan X, et al. Long non-coding RNA HCG18 promotes M1 macrophage polarization through regulating the miR-146a/TRAF6 axis, facilitating the progression of diabetic peripheral neuropathy. Mol Cell Biochem. 2021;476(1):471–82.PubMedCrossRef
24.
Zurück zum Zitat Liu Y, Lin W, Dong Y, Li X, Lin Z, Jia J, et al. Long noncoding RNA HCG18 up-regulates the expression of WIPF1 and YAP/TAZ by inhibiting miR-141-3p in gastric cancer. Cancer Med. 2020;9(18):6752–65.PubMedPubMedCentralCrossRef Liu Y, Lin W, Dong Y, Li X, Lin Z, Jia J, et al. Long noncoding RNA HCG18 up-regulates the expression of WIPF1 and YAP/TAZ by inhibiting miR-141-3p in gastric cancer. Cancer Med. 2020;9(18):6752–65.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Ma P, Li L, Liu F, Zhao Q. HNF1A-Induced lncRNA HCG18 facilitates gastric cancer progression by upregulating DNAJB12 via miR-152-3p. Onco Targets Ther. 2020;13:7641–52.PubMedPubMedCentralCrossRef Ma P, Li L, Liu F, Zhao Q. HNF1A-Induced lncRNA HCG18 facilitates gastric cancer progression by upregulating DNAJB12 via miR-152-3p. Onco Targets Ther. 2020;13:7641–52.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Niu W, Guo LY, Zhang JY, Ji T, Mao D, Li XF, et al. E2F1-induced upregulation of lncRNA HCG18 stimulates proliferation and migration in gastric cancer by binding to miR-197-3p. Eur Rev Med Pharmacol Sci. 2020;24(19):9949–56.PubMed Niu W, Guo LY, Zhang JY, Ji T, Mao D, Li XF, et al. E2F1-induced upregulation of lncRNA HCG18 stimulates proliferation and migration in gastric cancer by binding to miR-197-3p. Eur Rev Med Pharmacol Sci. 2020;24(19):9949–56.PubMed
27.
Zurück zum Zitat Yang X, Liu R. Long non-coding RNA HCG18 promotes gastric cancer progression by regulating miRNA-146a-5p/tumor necrosis factor receptor-associated factor 6 axis. Bioengineered. 2022;13(3):6781–93.PubMedPubMedCentralCrossRef Yang X, Liu R. Long non-coding RNA HCG18 promotes gastric cancer progression by regulating miRNA-146a-5p/tumor necrosis factor receptor-associated factor 6 axis. Bioengineered. 2022;13(3):6781–93.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Yuan Z, Zhang Y, Chen P, Liu S, Xin L, Liu C. Long non-coding RNA HLA complex group 18 promotes gastric cancer progression by targeting microRNA-370-3p expression. J Pharm Pharmacol. 2022;74(2):250–8.PubMedCrossRef Yuan Z, Zhang Y, Chen P, Liu S, Xin L, Liu C. Long non-coding RNA HLA complex group 18 promotes gastric cancer progression by targeting microRNA-370-3p expression. J Pharm Pharmacol. 2022;74(2):250–8.PubMedCrossRef
29.
Zurück zum Zitat Li S, Wu T, Zhang D, Sun X, Zhang X. The long non-coding RNA HCG18 promotes the growth and invasion of colorectal cancer cells through sponging miR-1271 and upregulating MTDH/Wnt/β-catenin. Clin Exp Pharmacol Physiol. 2020;47(4):703–12.PubMedCrossRef Li S, Wu T, Zhang D, Sun X, Zhang X. The long non-coding RNA HCG18 promotes the growth and invasion of colorectal cancer cells through sponging miR-1271 and upregulating MTDH/Wnt/β-catenin. Clin Exp Pharmacol Physiol. 2020;47(4):703–12.PubMedCrossRef
30.
Zurück zum Zitat Xu YJ, Zhao JM, Ni XF, Wang W, Hu WW, Wu CP. LncRNA HCG18 suppresses CD8(+) T cells to confer resistance to cetuximab in colorectal cancer via miR-20b-5p/PD-L1 axis. Epigenomics. 2021;13(16):1281–97.PubMedCrossRef Xu YJ, Zhao JM, Ni XF, Wang W, Hu WW, Wu CP. LncRNA HCG18 suppresses CD8(+) T cells to confer resistance to cetuximab in colorectal cancer via miR-20b-5p/PD-L1 axis. Epigenomics. 2021;13(16):1281–97.PubMedCrossRef
31.
Zurück zum Zitat Zhang L, Wang Z, Li M, Sun P, Bai T, Wang W, et al. HCG18 participates in vascular invasion of hepatocellular carcinoma by regulating macrophages and tumor stem cells. Front Cell Dev Biol. 2021;9: 707073.PubMedPubMedCentralCrossRef Zhang L, Wang Z, Li M, Sun P, Bai T, Wang W, et al. HCG18 participates in vascular invasion of hepatocellular carcinoma by regulating macrophages and tumor stem cells. Front Cell Dev Biol. 2021;9: 707073.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Zou Y, Sun Z, Sun S. LncRNA HCG18 contributes to the progression of hepatocellular carcinoma via miR-214-3p/CENPM axis. J Biochem. 2020;168(5):535–46.PubMedCrossRef Zou Y, Sun Z, Sun S. LncRNA HCG18 contributes to the progression of hepatocellular carcinoma via miR-214-3p/CENPM axis. J Biochem. 2020;168(5):535–46.PubMedCrossRef
33.
Zurück zum Zitat Chen Y, Chen Z, Mo J, Pang M, Chen Z, Feng F, et al. Identification of HCG18 and MCM3AP-AS1 that associate with bone metastasis, poor prognosis and increased abundance of M2 macrophage infiltration in prostate cancer. Technol Cancer Res Treat. 2021;20:1533033821990064.PubMedPubMedCentralCrossRef Chen Y, Chen Z, Mo J, Pang M, Chen Z, Feng F, et al. Identification of HCG18 and MCM3AP-AS1 that associate with bone metastasis, poor prognosis and increased abundance of M2 macrophage infiltration in prostate cancer. Technol Cancer Res Treat. 2021;20:1533033821990064.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Pan X, Chen G, Hu W. lncRNA HLA complex group 18 (HCG18) facilitated cell proliferation, invasion, and migration of prostate cancer through modulating miR-370-3p/DDX3X axis. Reprod Sci. 2021;28(12):3406–16.PubMedCrossRef Pan X, Chen G, Hu W. lncRNA HLA complex group 18 (HCG18) facilitated cell proliferation, invasion, and migration of prostate cancer through modulating miR-370-3p/DDX3X axis. Reprod Sci. 2021;28(12):3406–16.PubMedCrossRef
35.
Zurück zum Zitat Yang Y, Gong P, Yao D, Xue D, He X. LncRNA HCG18 promotes clear cell renal cell carcinoma progression by targeting miR-152-3p to upregulate RAB14. Cancer Manag Res. 2021;13:2287–94.PubMedPubMedCentralCrossRef Yang Y, Gong P, Yao D, Xue D, He X. LncRNA HCG18 promotes clear cell renal cell carcinoma progression by targeting miR-152-3p to upregulate RAB14. Cancer Manag Res. 2021;13:2287–94.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Liu X, Qiao K, Zhu K, Li X, Zhao C, Li J, et al. Long noncoding RNA HCG18 promotes malignant phenotypes of breast cancer cells via the HCG18/miR-103a-3p/UBE2O/mTORC1/HIF-1α-positive feedback loop. Front Cell Dev Biol. 2021;9: 675082.PubMedPubMedCentralCrossRef Liu X, Qiao K, Zhu K, Li X, Zhao C, Li J, et al. Long noncoding RNA HCG18 promotes malignant phenotypes of breast cancer cells via the HCG18/miR-103a-3p/UBE2O/mTORC1/HIF-1α-positive feedback loop. Front Cell Dev Biol. 2021;9: 675082.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Zhang F, Luo BH, Wu QH, Li QL, Yang KD. LncRNA HCG18 upregulates TRAF4/TRAF5 to facilitate proliferation, migration and EMT of epithelial ovarian cancer by targeting miR-29a/b. Mol Med. 2022;28(1):2.PubMedPubMedCentralCrossRef Zhang F, Luo BH, Wu QH, Li QL, Yang KD. LncRNA HCG18 upregulates TRAF4/TRAF5 to facilitate proliferation, migration and EMT of epithelial ovarian cancer by targeting miR-29a/b. Mol Med. 2022;28(1):2.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Li W, Pan T, Jiang W, Zhao H. HCG18/miR-34a-5p/HMMR axis accelerates the progression of lung adenocarcinoma. Biomed Pharmacother. 2020;129: 110217.PubMedCrossRef Li W, Pan T, Jiang W, Zhao H. HCG18/miR-34a-5p/HMMR axis accelerates the progression of lung adenocarcinoma. Biomed Pharmacother. 2020;129: 110217.PubMedCrossRef
39.
Zurück zum Zitat Li L, Ma TT, Ma YH, Jiang YF. LncRNA HCG18 contributes to nasopharyngeal carcinoma development by modulating miR-140/CCND1 and Hedgehog signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(23):10387–99.PubMed Li L, Ma TT, Ma YH, Jiang YF. LncRNA HCG18 contributes to nasopharyngeal carcinoma development by modulating miR-140/CCND1 and Hedgehog signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(23):10387–99.PubMed
40.
Zurück zum Zitat Zhao Z, Chen J, Xia D. Knockdown of HCG18 inhibits cell viability, migration and invasion in pediatric osteosarcoma by targeting miR-188-5p/FOXC1 Axis. Mol Biotechnol. 2021;63(9):807–17.PubMedCrossRef Zhao Z, Chen J, Xia D. Knockdown of HCG18 inhibits cell viability, migration and invasion in pediatric osteosarcoma by targeting miR-188-5p/FOXC1 Axis. Mol Biotechnol. 2021;63(9):807–17.PubMedCrossRef
41.
Zurück zum Zitat Zheng Z, Lin K. LncRNA HCG18 promotes cell multiplication and metastasis by miR-148b/ETV5 regulation in osteosarcoma. Am J Transl Res. 2021;13(7):7783–93.PubMedPubMedCentral Zheng Z, Lin K. LncRNA HCG18 promotes cell multiplication and metastasis by miR-148b/ETV5 regulation in osteosarcoma. Am J Transl Res. 2021;13(7):7783–93.PubMedPubMedCentral
42.
Zurück zum Zitat Pan X, Guo J, Liu C, Pan Z, Yang Z, Yao X, et al. LncRNA HCG18 promotes osteosarcoma growth by enhanced aerobic glycolysis via the miR-365a-3p/PGK1 axis. Cell Mol Biol Lett. 2022;27(1):5.PubMedPubMedCentralCrossRef Pan X, Guo J, Liu C, Pan Z, Yang Z, Yao X, et al. LncRNA HCG18 promotes osteosarcoma growth by enhanced aerobic glycolysis via the miR-365a-3p/PGK1 axis. Cell Mol Biol Lett. 2022;27(1):5.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Zhang C, Lv H, Zhang F, Ji A. LncRNA HCG18 facilitates melanoma progression by modulating miR-324-5p/CDK16 axis. Am J Transl Res. 2022;14(2):1246–57.PubMedPubMedCentral Zhang C, Lv H, Zhang F, Ji A. LncRNA HCG18 facilitates melanoma progression by modulating miR-324-5p/CDK16 axis. Am J Transl Res. 2022;14(2):1246–57.PubMedPubMedCentral
45.
Zurück zum Zitat Zhu Y, Zhao J, Tan L, Lin S, Long M, Peng X. LncRNA-HCG18 regulates the viability, apoptosis, migration, invasion and epithelial-mesenchymal transition of papillary thyroid cancer cells via regulating the miR-106a-5p/PPP2R2A axis. Pathol Res Pract. 2021;221: 153395.PubMedCrossRef Zhu Y, Zhao J, Tan L, Lin S, Long M, Peng X. LncRNA-HCG18 regulates the viability, apoptosis, migration, invasion and epithelial-mesenchymal transition of papillary thyroid cancer cells via regulating the miR-106a-5p/PPP2R2A axis. Pathol Res Pract. 2021;221: 153395.PubMedCrossRef
47.
Zurück zum Zitat Gargini R, Escoll M, García E, García-Escudero R, Wandosell F, Antón IM. WIP drives tumor progression through YAP/TAZ-Dependent autonomous cell growth. Cell Rep. 2016;17(8):1962–77.PubMedCrossRef Gargini R, Escoll M, García E, García-Escudero R, Wandosell F, Antón IM. WIP drives tumor progression through YAP/TAZ-Dependent autonomous cell growth. Cell Rep. 2016;17(8):1962–77.PubMedCrossRef
48.
Zurück zum Zitat Sun YS, Ye ZY, Qian ZY, Xu XD, Hu JF. Expression of TRAF6 and ubiquitin mRNA in skeletal muscle of gastric cancer patients. J Exp Clin Cancer Res. 2012;31(1):81.PubMedPubMedCentralCrossRef Sun YS, Ye ZY, Qian ZY, Xu XD, Hu JF. Expression of TRAF6 and ubiquitin mRNA in skeletal muscle of gastric cancer patients. J Exp Clin Cancer Res. 2012;31(1):81.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Zhou F, Wei H, Ding A, Qiu W, Feng L, Zhou Q, et al. Different cellular localization of NF-κB p65 expression as an indicator of different prognoses of stage I-III gastric cancer patients. Clin Transl Sci. 2013;6(5):381–5.PubMedPubMedCentralCrossRef Zhou F, Wei H, Ding A, Qiu W, Feng L, Zhou Q, et al. Different cellular localization of NF-κB p65 expression as an indicator of different prognoses of stage I-III gastric cancer patients. Clin Transl Sci. 2013;6(5):381–5.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Liang Y, Xu X, Wang T, Li Y, You W, Fu J, et al. The EGFR/miR-338-3p/EYA2 axis controls breast tumor growth and lung metastasis. Cell Death Dis. 2017;8(7): e2928.PubMedPubMedCentralCrossRef Liang Y, Xu X, Wang T, Li Y, You W, Fu J, et al. The EGFR/miR-338-3p/EYA2 axis controls breast tumor growth and lung metastasis. Cell Death Dis. 2017;8(7): e2928.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Wei W, Liu Y, Lu Y, Yang B, Tang L. LncRNA XIST promotes pancreatic cancer proliferation through miR-133a/EGFR. J Cell Biochem. 2017;118(10):3349–58.PubMedCrossRef Wei W, Liu Y, Lu Y, Yang B, Tang L. LncRNA XIST promotes pancreatic cancer proliferation through miR-133a/EGFR. J Cell Biochem. 2017;118(10):3349–58.PubMedCrossRef
52.
Zurück zum Zitat Wang Y, Zhang H, Ge S, Fan Q, Zhou L, Li H, et al. Effects of miR-138-5p and miR-204-5p on the migration and proliferation of gastric cancer cells by targeting EGFR. Oncol Rep. 2018;39(6):2624–34.PubMedPubMedCentral Wang Y, Zhang H, Ge S, Fan Q, Zhou L, Li H, et al. Effects of miR-138-5p and miR-204-5p on the migration and proliferation of gastric cancer cells by targeting EGFR. Oncol Rep. 2018;39(6):2624–34.PubMedPubMedCentral
53.
Zurück zum Zitat Xin L, Wu Y, Liu C, Zeng F, Wang JL, Wu DZ, et al. Exosome-mediated transfer of lncRNA HCG18 promotes M2 macrophage polarization in gastric cancer. Mol Immunol. 2021;140:196–205.PubMedCrossRef Xin L, Wu Y, Liu C, Zeng F, Wang JL, Wu DZ, et al. Exosome-mediated transfer of lncRNA HCG18 promotes M2 macrophage polarization in gastric cancer. Mol Immunol. 2021;140:196–205.PubMedCrossRef
54.
Zurück zum Zitat Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394(10207):1467–80.PubMedCrossRef Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394(10207):1467–80.PubMedCrossRef
55.
Zurück zum Zitat Abdel Ghafar MT, Soliman NA. Metadherin (AEG-1/MTDH/LYRIC) expression: significance in malignancy and crucial role in colorectal cancer. Adv Clin Chem. 2022;106:235–80.PubMedCrossRef Abdel Ghafar MT, Soliman NA. Metadherin (AEG-1/MTDH/LYRIC) expression: significance in malignancy and crucial role in colorectal cancer. Adv Clin Chem. 2022;106:235–80.PubMedCrossRef
56.
Zurück zum Zitat Casimiro S, Fernandes A, Oliveira AG, Franco M, Pires R, Peres M, et al. Metadherin expression and lung relapse in patients with colorectal carcinoma. Clin Exp Metastasis. 2014;31(6):689–96.PubMedCrossRef Casimiro S, Fernandes A, Oliveira AG, Franco M, Pires R, Peres M, et al. Metadherin expression and lung relapse in patients with colorectal carcinoma. Clin Exp Metastasis. 2014;31(6):689–96.PubMedCrossRef
57.
Zurück zum Zitat Ikebuchi R, Konnai S, Okagawa T, Yokoyama K, Nakajima C, Suzuki Y, et al. Influence of PD-L1 cross-linking on cell death in PD-L1-expressing cell lines and bovine lymphocytes. Immunology. 2014;142(4):551–61.PubMedPubMedCentralCrossRef Ikebuchi R, Konnai S, Okagawa T, Yokoyama K, Nakajima C, Suzuki Y, et al. Influence of PD-L1 cross-linking on cell death in PD-L1-expressing cell lines and bovine lymphocytes. Immunology. 2014;142(4):551–61.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Akinyemiju T, Abera S, Ahmed M, Alam N, Alemayohu MA, Allen C, et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015. JAMA Oncol. 2017;3(12):1683–91.PubMedPubMedCentralCrossRef Akinyemiju T, Abera S, Ahmed M, Alam N, Alemayohu MA, Allen C, et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015. JAMA Oncol. 2017;3(12):1683–91.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Xiao Y, Najeeb RM, Ma D, Yang K, Zhong Q, Liu Q. Upregulation of CENPM promotes hepatocarcinogenesis through mutiple mechanisms. J Exp Clin Cancer Res. 2019;38(1):458.PubMedPubMedCentralCrossRef Xiao Y, Najeeb RM, Ma D, Yang K, Zhong Q, Liu Q. Upregulation of CENPM promotes hepatocarcinogenesis through mutiple mechanisms. J Exp Clin Cancer Res. 2019;38(1):458.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Vellky JE, Ricke EA, Huang W, Ricke WA. Expression and localization of DDX3 in prostate cancer progression and metastasis. Am J Pathol. 2019;189(6):1256–67.PubMedPubMedCentralCrossRef Vellky JE, Ricke EA, Huang W, Ricke WA. Expression and localization of DDX3 in prostate cancer progression and metastasis. Am J Pathol. 2019;189(6):1256–67.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Chao H, Deng L, Xu F, Fu B, Zhu Z, Dong Z, et al. RAB14 activates MAPK signaling to promote bladder tumorigenesis. Carcinogenesis. 2019;40(11):1341–51.PubMedCrossRef Chao H, Deng L, Xu F, Fu B, Zhu Z, Dong Z, et al. RAB14 activates MAPK signaling to promote bladder tumorigenesis. Carcinogenesis. 2019;40(11):1341–51.PubMedCrossRef
63.
Zurück zum Zitat Zhang J, Zhao X, Luan Z, Wang A. Rab14 overexpression promotes proliferation and invasion through YAP signaling in non-small cell lung cancers. Onco Targets Ther. 2020;13:9269–80.PubMedPubMedCentralCrossRef Zhang J, Zhao X, Luan Z, Wang A. Rab14 overexpression promotes proliferation and invasion through YAP signaling in non-small cell lung cancers. Onco Targets Ther. 2020;13:9269–80.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Chen TW, Yin FF, Yuan YM, Guan DX, Zhang E, Zhang FK, et al. CHML promotes liver cancer metastasis by facilitating Rab14 recycle. Nat Commun. 2019;10(1):2510.PubMedPubMedCentralCrossRef Chen TW, Yin FF, Yuan YM, Guan DX, Zhang E, Zhang FK, et al. CHML promotes liver cancer metastasis by facilitating Rab14 recycle. Nat Commun. 2019;10(1):2510.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Maraver A, Fernandez-Marcos PJ, Cash TP, Mendez-Pertuz M, Dueñas M, Maietta P, et al. NOTCH pathway inactivation promotes bladder cancer progression. J Clin Invest. 2015;125(2):824–30.PubMedPubMedCentralCrossRef Maraver A, Fernandez-Marcos PJ, Cash TP, Mendez-Pertuz M, Dueñas M, Maietta P, et al. NOTCH pathway inactivation promotes bladder cancer progression. J Clin Invest. 2015;125(2):824–30.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.PubMedCrossRef Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.PubMedCrossRef
67.
Zurück zum Zitat Liu X, Ma F, Liu C, Zhu K, Li W, Xu Y, et al. UBE2O promotes the proliferation, EMT and stemness properties of breast cancer cells through the UBE2O/AMPKα2/mTORC1-MYC positive feedback loop. Cell Death Dis. 2020;11(1):10.PubMedPubMedCentralCrossRef Liu X, Ma F, Liu C, Zhu K, Li W, Xu Y, et al. UBE2O promotes the proliferation, EMT and stemness properties of breast cancer cells through the UBE2O/AMPKα2/mTORC1-MYC positive feedback loop. Cell Death Dis. 2020;11(1):10.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat George SH, Garcia R, Slomovitz BM. Ovarian cancer: the fallopian tube as the site of origin and opportunities for prevention. Front Oncol. 2016;6:108.PubMedPubMedCentralCrossRef George SH, Garcia R, Slomovitz BM. Ovarian cancer: the fallopian tube as the site of origin and opportunities for prevention. Front Oncol. 2016;6:108.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Zhu L, Zhang S, Huan X, Mei Y, Yang H. Down-regulation of TRAF4 targeting RSK4 inhibits proliferation, invasion and metastasis in breast cancer xenografts. Biochem Biophys Res Commun. 2018;500(3):810–6.PubMedCrossRef Zhu L, Zhang S, Huan X, Mei Y, Yang H. Down-regulation of TRAF4 targeting RSK4 inhibits proliferation, invasion and metastasis in breast cancer xenografts. Biochem Biophys Res Commun. 2018;500(3):810–6.PubMedCrossRef
70.
Zurück zum Zitat Liu C, Li Y, Wei M, Zhao L, Yu Y, Li G. Identification of a novel glycolysis-related gene signature that can predict the survival of patients with lung adenocarcinoma. Cell Cycle. 2019;18(5):568–79.PubMedPubMedCentralCrossRef Liu C, Li Y, Wei M, Zhao L, Yu Y, Li G. Identification of a novel glycolysis-related gene signature that can predict the survival of patients with lung adenocarcinoma. Cell Cycle. 2019;18(5):568–79.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Guan S, Wei J, Huang L, Wu L. Chemotherapy and chemo-resistance in nasopharyngeal carcinoma. Eur J Med Chem. 2020;207: 112758.PubMedCrossRef Guan S, Wei J, Huang L, Wu L. Chemotherapy and chemo-resistance in nasopharyngeal carcinoma. Eur J Med Chem. 2020;207: 112758.PubMedCrossRef
72.
Zurück zum Zitat Zhen Y, Fang W, Zhao M, Luo R, Liu Y, Fu Q, et al. miR-374a-CCND1-pPI3K/AKT-c-JUN feedback loop modulated by PDCD4 suppresses cell growth, metastasis, and sensitizes nasopharyngeal carcinoma to cisplatin. Oncogene. 2017;36(2):275–85.PubMedCrossRef Zhen Y, Fang W, Zhao M, Luo R, Liu Y, Fu Q, et al. miR-374a-CCND1-pPI3K/AKT-c-JUN feedback loop modulated by PDCD4 suppresses cell growth, metastasis, and sensitizes nasopharyngeal carcinoma to cisplatin. Oncogene. 2017;36(2):275–85.PubMedCrossRef
73.
Zurück zum Zitat Kager L, Tamamyan G, Bielack S. Novel insights and therapeutic interventions for pediatric osteosarcoma. Future Oncol. 2017;13(4):357–68.PubMedCrossRef Kager L, Tamamyan G, Bielack S. Novel insights and therapeutic interventions for pediatric osteosarcoma. Future Oncol. 2017;13(4):357–68.PubMedCrossRef
74.
Zurück zum Zitat Kansara M, Teng MW, Smyth MJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14(11):722–35.PubMedCrossRef Kansara M, Teng MW, Smyth MJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14(11):722–35.PubMedCrossRef
75.
Zurück zum Zitat Liu K, Ni JD, Li WZ, Pan BQ, Yang YT, Xia Q, et al. The Sp1/FOXC1/HOTTIP/LATS2/YAP/β-catenin cascade promotes malignant and metastatic progression of osteosarcoma. Mol Oncol. 2020;14(10):2678–95.PubMedPubMedCentralCrossRef Liu K, Ni JD, Li WZ, Pan BQ, Yang YT, Xia Q, et al. The Sp1/FOXC1/HOTTIP/LATS2/YAP/β-catenin cascade promotes malignant and metastatic progression of osteosarcoma. Mol Oncol. 2020;14(10):2678–95.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Abdeyrim A, He S, Zhang Y, Mamtali G, Asla A, Yusup M, et al. Prognostic value of lymph node ratio in laryngeal and hypopharyngeal squamous cell carcinoma: a systematic review and meta-analysis. J Otolaryngol Head Neck Surg. 2020;49(1):31.PubMedPubMedCentralCrossRef Abdeyrim A, He S, Zhang Y, Mamtali G, Asla A, Yusup M, et al. Prognostic value of lymph node ratio in laryngeal and hypopharyngeal squamous cell carcinoma: a systematic review and meta-analysis. J Otolaryngol Head Neck Surg. 2020;49(1):31.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Song L, Zhang S, Yu S, Ma F, Wang B, Zhang C, et al. Cellular heterogeneity landscape in laryngeal squamous cell carcinoma. Int J Cancer. 2020;147(10):2879–90.PubMedCrossRef Song L, Zhang S, Yu S, Ma F, Wang B, Zhang C, et al. Cellular heterogeneity landscape in laryngeal squamous cell carcinoma. Int J Cancer. 2020;147(10):2879–90.PubMedCrossRef
78.
Zurück zum Zitat Kim EK, Cho YA, Koh YW, Shin HA, Cho BC, Yoon SO. Prognostic implications of Fibroblast growth factor receptor 1 (FGFR1) gene amplification and protein overexpression in hypopharyngeal and laryngeal squamous cell carcinoma. BMC Cancer. 2020;20(1):348.PubMedPubMedCentralCrossRef Kim EK, Cho YA, Koh YW, Shin HA, Cho BC, Yoon SO. Prognostic implications of Fibroblast growth factor receptor 1 (FGFR1) gene amplification and protein overexpression in hypopharyngeal and laryngeal squamous cell carcinoma. BMC Cancer. 2020;20(1):348.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Xie J, Li Y, Jiang K, Hu K, Zhang S, Dong X, et al. CDK16 phosphorylates and degrades p53 to promote radioresistance and predicts prognosis in lung cancer. Theranostics. 2018;8(3):650–62.PubMedPubMedCentralCrossRef Xie J, Li Y, Jiang K, Hu K, Zhang S, Dong X, et al. CDK16 phosphorylates and degrades p53 to promote radioresistance and predicts prognosis in lung cancer. Theranostics. 2018;8(3):650–62.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Yanagi T, Hata H, Mizuno E, Kitamura S, Imafuku K, Nakazato S, et al. PCTAIRE1/CDK16/PCTK1 is overexpressed in cutaneous squamous cell carcinoma and regulates p27 stability and cell cycle. J Dermatol Sci. 2017;86(2):149–57.PubMedCrossRef Yanagi T, Hata H, Mizuno E, Kitamura S, Imafuku K, Nakazato S, et al. PCTAIRE1/CDK16/PCTK1 is overexpressed in cutaneous squamous cell carcinoma and regulates p27 stability and cell cycle. J Dermatol Sci. 2017;86(2):149–57.PubMedCrossRef
81.
Zurück zum Zitat Wang W, Zhao Z, Yang F, Wang H, Wu F, Liang T, et al. An immune-related lncRNA signature for patients with anaplastic gliomas. J Neurooncol. 2018;136(2):263–71.PubMedCrossRef Wang W, Zhao Z, Yang F, Wang H, Wu F, Liang T, et al. An immune-related lncRNA signature for patients with anaplastic gliomas. J Neurooncol. 2018;136(2):263–71.PubMedCrossRef
82.
Zurück zum Zitat Liang Y, Zhu H, Chen J, Lin W, Li B, Guo Y. Construction of relapse-related lncRNA-mediated ceRNA networks in Hodgkin lymphoma. Arch Med Sci. 2020;16(6):1411–8.PubMedPubMedCentralCrossRef Liang Y, Zhu H, Chen J, Lin W, Li B, Guo Y. Construction of relapse-related lncRNA-mediated ceRNA networks in Hodgkin lymphoma. Arch Med Sci. 2020;16(6):1411–8.PubMedPubMedCentralCrossRef
Metadaten
Titel
The role of long non-coding RNA HCG18 in cancer
verfasst von
Zhiqiang Wang
Rui Ran
Shunbai Zhang
Wenming Zhou
Jiayang Lv
Chunwei Ma
Haihong Zhang
Publikationsdatum
08.11.2022
Verlag
Springer International Publishing
Erschienen in
Clinical and Translational Oncology / Ausgabe 3/2023
Print ISSN: 1699-048X
Elektronische ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-022-02992-8

Weitere Artikel der Ausgabe 3/2023

Clinical and Translational Oncology 3/2023 Zur Ausgabe

ACKNOWLEDGEMENT TO REVIEWERS

Acknowledgement to reviewers 2022

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.