Skip to main content
Erschienen in: Calcified Tissue International 1/2022

14.03.2022 | Review Article

The Role of TAK1 in RANKL-Induced Osteoclastogenesis

verfasst von: Wu Jianwei, Tian Ye, Wang Hongwei, Li Dachuan, Zou Fei, Jiang Jianyuan, Wang Hongli

Erschienen in: Calcified Tissue International | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten

Abstract

Bone remodelling is generally a dynamic process orchestrated by bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoclasts are the only cell type capable of bone resorption to maintain bone homeostasis in the human body. However, excessive osteoclastogenesis can lead to osteolytic diseases. The receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) has been widely considered to be an important modulator of osteoclastogenesis thereby participating in the pathogenesis of osteolytic diseases. Transforming growth factor β-activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, is an important intracellular molecule that regulates multiple signalling pathways, such as NF-κB and mitogen-activated protein kinase to mediate multiple physiological processes, including cell survival, inflammation, and tumourigenesis. Furthermore, increasing evidence has demonstrated that TAK1 is intimately involved in RANKL-induced osteoclastogenesis. Moreover, several detailed mechanisms by which TAK1 regulates RANKL-induced osteoclastogenesis have been clarified, and some potential approaches targeting TAK1 for the treatment of osteolytic diseases have emerged. In this review, we discuss how TAK1 functions in RANKL-mediated signalling pathways and highlight the significant role of TAK1 in RANKL-induced osteoclastogenesis. In addition, we discuss the potential clinical implications of TAK1 inhibitors for the treatment of osteolytic diseases.
Literatur
1.
Zurück zum Zitat Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH (2020) Osteoblast–osteoclast communication and bone homeostasis. Cells 9:2073PubMedCentralCrossRef Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH (2020) Osteoblast–osteoclast communication and bone homeostasis. Cells 9:2073PubMedCentralCrossRef
4.
Zurück zum Zitat Ono T, Nakashima T (2018) Recent advances in osteoclast biology. Histochem Cell Biol 149:325–341PubMedCrossRef Ono T, Nakashima T (2018) Recent advances in osteoclast biology. Histochem Cell Biol 149:325–341PubMedCrossRef
5.
Zurück zum Zitat Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Koga T, Martin TJ, Suda T (1990) Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA 87:7260–7264PubMedPubMedCentralCrossRef Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Koga T, Martin TJ, Suda T (1990) Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA 87:7260–7264PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Park-Min KH (2018) Mechanisms involved in normal and pathological osteoclastogenesis. Cell Mol Life Sci CMLS 75:2519–2528PubMedCrossRef Park-Min KH (2018) Mechanisms involved in normal and pathological osteoclastogenesis. Cell Mol Life Sci CMLS 75:2519–2528PubMedCrossRef
7.
Zurück zum Zitat Park JH, Lee NK, Lee SY (2017) Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells 40:706–713PubMedPubMedCentral Park JH, Lee NK, Lee SY (2017) Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells 40:706–713PubMedPubMedCentral
8.
9.
Zurück zum Zitat Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234PubMedCrossRef Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234PubMedCrossRef
10.
Zurück zum Zitat Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science (New York, N.Y.) 270:2008–2011CrossRef Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science (New York, N.Y.) 270:2008–2011CrossRef
11.
Zurück zum Zitat Lamothe B, Lai Y, Xie M, Schneider MD, Darnay BG (2013) TAK1 is essential for osteoclast differentiation and is an important modulator of cell death by apoptosis and necroptosis. Mol Cell Biol 33:582–595PubMedPubMedCentralCrossRef Lamothe B, Lai Y, Xie M, Schneider MD, Darnay BG (2013) TAK1 is essential for osteoclast differentiation and is an important modulator of cell death by apoptosis and necroptosis. Mol Cell Biol 33:582–595PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Sumiya E, Negishi-Koga T, Nagai Y, Suematsu A, Suda T, Shinohara M, Sato K, Sanjo H, Akira S, Takayanagi H (2015) Phosphoproteomic analysis of kinase-deficient mice reveals multiple TAK1 targets in osteoclast differentiation. Biochem Biophys Res Commun 463:1284–1290PubMedCrossRef Sumiya E, Negishi-Koga T, Nagai Y, Suematsu A, Suda T, Shinohara M, Sato K, Sanjo H, Akira S, Takayanagi H (2015) Phosphoproteomic analysis of kinase-deficient mice reveals multiple TAK1 targets in osteoclast differentiation. Biochem Biophys Res Commun 463:1284–1290PubMedCrossRef
13.
Zurück zum Zitat Swarnkar G, Karuppaiah K, Mbalaviele G, Chen TH, Abu-Amer Y (2015) Osteopetrosis in TAK1-deficient mice owing to defective NF-κB and NOTCH signaling. Proc Natl Acad Sci USA 112:154–159PubMedCrossRef Swarnkar G, Karuppaiah K, Mbalaviele G, Chen TH, Abu-Amer Y (2015) Osteopetrosis in TAK1-deficient mice owing to defective NF-κB and NOTCH signaling. Proc Natl Acad Sci USA 112:154–159PubMedCrossRef
14.
Zurück zum Zitat Swarnkar G, Chen TH, Arra M, Nasir AM, Mbalaviele G, Abu-Amer Y (2017) NUMBL interacts with TAK1, TRAF6 and NEMO to negatively regulate NF-κB signaling during osteoclastogenesis. Sci Rep 7:12600PubMedPubMedCentralCrossRef Swarnkar G, Chen TH, Arra M, Nasir AM, Mbalaviele G, Abu-Amer Y (2017) NUMBL interacts with TAK1, TRAF6 and NEMO to negatively regulate NF-κB signaling during osteoclastogenesis. Sci Rep 7:12600PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Zhu L, Lama S, Tu L, Dusting GJ, Wang JH, Liu GS (2021) TAK1 signaling is a potential therapeutic target for pathological angiogenesis. Angiogenesis 24:453–470PubMedCrossRef Zhu L, Lama S, Tu L, Dusting GJ, Wang JH, Liu GS (2021) TAK1 signaling is a potential therapeutic target for pathological angiogenesis. Angiogenesis 24:453–470PubMedCrossRef
17.
Zurück zum Zitat Lin B, Ke Q, Leaman DW, Goel V, Agarwal A (2018) Regulation of RANKL-induced osteoclastogenesis by RING finger protein RNF114. J Orthop Res Off Publ Orthop Res Soc 36:159–166 Lin B, Ke Q, Leaman DW, Goel V, Agarwal A (2018) Regulation of RANKL-induced osteoclastogenesis by RING finger protein RNF114. J Orthop Res Off Publ Orthop Res Soc 36:159–166
18.
Zurück zum Zitat Darnay BG, Besse A, Poblenz AT, Lamothe B, Jacoby JJ (2007) TRAFs in RANK signaling. Adv Exp Med Biol 597:152–159PubMedCrossRef Darnay BG, Besse A, Poblenz AT, Lamothe B, Jacoby JJ (2007) TRAFs in RANK signaling. Adv Exp Med Biol 597:152–159PubMedCrossRef
19.
Zurück zum Zitat Mizukami J, Takaesu G, Akatsuka H, Sakurai H, Ninomiya-Tsuji J, Matsumoto K, Sakurai N (2002) Receptor activator of NF-kappaB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol Cell Biol 22:992–1000PubMedPubMedCentralCrossRef Mizukami J, Takaesu G, Akatsuka H, Sakurai H, Ninomiya-Tsuji J, Matsumoto K, Sakurai N (2002) Receptor activator of NF-kappaB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol Cell Biol 22:992–1000PubMedPubMedCentralCrossRef
20.
21.
22.
Zurück zum Zitat Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, Morita I, Wagner EF, Mak TW, Serfling E, Takayanagi H (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202:1261–1269PubMedPubMedCentralCrossRef Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, Morita I, Wagner EF, Mak TW, Serfling E, Takayanagi H (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202:1261–1269PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Dai L, Aye Thu C, Liu XY, Xi J, Cheung PC (2012) TAK1, more than just innate immunity. IUBMB Life 64:825–834PubMedCrossRef Dai L, Aye Thu C, Liu XY, Xi J, Cheung PC (2012) TAK1, more than just innate immunity. IUBMB Life 64:825–834PubMedCrossRef
24.
Zurück zum Zitat Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K (1996) TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science (New York, N.Y.) 272:1179–1182CrossRef Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K (1996) TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science (New York, N.Y.) 272:1179–1182CrossRef
25.
Zurück zum Zitat Besse A, Lamothe B, Campos AD, Webster WK, Maddineni U, Lin SC, Wu H, Darnay BG (2007) TAK1-dependent signaling requires functional interaction with TAB2/TAB3. J Biol Chem 282:3918–3928PubMedCrossRef Besse A, Lamothe B, Campos AD, Webster WK, Maddineni U, Lin SC, Wu H, Darnay BG (2007) TAK1-dependent signaling requires functional interaction with TAB2/TAB3. J Biol Chem 282:3918–3928PubMedCrossRef
26.
Zurück zum Zitat Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A, Chiu YH, Deng L, Chen ZJ (2004) TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 15:535–548PubMedCrossRef Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A, Chiu YH, Deng L, Chen ZJ (2004) TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 15:535–548PubMedCrossRef
28.
Zurück zum Zitat Kim HH, Lee DE, Shin JN, Lee YS, Jeon YM, Chung CH, Ni J, Kwon BS, Lee ZH (1999) Receptor activator of NF-kappaB recruits multiple TRAF family adaptors and activates c-Jun N-terminal kinase. FEBS Lett 443:297–302PubMedCrossRef Kim HH, Lee DE, Shin JN, Lee YS, Jeon YM, Chung CH, Ni J, Kwon BS, Lee ZH (1999) Receptor activator of NF-kappaB recruits multiple TRAF family adaptors and activates c-Jun N-terminal kinase. FEBS Lett 443:297–302PubMedCrossRef
29.
Zurück zum Zitat Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, Nakao K, Nakamura K, Katsuki M, Yamamoto T, Inoue J (1999) Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells Devoted Mol Cell Mech 4:353–362CrossRef Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, Nakao K, Nakamura K, Katsuki M, Yamamoto T, Inoue J (1999) Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells Devoted Mol Cell Mech 4:353–362CrossRef
30.
Zurück zum Zitat Kanazawa K, Kudo A (2005) TRAF2 is essential for TNF-alpha-induced osteoclastogenesis. J Bone Miner Res Off J Am Soc Bone Miner Res 20:840–847CrossRef Kanazawa K, Kudo A (2005) TRAF2 is essential for TNF-alpha-induced osteoclastogenesis. J Bone Miner Res Off J Am Soc Bone Miner Res 20:840–847CrossRef
31.
Zurück zum Zitat Kanazawa K, Azuma Y, Nakano H, Kudo A (2003) TRAF5 functions in both RANKL- and TNFalpha-induced osteoclastogenesis. J Bone Miner Res Off J Am Soc Bone Miner Res 18:443–450CrossRef Kanazawa K, Azuma Y, Nakano H, Kudo A (2003) TRAF5 functions in both RANKL- and TNFalpha-induced osteoclastogenesis. J Bone Miner Res Off J Am Soc Bone Miner Res 18:443–450CrossRef
32.
Zurück zum Zitat Hirata Y, Takahashi M, Morishita T, Noguchi T, Matsuzawa A (2017) Post-Translational modifications of the TAK1-TAB complex. Int J Mol Sci 18:205PubMedCentralCrossRef Hirata Y, Takahashi M, Morishita T, Noguchi T, Matsuzawa A (2017) Post-Translational modifications of the TAK1-TAB complex. Int J Mol Sci 18:205PubMedCentralCrossRef
33.
Zurück zum Zitat Sakurai H (2012) Targeting of TAK1 in inflammatory disorders and cancer. Trends Pharmacol Sci 33:522–530PubMedCrossRef Sakurai H (2012) Targeting of TAK1 in inflammatory disorders and cancer. Trends Pharmacol Sci 33:522–530PubMedCrossRef
34.
Zurück zum Zitat Huang H, Ryu J, Ha J, Chang EJ, Kim HJ, Kim HM, Kitamura T, Lee ZH, Kim HH (2006) Osteoclast differentiation requires TAK1 and MKK6 for NFATc1 induction and NF-kappaB transactivation by RANKL. Cell Death Differ 13:1879–1891PubMedCrossRef Huang H, Ryu J, Ha J, Chang EJ, Kim HJ, Kim HM, Kitamura T, Lee ZH, Kim HH (2006) Osteoclast differentiation requires TAK1 and MKK6 for NFATc1 induction and NF-kappaB transactivation by RANKL. Cell Death Differ 13:1879–1891PubMedCrossRef
35.
Zurück zum Zitat Abu-Amer Y, Darwech I, Otero J (2008) Role of the NF-kappaB axis in immune modulation of osteoclasts and bone loss. Autoimmunity 41:204–211PubMedCrossRef Abu-Amer Y, Darwech I, Otero J (2008) Role of the NF-kappaB axis in immune modulation of osteoclasts and bone loss. Autoimmunity 41:204–211PubMedCrossRef
36.
Zurück zum Zitat Jimi E, Takakura N, Hiura F, Nakamura I, Hirata-Tsuchiya S (2019) The role of NF-κB in physiological bone development and inflammatory bone diseases: is NF-κB inhibition “Killing Two Birds with One Stone”? Cells 8:1636PubMedCentralCrossRef Jimi E, Takakura N, Hiura F, Nakamura I, Hirata-Tsuchiya S (2019) The role of NF-κB in physiological bone development and inflammatory bone diseases: is NF-κB inhibition “Killing Two Birds with One Stone”? Cells 8:1636PubMedCentralCrossRef
39.
Zurück zum Zitat Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K (2008) The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol 28:6402–6412PubMedPubMedCentralCrossRef Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K (2008) The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol 28:6402–6412PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Swarnkar G, Abu-Amer Y (2015) Regulation of NF-κB signaling in osteoclasts and myeloid progenitors. Methods Mol Biol (Clifton, N.J.) 1280:527–542CrossRef Swarnkar G, Abu-Amer Y (2015) Regulation of NF-κB signaling in osteoclasts and myeloid progenitors. Methods Mol Biol (Clifton, N.J.) 1280:527–542CrossRef
41.
Zurück zum Zitat Lamothe B, Webster WK, Gopinathan A, Besse A, Campos AD, Darnay BG (2007) TRAF6 ubiquitin ligase is essential for RANKL signaling and osteoclast differentiation. Biochem Biophys Res Commun 359:1044–1049PubMedPubMedCentralCrossRef Lamothe B, Webster WK, Gopinathan A, Besse A, Campos AD, Darnay BG (2007) TRAF6 ubiquitin ligase is essential for RANKL signaling and osteoclast differentiation. Biochem Biophys Res Commun 359:1044–1049PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Kobayashi N, Kadono Y, Naito A, Matsumoto K, Yamamoto T, Tanaka S, Inoue J (2001) Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J 20:1271–1280PubMedPubMedCentralCrossRef Kobayashi N, Kadono Y, Naito A, Matsumoto K, Yamamoto T, Tanaka S, Inoue J (2001) Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J 20:1271–1280PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Ikeda F, Nishimura R, Matsubara T, Tanaka S, Inoue J, Reddy SV, Hata K, Yamashita K, Hiraga T, Watanabe T, Kukita T, Yoshioka K, Rao A, Yoneda T (2004) Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Investig 114:475–484PubMedPubMedCentralCrossRef Ikeda F, Nishimura R, Matsubara T, Tanaka S, Inoue J, Reddy SV, Hata K, Yamashita K, Hiraga T, Watanabe T, Kukita T, Yoshioka K, Rao A, Yoneda T (2004) Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Investig 114:475–484PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Yamamoto A, Miyazaki T, Kadono Y, Takayanagi H, Miura T, Nishina H, Katada T, Wakabayashi K, Oda H, Nakamura K, Tanaka S (2002) Possible involvement of IkappaB kinase 2 and MKK7 in osteoclastogenesis induced by receptor activator of nuclear factor kappaB ligand. J Bone Miner Res Off J Am Soc Bone Miner Res 17:612–621CrossRef Yamamoto A, Miyazaki T, Kadono Y, Takayanagi H, Miura T, Nishina H, Katada T, Wakabayashi K, Oda H, Nakamura K, Tanaka S (2002) Possible involvement of IkappaB kinase 2 and MKK7 in osteoclastogenesis induced by receptor activator of nuclear factor kappaB ligand. J Bone Miner Res Off J Am Soc Bone Miner Res 17:612–621CrossRef
45.
Zurück zum Zitat Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D (1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci USA 91:839–843PubMedPubMedCentralCrossRef Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D (1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci USA 91:839–843PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Park JH, Jeong E, Lin J, Ko R, Kim JH, Yi S, Choi Y, Kang IC, Lee D, Lee SY (2019) RACK1 interaction with c-Src is essential for osteoclast function. Exp Mol Med 51:1–9PubMedPubMedCentral Park JH, Jeong E, Lin J, Ko R, Kim JH, Yi S, Choi Y, Kang IC, Lee D, Lee SY (2019) RACK1 interaction with c-Src is essential for osteoclast function. Exp Mol Med 51:1–9PubMedPubMedCentral
47.
Zurück zum Zitat Lin J, Lee D, Choi Y, Lee SY (2015) The scaffold protein RACK1 mediates the RANKL-dependent activation of p38 MAPK in osteoclast precursors. Sci Signal 8:ra4 Lin J, Lee D, Choi Y, Lee SY (2015) The scaffold protein RACK1 mediates the RANKL-dependent activation of p38 MAPK in osteoclast precursors. Sci Signal 8:ra4
48.
Zurück zum Zitat David JP, Sabapathy K, Hoffmann O, Idarraga MH, Wagner EF (2002) JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J Cell Sci 115:4317–4325PubMedCrossRef David JP, Sabapathy K, Hoffmann O, Idarraga MH, Wagner EF (2002) JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J Cell Sci 115:4317–4325PubMedCrossRef
49.
Zurück zum Zitat Hotokezaka H, Sakai E, Kanaoka K, Saito K, Matsuo K, Kitaura H, Yoshida N, Nakayama K (2002) U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast-like cells. J Biol Chem 277:47366–47372PubMedCrossRef Hotokezaka H, Sakai E, Kanaoka K, Saito K, Matsuo K, Kitaura H, Yoshida N, Nakayama K (2002) U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast-like cells. J Biol Chem 277:47366–47372PubMedCrossRef
50.
Zurück zum Zitat Li M, Wang W, Geng L, Qin Y, Dong W, Zhang X, Qin A, Zhang M (2015) Inhibition of RANKL-induced osteoclastogenesis through the suppression of the ERK signaling pathway by astragaloside IV and attenuation of titanium-particle-induced osteolysis. Int J Mol Med 36:1335–1344PubMedCrossRef Li M, Wang W, Geng L, Qin Y, Dong W, Zhang X, Qin A, Zhang M (2015) Inhibition of RANKL-induced osteoclastogenesis through the suppression of the ERK signaling pathway by astragaloside IV and attenuation of titanium-particle-induced osteolysis. Int J Mol Med 36:1335–1344PubMedCrossRef
51.
Zurück zum Zitat Ihn HJ, Lee D, Lee T, Shin HI, Bae YC, Kim SH, Park EK (2015) The 1,2,3-triazole derivative KP-A021 suppresses osteoclast differentiation and function by inhibiting RANKL-mediated MEK-ERK signaling pathway. Exp Biol Med (Maywood, N.J.) 240:1690–1697CrossRef Ihn HJ, Lee D, Lee T, Shin HI, Bae YC, Kim SH, Park EK (2015) The 1,2,3-triazole derivative KP-A021 suppresses osteoclast differentiation and function by inhibiting RANKL-mediated MEK-ERK signaling pathway. Exp Biol Med (Maywood, N.J.) 240:1690–1697CrossRef
52.
Zurück zum Zitat Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science (New York, N.Y.) 284:770–776CrossRef Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science (New York, N.Y.) 284:770–776CrossRef
53.
Zurück zum Zitat Aster JC, Pear WS, Blacklow SC (2017) The varied roles of notch in cancer. Annu Rev Pathol 12:245–275PubMedCrossRef Aster JC, Pear WS, Blacklow SC (2017) The varied roles of notch in cancer. Annu Rev Pathol 12:245–275PubMedCrossRef
56.
Zurück zum Zitat Gulino A, Di Marcotullio L, Screpanti I (2010) The multiple functions of Numb. Exp Cell Res 316:900–906PubMedCrossRef Gulino A, Di Marcotullio L, Screpanti I (2010) The multiple functions of Numb. Exp Cell Res 316:900–906PubMedCrossRef
58.
Zurück zum Zitat Eskelinen EL (2019) Autophagy: supporting cellular and organismal homeostasis by self-eating. Int J Biochem Cell Biol 111:1–10PubMedCrossRef Eskelinen EL (2019) Autophagy: supporting cellular and organismal homeostasis by self-eating. Int J Biochem Cell Biol 111:1–10PubMedCrossRef
59.
Zurück zum Zitat Pierrefite-Carle V, Santucci-Darmanin S, Breuil V, Camuzard O, Carle GF (2015) Autophagy in bone: self-eating to stay in balance. Ageing Res Rev 24:206–217PubMedCrossRef Pierrefite-Carle V, Santucci-Darmanin S, Breuil V, Camuzard O, Carle GF (2015) Autophagy in bone: self-eating to stay in balance. Ageing Res Rev 24:206–217PubMedCrossRef
60.
Zurück zum Zitat Shapiro IM, Layfield R, Lotz M, Settembre C, Whitehouse C (2014) Boning up on autophagy: the role of autophagy in skeletal biology. Autophagy 10:7–19PubMedCrossRef Shapiro IM, Layfield R, Lotz M, Settembre C, Whitehouse C (2014) Boning up on autophagy: the role of autophagy in skeletal biology. Autophagy 10:7–19PubMedCrossRef
61.
Zurück zum Zitat Li H, Li D, Ma Z, Qian Z, Kang X, Jin X, Li F, Wang X, Chen Q, Sun H, Wu S (2018) Defective autophagy in osteoblasts induces endoplasmic reticulum stress and causes remarkable bone loss. Autophagy 14:1726–1741PubMedPubMedCentralCrossRef Li H, Li D, Ma Z, Qian Z, Kang X, Jin X, Li F, Wang X, Chen Q, Sun H, Wu S (2018) Defective autophagy in osteoblasts induces endoplasmic reticulum stress and causes remarkable bone loss. Autophagy 14:1726–1741PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat DeSelm CJ, Miller BC, Zou W, Beatty WL, van Meel E, Takahata Y, Klumperman J, Tooze SA, Teitelbaum SL, Virgin HW (2011) Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell 21:966–974PubMedPubMedCentralCrossRef DeSelm CJ, Miller BC, Zou W, Beatty WL, van Meel E, Takahata Y, Klumperman J, Tooze SA, Teitelbaum SL, Virgin HW (2011) Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell 21:966–974PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Herrero-Martín G, Høyer-Hansen M, García-García C, Fumarola C, Farkas T, López-Rivas A, Jäättelä M (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28:677–685PubMedPubMedCentralCrossRef Herrero-Martín G, Høyer-Hansen M, García-García C, Fumarola C, Farkas T, López-Rivas A, Jäättelä M (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28:677–685PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Liu W, Zhuang J, Jiang Y, Sun J, Prinz RA, Sun J, Jiao X, Xu X (2019) Toll-like receptor signalling cross-activates the autophagic pathway to restrict Salmonella Typhimurium growth in macrophages. Cell Microbiol 21:e13095PubMed Liu W, Zhuang J, Jiang Y, Sun J, Prinz RA, Sun J, Jiao X, Xu X (2019) Toll-like receptor signalling cross-activates the autophagic pathway to restrict Salmonella Typhimurium growth in macrophages. Cell Microbiol 21:e13095PubMed
65.
Zurück zum Zitat Ran D, Ma Y, Liu W, Luo T, Zheng J, Wang D, Song R, Zhao H, Zou H, Gu J, Yuan Y, Bian J, Liu Z (2020) TGF-β-activated kinase 1 (TAK1) mediates cadmium-induced autophagy in osteoblasts via the AMPK/mTORC1/ULK1 pathway. Toxicology 442:152538PubMedCrossRef Ran D, Ma Y, Liu W, Luo T, Zheng J, Wang D, Song R, Zhao H, Zou H, Gu J, Yuan Y, Bian J, Liu Z (2020) TGF-β-activated kinase 1 (TAK1) mediates cadmium-induced autophagy in osteoblasts via the AMPK/mTORC1/ULK1 pathway. Toxicology 442:152538PubMedCrossRef
66.
Zurück zum Zitat Xie M, Zhang D, Dyck JR, Li Y, Zhang H, Morishima M, Mann DL, Taffet GE, Baldini A, Khoury DS, Schneider MD (2006) A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci USA 103:17378–17383PubMedPubMedCentralCrossRef Xie M, Zhang D, Dyck JR, Li Y, Zhang H, Morishima M, Mann DL, Taffet GE, Baldini A, Khoury DS, Schneider MD (2006) A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci USA 103:17378–17383PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Lee YS, Kim YS, Lee SY, Kim GH, Kim BJ, Lee SH, Lee KU, Kim GS, Kim SW, Koh JM (2010) AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts. Bone 47:926–937PubMedCrossRef Lee YS, Kim YS, Lee SY, Kim GH, Kim BJ, Lee SH, Lee KU, Kim GS, Kim SW, Koh JM (2010) AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts. Bone 47:926–937PubMedCrossRef
68.
Zurück zum Zitat Sul OJ, Sung YB, Rajasekaran M, Ke K, Yu R, Back SH, Choi HS (2018) MicroRNA-155 induces autophagy in osteoclasts by targeting transforming growth factor β-activated kinase 1-binding protein 2 upon lipopolysaccharide stimulation. Bone 116:279–289PubMedCrossRef Sul OJ, Sung YB, Rajasekaran M, Ke K, Yu R, Back SH, Choi HS (2018) MicroRNA-155 induces autophagy in osteoclasts by targeting transforming growth factor β-activated kinase 1-binding protein 2 upon lipopolysaccharide stimulation. Bone 116:279–289PubMedCrossRef
69.
70.
Zurück zum Zitat Zhu JY, Lin S, Ye J (2018) YAP and TAZ, the conductors that orchestrate eye development, homeostasis, and disease. J Cell Physiol 234:246–258PubMedCrossRef Zhu JY, Lin S, Ye J (2018) YAP and TAZ, the conductors that orchestrate eye development, homeostasis, and disease. J Cell Physiol 234:246–258PubMedCrossRef
71.
Zurück zum Zitat Zhao L, Guan H, Song C, Wang Y, Liu C, Cai C, Zhu H, Liu H, Zhao L, Xiao J (2018) YAP1 is essential for osteoclastogenesis through a TEADs-dependent mechanism. Bone 110:177–186PubMedCrossRef Zhao L, Guan H, Song C, Wang Y, Liu C, Cai C, Zhu H, Liu H, Zhao L, Xiao J (2018) YAP1 is essential for osteoclastogenesis through a TEADs-dependent mechanism. Bone 110:177–186PubMedCrossRef
72.
Zurück zum Zitat Kegelman CD, Mason DE, Dawahare JH, Horan DJ, Vigil GD, Howard SS, Robling AG, Bellido TM, Boerckel JD (2018) Skeletal cell YAP and TAZ combinatorially promote bone development. FASEB J Off Publ Fed Am Soc Exp Biol 32:2706–2721 Kegelman CD, Mason DE, Dawahare JH, Horan DJ, Vigil GD, Howard SS, Robling AG, Bellido TM, Boerckel JD (2018) Skeletal cell YAP and TAZ combinatorially promote bone development. FASEB J Off Publ Fed Am Soc Exp Biol 32:2706–2721
73.
Zurück zum Zitat Deng Y, Lu J, Li W, Wu A, Zhang X, Tong W, Ho KK, Qin L, Song H, Mak KK (2018) Reciprocal inhibition of YAP/TAZ and NF-κB regulates osteoarthritic cartilage degradation. Nat Commun 9:4564PubMedPubMedCentralCrossRef Deng Y, Lu J, Li W, Wu A, Zhang X, Tong W, Ho KK, Qin L, Song H, Mak KK (2018) Reciprocal inhibition of YAP/TAZ and NF-κB regulates osteoarthritic cartilage degradation. Nat Commun 9:4564PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Yang W, Han W, Qin A, Wang Z, Xu J, Qian Y (2018) The emerging role of Hippo signaling pathway in regulating osteoclast formation. J Cell Physiol 233:4606–4617PubMedCrossRef Yang W, Han W, Qin A, Wang Z, Xu J, Qian Y (2018) The emerging role of Hippo signaling pathway in regulating osteoclast formation. J Cell Physiol 233:4606–4617PubMedCrossRef
75.
Zurück zum Zitat Yang W, Lu X, Zhang T, Han W, Li J, He W, Jia Y, Zhao K, Qin A, Qian Y (2021) TAZ inhibits osteoclastogenesis by attenuating TAK1/NF-κB signaling. Bone Res 9:33PubMedPubMedCentralCrossRef Yang W, Lu X, Zhang T, Han W, Li J, He W, Jia Y, Zhao K, Qin A, Qian Y (2021) TAZ inhibits osteoclastogenesis by attenuating TAK1/NF-κB signaling. Bone Res 9:33PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Hossain Z, Ali SM, Ko HL, Xu J, Ng CP, Guo K, Qi Z, Ponniah S, Hong W, Hunziker W (2007) Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci USA 104:1631–1636PubMedPubMedCentralCrossRef Hossain Z, Ali SM, Ko HL, Xu J, Ng CP, Guo K, Qi Z, Ponniah S, Hong W, Hunziker W (2007) Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci USA 104:1631–1636PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Tian Y, Kolb R, Hong JH, Carroll J, Li D, You J, Bronson R, Yaffe MB, Zhou J, Benjamin T (2007) TAZ promotes PC2 degradation through a SCFbeta-Trcp E3 ligase complex. Mol Cell Biol 27:6383–6395PubMedPubMedCentralCrossRef Tian Y, Kolb R, Hong JH, Carroll J, Li D, You J, Bronson R, Yaffe MB, Zhou J, Benjamin T (2007) TAZ promotes PC2 degradation through a SCFbeta-Trcp E3 ligase complex. Mol Cell Biol 27:6383–6395PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Ilić V, Vukmirović S, Stilinović N, Čapo I, Arsenović M, Milijašević B (2017) Insight into anti-diabetic effect of low dose of stevioside. Biomed Pharmacother Biomed Pharmacother 90:216–221PubMedCrossRef Ilić V, Vukmirović S, Stilinović N, Čapo I, Arsenović M, Milijašević B (2017) Insight into anti-diabetic effect of low dose of stevioside. Biomed Pharmacother Biomed Pharmacother 90:216–221PubMedCrossRef
79.
Zurück zum Zitat Noosud J, Lailerd N, Kayan A, Boonkaewwan C (2017) In vitro and in vivo assessment of inhibitory effect of stevioside on pro-inflammatory cytokines. Avicenna J Phytomed 7:101–107PubMedPubMedCentral Noosud J, Lailerd N, Kayan A, Boonkaewwan C (2017) In vitro and in vivo assessment of inhibitory effect of stevioside on pro-inflammatory cytokines. Avicenna J Phytomed 7:101–107PubMedPubMedCentral
80.
Zurück zum Zitat Alfajaro MM, Rho MC, Kim HJ, Park JG, Kim DS, Hosmillo M, Son KY, Lee JH, Park SI, Kang MI, Ryu YB, Park KH, Oh HM, Lee SW, Park SJ, Lee WS, Cho KO (2014) Anti-rotavirus effects by combination therapy of stevioside and Sophora flavescens extract. Res Vet Sci 96:567–575PubMedCrossRef Alfajaro MM, Rho MC, Kim HJ, Park JG, Kim DS, Hosmillo M, Son KY, Lee JH, Park SI, Kang MI, Ryu YB, Park KH, Oh HM, Lee SW, Park SJ, Lee WS, Cho KO (2014) Anti-rotavirus effects by combination therapy of stevioside and Sophora flavescens extract. Res Vet Sci 96:567–575PubMedCrossRef
81.
Zurück zum Zitat Meng J, Zhou C, Hu B, Luo M, Yang Y, Wang Y, Wang W, Jiang G, Hong J, Li S, Wu H, Yan S, Yan W (2018) Stevioside prevents wear particle-induced osteolysis by inhibiting osteoclastogenesis and inflammatory response via the suppression of TAK1 activation. Front Pharmacol 9:1053PubMedPubMedCentralCrossRef Meng J, Zhou C, Hu B, Luo M, Yang Y, Wang Y, Wang W, Jiang G, Hong J, Li S, Wu H, Yan S, Yan W (2018) Stevioside prevents wear particle-induced osteolysis by inhibiting osteoclastogenesis and inflammatory response via the suppression of TAK1 activation. Front Pharmacol 9:1053PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Genne P, Duchamp O, Solary E, Pinard D, Belon JP, Dimanche-Boitrel MT, Chauffert B (1994) Comparative effects of quinine and cinchonine in reversing multidrug resistance on human leukemic cell line K562/ADM. Leukemia 8:160–164PubMed Genne P, Duchamp O, Solary E, Pinard D, Belon JP, Dimanche-Boitrel MT, Chauffert B (1994) Comparative effects of quinine and cinchonine in reversing multidrug resistance on human leukemic cell line K562/ADM. Leukemia 8:160–164PubMed
83.
Zurück zum Zitat Jung SA, Choi M, Kim S, Yu R, Park T (2012) Cinchonine prevents high-fat-diet-induced obesity through downregulation of adipogenesis and adipose inflammation. PPAR Res 2012:541204PubMedPubMedCentralCrossRef Jung SA, Choi M, Kim S, Yu R, Park T (2012) Cinchonine prevents high-fat-diet-induced obesity through downregulation of adipogenesis and adipose inflammation. PPAR Res 2012:541204PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Genne P, Duchamp O, Solary E, Magnette J, Belon JP, Chauffert B (1995) Cinchonine per os: efficient circumvention of P-glycoprotein-mediated multidrug resistance. Anticancer Drug Des 10:103–118PubMed Genne P, Duchamp O, Solary E, Magnette J, Belon JP, Chauffert B (1995) Cinchonine per os: efficient circumvention of P-glycoprotein-mediated multidrug resistance. Anticancer Drug Des 10:103–118PubMed
85.
Zurück zum Zitat Qi Y, Pradipta AR, Li M, Zhao X, Lu L, Fu X, Wei J, Hsung RP, Tanaka K, Zhou L (2017) Cinchonine induces apoptosis of HeLa and A549 cells through targeting TRAF6. J Exp Clin Cancer Res CR 36:35PubMedCrossRef Qi Y, Pradipta AR, Li M, Zhao X, Lu L, Fu X, Wei J, Hsung RP, Tanaka K, Zhou L (2017) Cinchonine induces apoptosis of HeLa and A549 cells through targeting TRAF6. J Exp Clin Cancer Res CR 36:35PubMedCrossRef
86.
Zurück zum Zitat Jo YJ, Lee HI, Kim N, Hwang D, Lee J, Lee GR, Hong SE, Lee H, Kwon M, Kim NY, Kim HJ, Park JH, Kang YH, Kim HS, Lee SY, Jeong W (2021) Cinchonine inhibits osteoclast differentiation by regulating TAK1 and AKT, and promotes osteogenesis. J Cell Physiol 236:1854–1865PubMedCrossRef Jo YJ, Lee HI, Kim N, Hwang D, Lee J, Lee GR, Hong SE, Lee H, Kwon M, Kim NY, Kim HJ, Park JH, Kang YH, Kim HS, Lee SY, Jeong W (2021) Cinchonine inhibits osteoclast differentiation by regulating TAK1 and AKT, and promotes osteogenesis. J Cell Physiol 236:1854–1865PubMedCrossRef
87.
Zurück zum Zitat Ghizzoni M, Boltjes A, Graaf C, Haisma HJ, Dekker FJ (2010) Improved inhibition of the histone acetyltransferase PCAF by an anacardic acid derivative. Bioorg Med Chem 18:5826–5834PubMedCrossRef Ghizzoni M, Boltjes A, Graaf C, Haisma HJ, Dekker FJ (2010) Improved inhibition of the histone acetyltransferase PCAF by an anacardic acid derivative. Bioorg Med Chem 18:5826–5834PubMedCrossRef
88.
Zurück zum Zitat Wu Y, He L, Zhang L, Chen J, Yi Z, Zhang J, Liu M, Pang X (2011) Anacardic acid (6-pentadecylsalicylic acid) inhibits tumor angiogenesis by targeting Src/FAK/Rho GTPases signaling pathway. J Pharmacol Exp Ther 339:403–411PubMedCrossRef Wu Y, He L, Zhang L, Chen J, Yi Z, Zhang J, Liu M, Pang X (2011) Anacardic acid (6-pentadecylsalicylic acid) inhibits tumor angiogenesis by targeting Src/FAK/Rho GTPases signaling pathway. J Pharmacol Exp Ther 339:403–411PubMedCrossRef
89.
Zurück zum Zitat Tan J, Chen B, He L, Tang Y, Jiang Z, Yin G, Wang J, Jiang X (2012) Anacardic acid (6-pentadecylsalicylic acid) induces apoptosis of prostate cancer cells through inhibition of androgen receptor and activation of p53 signaling. Chin J Cancer Res=Chung-kuo yen cheng yen chiu 24:275–283CrossRef Tan J, Chen B, He L, Tang Y, Jiang Z, Yin G, Wang J, Jiang X (2012) Anacardic acid (6-pentadecylsalicylic acid) induces apoptosis of prostate cancer cells through inhibition of androgen receptor and activation of p53 signaling. Chin J Cancer Res=Chung-kuo yen cheng yen chiu 24:275–283CrossRef
90.
Zurück zum Zitat Sung B, Pandey MK, Ahn KS, Yi T, Chaturvedi MM, Liu M, Aggarwal BB (2008) Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. Blood 111:4880–4891PubMedPubMedCentralCrossRef Sung B, Pandey MK, Ahn KS, Yi T, Chaturvedi MM, Liu M, Aggarwal BB (2008) Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. Blood 111:4880–4891PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Zhao K, Jia Y, Peng J, Pang C, Zhang T, Han W, Jiang J, Lu X, Zhu J, Qian Y (2019) Anacardic acid inhibits RANKL-induced osteoclastogenesis in vitro and prevents ovariectomy-induced bone loss in vivo. FASEB J Off Publ Fed Am Soc Exp Biol 33:9100–9115 Zhao K, Jia Y, Peng J, Pang C, Zhang T, Han W, Jiang J, Lu X, Zhu J, Qian Y (2019) Anacardic acid inhibits RANKL-induced osteoclastogenesis in vitro and prevents ovariectomy-induced bone loss in vivo. FASEB J Off Publ Fed Am Soc Exp Biol 33:9100–9115
92.
Zurück zum Zitat Luo Y, Liu M, Xia Y, Dai Y, Chou G, Wang Z (2010) Therapeutic effect of norisoboldine, an alkaloid isolated from Radix Linderae, on collagen-induced arthritis in mice. Phytomed Int J Phytother Phytopharmacol 17:726–731 Luo Y, Liu M, Xia Y, Dai Y, Chou G, Wang Z (2010) Therapeutic effect of norisoboldine, an alkaloid isolated from Radix Linderae, on collagen-induced arthritis in mice. Phytomed Int J Phytother Phytopharmacol 17:726–731
93.
Zurück zum Zitat Wei ZF, Tong B, Xia YF, Lu Q, Chou GX, Wang ZT, Dai Y (2013) Norisoboldine suppresses osteoclast differentiation through preventing the accumulation of TRAF6-TAK1 complexes and activation of MAPKs/NF-κB/c-Fos/NFATc1 pathways. PLoS ONE 8:e59171PubMedPubMedCentralCrossRef Wei ZF, Tong B, Xia YF, Lu Q, Chou GX, Wang ZT, Dai Y (2013) Norisoboldine suppresses osteoclast differentiation through preventing the accumulation of TRAF6-TAK1 complexes and activation of MAPKs/NF-κB/c-Fos/NFATc1 pathways. PLoS ONE 8:e59171PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Chiou WF, Huang YL, Liu YW (2014) (+)-Vitisin A inhibits osteoclast differentiation by preventing TRAF6 ubiquitination and TRAF6-TAK1 formation to suppress NFATc1 activation. PLoS ONE 9:e89159PubMedPubMedCentralCrossRef Chiou WF, Huang YL, Liu YW (2014) (+)-Vitisin A inhibits osteoclast differentiation by preventing TRAF6 ubiquitination and TRAF6-TAK1 formation to suppress NFATc1 activation. PLoS ONE 9:e89159PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Tomomura M, Suzuki R, Shirataki Y, Sakagami H, Tamura N, Tomomura A (2015) Rhinacanthin C inhibits osteoclast differentiation and bone resorption: roles of TRAF6/TAK1/MAPKs/NF-κB/NFATc1 signaling. PLoS ONE 10:e0130174PubMedPubMedCentralCrossRef Tomomura M, Suzuki R, Shirataki Y, Sakagami H, Tamura N, Tomomura A (2015) Rhinacanthin C inhibits osteoclast differentiation and bone resorption: roles of TRAF6/TAK1/MAPKs/NF-κB/NFATc1 signaling. PLoS ONE 10:e0130174PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Kim EN, Kwon J, Lee HS, Lee S, Lee D, Jeong GS (2020) Inhibitory effect of cudratrixanthone U on RANKL-induced osteoclast differentiation and function in macrophages and BMM cells. Front Pharmacol 11:1048PubMedPubMedCentralCrossRef Kim EN, Kwon J, Lee HS, Lee S, Lee D, Jeong GS (2020) Inhibitory effect of cudratrixanthone U on RANKL-induced osteoclast differentiation and function in macrophages and BMM cells. Front Pharmacol 11:1048PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Chiou WF, Liao JF, Huang CY, Chen CC (2010) 2-Methoxystypandrone represses RANKL-mediated osteoclastogenesis by down-regulating formation of TRAF6-TAK1 signalling complexes. Br J Pharmacol 161:321–335PubMedPubMedCentralCrossRef Chiou WF, Liao JF, Huang CY, Chen CC (2010) 2-Methoxystypandrone represses RANKL-mediated osteoclastogenesis by down-regulating formation of TRAF6-TAK1 signalling complexes. Br J Pharmacol 161:321–335PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Sae-Tan S, Kumrungsee T, Yanaka N (2020) Mungbean seed coat water extract inhibits inflammation in LPS-induced acute liver injury mice and LPS-stimulated RAW 246.7 macrophages via the inhibition of TAK1/IκBα/NF-κB. J Food Sci Technol 57:2659–2668PubMedPubMedCentralCrossRef Sae-Tan S, Kumrungsee T, Yanaka N (2020) Mungbean seed coat water extract inhibits inflammation in LPS-induced acute liver injury mice and LPS-stimulated RAW 246.7 macrophages via the inhibition of TAK1/IκBα/NF-κB. J Food Sci Technol 57:2659–2668PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Guo F, Hutchenreuther J, Carter DE, Leask A (2013) TAK1 is required for dermal wound healing and homeostasis. J Invest Dermatol 133:1646–1654PubMedCrossRef Guo F, Hutchenreuther J, Carter DE, Leask A (2013) TAK1 is required for dermal wound healing and homeostasis. J Invest Dermatol 133:1646–1654PubMedCrossRef
100.
Zurück zum Zitat Makita R, Uchijima Y, Nishiyama K, Amano T, Chen Q, Takeuchi T, Mitani A, Nagase T, Yatomi Y, Aburatani H, Nakagawa O, Small EV, Cobo-Stark P, Igarashi P, Murakami M, Tominaga J, Sato T, Asano T, Kurihara Y, Kurihara H (2008) Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am J Physiol Renal Physiol 294:F542-553PubMedCrossRef Makita R, Uchijima Y, Nishiyama K, Amano T, Chen Q, Takeuchi T, Mitani A, Nagase T, Yatomi Y, Aburatani H, Nakagawa O, Small EV, Cobo-Stark P, Igarashi P, Murakami M, Tominaga J, Sato T, Asano T, Kurihara Y, Kurihara H (2008) Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am J Physiol Renal Physiol 294:F542-553PubMedCrossRef
101.
Zurück zum Zitat Dvashi Z, Green Y, Pollack A (2014) TAK1 inhibition accelerates cellular senescence of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 55:5679–5686PubMedCrossRef Dvashi Z, Green Y, Pollack A (2014) TAK1 inhibition accelerates cellular senescence of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 55:5679–5686PubMedCrossRef
102.
Zurück zum Zitat Greenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park JM, Arthur S, Xie M, Schneider MD, Zhai B, Gygi S, Davis R, Glimcher LH (2010) The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Investig 120:2457–2473PubMedPubMedCentralCrossRef Greenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park JM, Arthur S, Xie M, Schneider MD, Zhai B, Gygi S, Davis R, Glimcher LH (2010) The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Investig 120:2457–2473PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Qi B, Cong Q, Li P, Ma G, Guo X, Yeh J, Xie M, Schneider MD, Liu H, Li B (2014) Ablation of Tak1 in osteoclast progenitor leads to defects in skeletal growth and bone remodeling in mice. Sci Rep 4:7158PubMedPubMedCentralCrossRef Qi B, Cong Q, Li P, Ma G, Guo X, Yeh J, Xie M, Schneider MD, Liu H, Li B (2014) Ablation of Tak1 in osteoclast progenitor leads to defects in skeletal growth and bone remodeling in mice. Sci Rep 4:7158PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Scarneo SA, Eibschutz LS, Bendele PJ, Yang KW, Totzke J, Hughes P, Fox DA, Haystead TAJ (2019) Pharmacological inhibition of TAK1, with the selective inhibitor takinib, alleviates clinical manifestation of arthritis in CIA mice. Arthritis Res Ther 21:292PubMedPubMedCentralCrossRef Scarneo SA, Eibschutz LS, Bendele PJ, Yang KW, Totzke J, Hughes P, Fox DA, Haystead TAJ (2019) Pharmacological inhibition of TAK1, with the selective inhibitor takinib, alleviates clinical manifestation of arthritis in CIA mice. Arthritis Res Ther 21:292PubMedPubMedCentralCrossRef
Metadaten
Titel
The Role of TAK1 in RANKL-Induced Osteoclastogenesis
verfasst von
Wu Jianwei
Tian Ye
Wang Hongwei
Li Dachuan
Zou Fei
Jiang Jianyuan
Wang Hongli
Publikationsdatum
14.03.2022
Verlag
Springer US
Erschienen in
Calcified Tissue International / Ausgabe 1/2022
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-022-00967-z

Weitere Artikel der Ausgabe 1/2022

Calcified Tissue International 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.