Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 3/2019

24.09.2018 | Original Article

The use of a custom-made virtual template for corrective surgeries of asymmetric patients: proof of principle and a multi-center end-user survey

verfasst von: Abeer AlHadidi, Beatriz Paniagua, Richard Cook, Donald Tyndall, Zaid Baqain, Lucia H. Cevidanes

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Aim

To evaluate the utility of an individualized template for corrective surgeries for patients suffering from mandibular asymmetry.

Materials and method

Twenty patients with history of favorable clinical outcome of the correction of their mandibular asymmetry were chosen. CBCTs were taken before and 6 weeks postoperative using NewTom 3G. Each volume is mirrored and registered on the cranial base. Surface models for the mandible and its registered mirror were used to compute a template using deformable fluid registration. Surgery was simulated based of the resulting template. A multi-center survey using “Qualtrics” was conducted to gain clinical feedback of 20 surgeons/orthodontists comparing treatment outcomes.

Results

Twenty-three clinicians participated. More clinicians rated simulated outcome to be “Good,” whereas the actual surgical outcomes were rated as “fair” and “poor.” This was true for regional appraisal for the chin, Rami, and body of the mandible as well as the overall assessment of the outcome of surgeries. The gains of computer-assisted simulation tend to be greater for difficult cases especially for the body of the mandible, then the chin, and then the Ramus correction.

Conclusions

This approach has the potential to optimize and increase the predictability of the outcome of craniofacial corrective surgeries for asymmetric patients.
Literatur
1.
Zurück zum Zitat Grenander U, Miller MI (1998) Computational anatomy: an emerging discipline. Q Appl Math 56:617–694CrossRef Grenander U, Miller MI (1998) Computational anatomy: an emerging discipline. Q Appl Math 56:617–694CrossRef
2.
Zurück zum Zitat Miller M, Banerjee A, Christensen G, Joshi S, Khaneja N, Grenander U, Matejic L (1997) Statistical methods in computational anatomy. Stat Methods Med Res 6:267–299CrossRefPubMed Miller M, Banerjee A, Christensen G, Joshi S, Khaneja N, Grenander U, Matejic L (1997) Statistical methods in computational anatomy. Stat Methods Med Res 6:267–299CrossRefPubMed
3.
Zurück zum Zitat Miller MI, Massie A, Ratnanather JT, Botteron KN, Csernansky JG (2000) Bayesian construction of geometrically based cortical thickness metrics. NeuroImage 12:676–687CrossRefPubMed Miller MI, Massie A, Ratnanather JT, Botteron KN, Csernansky JG (2000) Bayesian construction of geometrically based cortical thickness metrics. NeuroImage 12:676–687CrossRefPubMed
4.
Zurück zum Zitat Miller MI, Younes L (2001) Group actions, homeomorphisms, and matching: a general framework. Int J Comput Vis 41(1):61–84CrossRef Miller MI, Younes L (2001) Group actions, homeomorphisms, and matching: a general framework. Int J Comput Vis 41(1):61–84CrossRef
5.
Zurück zum Zitat Miller MI (2004) Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms. NeuroImage 1(23):S19–S33CrossRef Miller MI (2004) Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms. NeuroImage 1(23):S19–S33CrossRef
6.
Zurück zum Zitat Thompson PM, Toga AW (2002) A framework for computational anatomy. Comput Vis Sci 2002(5):1–12 Thompson PM, Toga AW (2002) A framework for computational anatomy. Comput Vis Sci 2002(5):1–12
7.
Zurück zum Zitat Bartesaghi A, Sapiro G (2001) A system for the generation of curves on 3d brain images. Hum Brain Mapp 14:1–15CrossRefPubMed Bartesaghi A, Sapiro G (2001) A system for the generation of curves on 3d brain images. Hum Brain Mapp 14:1–15CrossRefPubMed
8.
Zurück zum Zitat Cachia A, Mangin JF, Riviere D, Kherif F, Boddaert N, Andrade A, Papadopoulos-Orfanos D, Poline JB, Bloch I, Zilbovicius M, Sonigo P, Brunelle F, Regis J (2003) A primal sketch of the cortex mean curvature: a morphogenesis based approach to study the variability of the folding patterns. IEEE Trans Med Imaging 22:754–765CrossRefPubMed Cachia A, Mangin JF, Riviere D, Kherif F, Boddaert N, Andrade A, Papadopoulos-Orfanos D, Poline JB, Bloch I, Zilbovicius M, Sonigo P, Brunelle F, Regis J (2003) A primal sketch of the cortex mean curvature: a morphogenesis based approach to study the variability of the folding patterns. IEEE Trans Med Imaging 22:754–765CrossRefPubMed
9.
Zurück zum Zitat Feldmar J, Ayache N, Betting F (1997) 3D–2D projective registration of free-form curves and surfaces. Comput Vis Image Underst 65:403–424CrossRef Feldmar J, Ayache N, Betting F (1997) 3D–2D projective registration of free-form curves and surfaces. Comput Vis Image Underst 65:403–424CrossRef
10.
Zurück zum Zitat Khaneja N, Grenander U, Miller MI (1998) Dynamic programming generation of curves on brain surfaces. Pattern Anal Mach Intell 1998(20):1260–1264CrossRef Khaneja N, Grenander U, Miller MI (1998) Dynamic programming generation of curves on brain surfaces. Pattern Anal Mach Intell 1998(20):1260–1264CrossRef
11.
Zurück zum Zitat Lorigo LM, Faugeras OD, Grimson WE, Keriven R, Kikinis R, Nabavi A, Westin CF (2001) Curves: curve evolution for vessel segmentation. Med Image Anal 5:195–206CrossRefPubMed Lorigo LM, Faugeras OD, Grimson WE, Keriven R, Kikinis R, Nabavi A, Westin CF (2001) Curves: curve evolution for vessel segmentation. Med Image Anal 5:195–206CrossRefPubMed
12.
Zurück zum Zitat Montagnat J, Delingette H, Ayache N (2001) A review of deformable surfaces: topology, geometry and deformation. Image Vis Comput 2001(19):1023–1040CrossRef Montagnat J, Delingette H, Ayache N (2001) A review of deformable surfaces: topology, geometry and deformation. Image Vis Comput 2001(19):1023–1040CrossRef
13.
Zurück zum Zitat Rettmann ME, Han X, Xu C, Prince JL (2002) Automated sulcal segmentation using watersheds on the cortical surface. NeuroImage 15:329–344CrossRefPubMed Rettmann ME, Han X, Xu C, Prince JL (2002) Automated sulcal segmentation using watersheds on the cortical surface. NeuroImage 15:329–344CrossRefPubMed
14.
Zurück zum Zitat Thirion J, Goudon A (1995) Computing the differential characteristics of isointensity surfaces. Comput Vis Image Underst 61:190–202CrossRef Thirion J, Goudon A (1995) Computing the differential characteristics of isointensity surfaces. Comput Vis Image Underst 61:190–202CrossRef
15.
Zurück zum Zitat Vaillant M, Davatzikos C (1997) Finding parametric representations of the cortical sulci using an active contour model. Med Image Anal 1:295–315CrossRefPubMed Vaillant M, Davatzikos C (1997) Finding parametric representations of the cortical sulci using an active contour model. Med Image Anal 1:295–315CrossRefPubMed
16.
Zurück zum Zitat Gee JC (1999) On matching brain volumes. Pattern Recognit 32:99–111CrossRef Gee JC (1999) On matching brain volumes. Pattern Recognit 32:99–111CrossRef
17.
Zurück zum Zitat Joshi S, Davis B, Jomier M, Gerig G (2004) Unbiased dffeomorphic atlas construction for computational anatomy. NeuroImage 23(1):151CrossRef Joshi S, Davis B, Jomier M, Gerig G (2004) Unbiased dffeomorphic atlas construction for computational anatomy. NeuroImage 23(1):151CrossRef
18.
Zurück zum Zitat Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3):1116–1128CrossRefPubMed Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3):1116–1128CrossRefPubMed
21.
Zurück zum Zitat Cnaan Avital, Laird Nan M, Slasor Peter (1997) Tutorial in biostatistics: using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Stat Med 16:2349–2380CrossRefPubMed Cnaan Avital, Laird Nan M, Slasor Peter (1997) Tutorial in biostatistics: using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Stat Med 16:2349–2380CrossRefPubMed
22.
Zurück zum Zitat Stokbro K, Aagaard E, Torkov P, Bell RB, Thygesen T (2014) Virtual planning in orthognathic surgery. Int J Oral Maxillofac Surg 43(8):957–965CrossRefPubMed Stokbro K, Aagaard E, Torkov P, Bell RB, Thygesen T (2014) Virtual planning in orthognathic surgery. Int J Oral Maxillofac Surg 43(8):957–965CrossRefPubMed
23.
Zurück zum Zitat Lin HH, Lo LJ (2015) Three-dimensional computer-assisted surgical simulation and intraoperative navigation in orthognathic surgery: a literature review. J Formos Med Assoc 114(4):300–307CrossRefPubMed Lin HH, Lo LJ (2015) Three-dimensional computer-assisted surgical simulation and intraoperative navigation in orthognathic surgery: a literature review. J Formos Med Assoc 114(4):300–307CrossRefPubMed
24.
Zurück zum Zitat Farrell BB, Franco PB, Tucker MR (2014) Virtual surgical planning in orthognathic surgery. Oral Maxillofac Surg Clin 26(4):459–473CrossRef Farrell BB, Franco PB, Tucker MR (2014) Virtual surgical planning in orthognathic surgery. Oral Maxillofac Surg Clin 26(4):459–473CrossRef
25.
Zurück zum Zitat Swennen GR (2014) Timing of three-dimensional virtual treatment planning of orthognathic surgery: a prospective single-surgeon evaluation on 350 consecutive cases. Oral Maxillofac Surg Clin 26(4):475–485CrossRef Swennen GR (2014) Timing of three-dimensional virtual treatment planning of orthognathic surgery: a prospective single-surgeon evaluation on 350 consecutive cases. Oral Maxillofac Surg Clin 26(4):475–485CrossRef
Metadaten
Titel
The use of a custom-made virtual template for corrective surgeries of asymmetric patients: proof of principle and a multi-center end-user survey
verfasst von
Abeer AlHadidi
Beatriz Paniagua
Richard Cook
Donald Tyndall
Zaid Baqain
Lucia H. Cevidanes
Publikationsdatum
24.09.2018
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 3/2019
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-018-1858-8

Weitere Artikel der Ausgabe 3/2019

International Journal of Computer Assisted Radiology and Surgery 3/2019 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.