Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2011

Open Access 01.12.2011 | Research

The versatile application of cervicofacial and cervicothoracic rotation flaps in head and neck surgery

verfasst von: Fa-yu Liu, Zhong-fei Xu, Peng Li, Chang-fu Sun, Rui-wu Li, Shu-fen Ge, Jun-lin Li, Shao-hui Huang, Xuexin Tan

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2011

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

The large defects resulting from head and neck tumour surgeries present a reconstructive challenge to surgeons. Although numerous methods can be used, they all have their own limitations. In this paper, we present our experience with cervicofacial and cervicothoracic rotation flaps to help expand the awareness and application of this useful system of flaps.

Methods

Twenty-one consecutive patients who underwent repair of a variety of defects of the head and neck with cervicofacial or cervicothoracic flaps in our hospital from 2006 to 2009 were retrospectively analysed. Statistics pertaining to the patients' clinical factors were gathered.

Results

Cheek neoplasms are the most common indication for cervicofacial and cervicothoracic rotation flaps, followed by parotid tumours. Among the 12 patients with medical comorbidities, the most common was hypertension. Defects ranging from 1.5 cm × 1.5 cm to 7 cm × 6 cm were reconstructed by cervicofacial flap, and defects from 3 cm × 2 cm to 16 cm × 7 cm were reconstructed by cervicothoracic flap. The two flaps also exhibited versatility in these reconstructions. When combined with the pectoralis major myocutaneous flap, the cervicothoracic flap could repair through-and-through cheek defects, and in combination with a temporalis myofacial flap, the cervicofacial flap was able to cover orbital defects. Additionally, 95% patients were satisfied with their resulting contour results.

Conclusions

Cervicofacial and cervicothoracic flaps provide a technically simple, reliable, safe, efficient and cosmetic means to reconstruct defects of the head and neck.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1477-7819-9-135) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

LF and CS formulated the manuscript. ZX and PL carried out the statistical analysis of studies. CS, RL, JL, SG, SH and XT participated the design and the performance of operation. All authors read and approved the final manuscript.

Background

The variable surgical defects that can result from head and neck operations necessitate a broad range of surgical reconstructions, ranging from primary closures and pedicle flaps to free tissue transfers. According the distribution of blood supply, the pedicle flap can include random flaps and axial flaps. A random blood supply pattern is needed to maintain a wide pedicle[1]. Therefore, many random flaps, such as cheek advancement-rotation flaps and forehead flaps, have poor mobility and are only suitable for reconstructing small defects. Although axial flaps (e.g., trapezius flaps[2] and pectoralis major myocutaneous flaps (PMMF)[3]) can overcome these limitations, they often appear too bulky or large, result in a poor colour match with the recipient site, and sometimes impair the function of donor muscle groups.
In recent years, with the advancement of microsurgical techniques, new flap techniques offer great hope for the future of head and neck reconstruction, including radial forearm flaps, anterolateral thigh free flaps[4], rectus abdominis myocutaneous flaps[5], and latissimus dorsi flaps[6]. However, to optimise the cosmetic and functional outcomes for any given individual surgical wound, the head and neck surgeon must possess a firm grasp of fundamental techniques as well as the ability to use a reconstructive modality that meets the unique demands of each defect, as ascertained through a thorough defect analysis[7]. Furthermore, not all patients are suitable candidates for free flaps. The surgeon should select the proper reconstruction methods according to the patients' general body states, the match of the texture and colour of the flap with the recipient region, the patient's body position, medical complications, whether two operation sites are needed and the surgeon's clinical experience.
Cervicofacial and cervicothoracic rotation flaps are two variants of the random flap, both with wide pedicles. They are time-honoured methods in head and neck reconstruction that can provide excellent skin colour, thickness and texture match, with cosmetically acceptable scars and minimal morbidity. Therefore, they are adapted to fit many defects of the face, cheek, parotid region, periorbital region, auricle and neck. Particularly in certain high-risk patients, such as the very old, those with many systemic diseases, or who for any reason cannot tolerate a long operative time, they seem to be the preferred option. Despite these advantages, cervicofacial and cervicothoracic rotation flaps have received scarce attention in the literature. In this article, we present our experience in using cervicofacial and cervicothoracic rotation flaps to expand the awareness and promote the application of this useful system of flaps.

Methods

Patients

Twenty-one consecutive patients who underwent repairs of a variety of defects of the head and neck with cervicofacial or cervicothoracic flaps in our hospital from 2006 to 2009 were included in this study. Patients' charts were reviewed for patient demographic information; defect location; pathologic diagnosis; comorbid disease, including hypertension, cardiac disease and diabetes mellitus; coincident procedures, such as neck dissection; the type of flap used and the associated flap; the length of hospitalisation; complications; and aesthetic outcome. Local Ethical Committee approval was granted for the use of surgical trimming, and informed consent was also obtained from the patients before surgery.

Surgical Technology

The incision outline for the resection of tumours and cervicofacial flap design are shown in Figure 1A. The incision begins from the posterolateral aspect of the resection margins (Figure 1B). By carrying the incision below the lobule and then up to the mastoid tip, it can then be dropped into the neck along the anterior edge of the trapezius muscle, the lateral third of the clavicle, and extending into the pectoral region. The incision is performed in a staged fashion, with continual reassessment of the arc of rotation and the ability of the flap to fill the defect until a tension-free closure can be accomplished. The incisions include potential avenues for a back cut along natural skin creases. If the base of the inferior limit of the incision is up to the clavicle, the flap is named a cervicofacial flap (Figure 1C). If the base of the inferior limit is down to the clavicle, then the flap is named a cervicothoracic flap. The flaps were raised superficial to the superficial musculoaponeurotic system (SMAS) and the parotidomasseteric fascia, deep to the platysma, and then transferred into the outer skin defect and sutured (Figure 1D).

Statistical analysis

The association of cervicofacial or cervicothoracic flap complications with comorbidities was analysed using a χ2 test with the software SPSS 11.0. The evaluation of postoperative appearance was performed according to the method described by Peng et al.[8]. A score of 7 points was rated as excellent, 6 and 5 points good, and fewer than 4 points poor. A patient with a score of no less than 5 points was considered to have an acceptable appearance.

Results

From a review of medical records, 21 patients were identified whose surgical defects were reconstructed with cervicofacial or cervicothoracic rotation flaps (Table 1). The patients ranged in age from 46 to 87 years, with a mean age of 64.5 years. These patients included 12 men and 9 women. The patients exhibited a myriad of comorbidities, including 9 patients with hypertension, 5 patients with diabetes mellitus, 1 patient with cardiac disease, and 3 patients with two conditions. The most frequently encountered surgical defect site was the cheek (n = 7), and the most common histologic diagnosis was squamous cell cancer (n = 10). The size of the defects ranged from 1.5 cm × 1.5 cm to 16 cm × 7 cm. Ten patients were reconstructed with cervicofacial rotation flaps, and 11 patients were reconstructed with cervicothoracic flaps. Neck dissections were performed in 12 cases (57%), ranging from selective nodal dissections to radical neck dissections. There were 4 patients who suffered through-and-through cheek defects, with skin defects ranging from 4 cm × 4 cm to 6 cm × 4 cm and cheek mucosal defects ranging from 2 cm × 1.5 cm to 4 cm × 3 cm. They were all reconstructed with combined cervicothoracic rotation flaps and PMMF (Figure 2). The PMMF were used to repair the cheek mucosa, and the cervicothoracic flaps were used to repair the cheek skin. All of the chest donation sites were able to be closed primarily. In 3 patients with deep defects, pedicled pectoralis myofascial flaps (PMF) or temporalis myofacial flaps (TMF) were used for tissue bulk (Figure 3).
Table 1
Twenty-one consecutive patients undergoing resection and reconstruction with cervicofacial or cervicothoracic flap.
patient
sex
Age(y)
Defect Location
Pathologic diagnosis
Comorbid disease
Size (cm)
Neck dissection
Flap used
Associated flap
length of postoperative hospitalization(d)
complication
Acceptable appearance
      
Skin
Mucosa
      
1
F
59
face
BCC
 
3 × 3
 
-
Cervicofacial
-
11
-
Yes
2
M
74
parotid
AC
Hy
3 × 2
 
SND
Cervicothoracic
-
10
-
Yes
3
M
78
cheek
SCC
 
6 × 4
4 × 3
MRND
Cervicothoracic
PMMF
12
-
Yes
4
F
87
parotid
MC
Hy + Dm
5 × 4
 
-
Cervicofacial
-
10
-
Yes
5
M
46
face
FSa
 
1.5 × 1.5
 
-
Cervicofacial
-
7
-
Yes
6
M
56
cheek
SCC
 
5 × 5
3.5 × 3
RND
Cervicothoracic
PMMF
10
-
Yes
7
F
56
parotid
SCC
Dm
5 × 3
 
MRND
Cervicothoracic
-
9
-
Yes
8
M
74
parotid
AC
Cd
6 × 5
 
-
Cervicothoracic
-
8
-
Yes
9
M
50
face
FSa
 
3 × 3
 
-
Cervicofacial
-
9
-
Yes
10
F
65
fossa orbitalis
SCC
Hy
6 × 4
 
-
Cervicofacial
TMF
7
-
Yes
11
F
68
cheek
SCC
Hy + Dm
4 × 4
 
SND
Cervicofacial
-
8
-
Yes
12
M
53
submaxillary region
ACC
 
2 × 2
 
SND
Cervicofacial
-
12
-
Yes
13
F
68
cheek
SCC
Hy
6 × 5
2 × 1.5
RND
Cervicothoracic
PMMF
20
epidermolysis
No
14
M
48
face
SCC
Dm
6 × 6
 
-
Cervicothoracic
-
23
necrosis of the distal tip
Yes
15
F
51
Cheek
Am
 
16 × 7
 
-
Cervicothoracic
PMF
8
-
Yes
16
F
64
cheek
SCC
Dm + Hy
4 × 4
2 × 2
SND
Cervicothoracic
PMMF
15
epidermolysis
Yes
17
M
78
neck
SCC
Hy
7 × 5
 
RND
Cervicofacial
-
7
epidermolysis
Yes
18
F
77
cheek
SCC
Hy
3 × 3
 
SND
Cervicothoracic
-
10
-
Yes
19
M
78
Submental region
BCC
Hy
5 × 3
 
SND
Cervicothoracic
-
8
necrosis of the distal tip
Yes
20
M
53
parotid
MC
 
7 × 6
 
RND
Cervicofacial
-
8
-
Yes
21
M
72
fossa orbitalis
BCC
 
5 × 4
 
-
Cervicofacial
TMF
7
-
Yes
ACC: adenoid cystic carcinoma. SCC: squamous cell carcinoma. BCC: basal cell carcinoma. MC: myoepithelial carcinoma. FSa: fibrosarcoma. AC: adenocarcinoma Mc: mucoepidermoid carcinoma. Am: ameloblastoma.
Hy: Hypertension. Dm: diabetes mellitus. Cd: cardiac disease.
TMF: temporalis myofacial flap. PMF: pectoralis myofascial flap. PMMF: pectoralis major myocutaneous flap
Patients were hospitalised for 7 to 23 days postoperatively, with a mean hospital stay of 10.4 days. The most common surgical complication was epidermolysis of the distal skin flap (3 cases, 14.3%), and although two patients (9.5%) developed full-thickness necrosis of the distal flap tip, after 10-20 days, both patients recovered gradually. No patients experienced a total flap loss. The vast majority (95%) of patients were satisfied with the contour results of their reconstructions.

Discussion

Large defects of the head and neck present a significant reconstructive challenge to surgeons, especially when simultaneous parotidectomy and neck dissection is required. Although numerous options can be used, including primary closure, skin grafts, healing by secondary intention, pedicled flaps, and free flaps, all of these techniques have their limitations. The rotation of locoregional tissue remains a mainstay of reconstruction in these anatomic regions. Because it can provide an excellent skin colour and texture match, requires no donor region, reduces the surgical risk to high-risk patients, such as those with complications of hypertension, diabetes, or old age, the random flap is widely used to repair small defects of the head and neck. However, for larger defects, the random flap is of very limited utility. Because of their technical similarities to the random flap, the cervicofacial and cervicothoracic flaps share in its advantages; however, they can also be applied in the reconstruction of large defects.
In 1960, Conley used laterally-based cervical and thoracic rotation flaps to reconstruct wounds of the lateral neck[9]. The closure of skin defects of the face with cervicopectoral rotation flaps was originally reported by Garrett et al. in 1966[10]. The name "cervicofacial flap" was first used by Kaplan in 1978 in a report of the versatility of this flap for the coverage of defects following the removal of cancers of the head and neck. It requires no delay procedures and yields excellent results in terms of both function and appearance. The name "cervicothoracic flap" was coined in the same report. The author used this flap to treat developed chondronecrosis of the thyroid cartilage[11].
In more recent years, the two flaps have been employed and refined by many surgeons and have yielded excellent results. Cook et al. delineated the goals of mid-facial and cheek reconstructions. In addition to providing an excellent skin colour, texture, and thickness match, the tissue should be flexible, minimise distortion of the eye and upper lip, preserve facial movement, and prevent ectropion[12]. The cervicofacial and cervicothoracic flaps meet all of these criteria. In a sense, they are the simplest method of providing soft tissue coverage for the protection of deeper vital structures, such as the facial nerve, mandible, and carotid artery.
In our series, defects ranging from 1.5 cm × 1.5 cm to 7 cm × 6 cm were successfully reconstructed with cervicofacial flaps, and defects ranging from 3 cm × 2 cm to 16 cm × 7 cm were successfully reconstructed with cervicothoracic flaps. The upper boundary of reconstruction with this method can reach to the supraorbital margin, the medial boundary can reach to the median line, and the outer boundary can reach to the pre-auricular or post-auricular region. Without the use of microsurgical techniques, the operations were simpler, and the operative time was shortened significantly.
Moore et al. reported that in their cervicofacial flap and cervicothoracic flap series, 11 patients (31%) experienced some form of wound complication, most often manifested as epidermolysis of the distal skin flap (8/35, 23%), and 3 patients (9%) developed full-thickness necrosis of the distal flap tip[7]. Our data included 3 cases of epidermolysis (3/21, 14.3%) and two cases of distal tip necrosis (2/21, 9.5%). We believe that our lower complication rate may be the results of some methods that we practice in harvesting the flaps. First, we are careful to protect the superficial cervical fascia surrounding the platysma and thus preserve the capillary network in the fascia. Second, during the flap harvest, we often elevated the superficial veins with the flap, although they were ligated on both sides. We believe that the residual vein can be helpful in re-establishing blood circulation. Finally, when resecting the tumours, we take care not to produce excessive thinning of the skin surrounding the defect. Thus, the distal aspect of the flap can be provided with more subcutaneous tissue, which could supply a rich network of subdermal anastomoses.
There was no significant association between the overall complication rate and hypertension (χ2 = 3.697, p = 0.055) or diabetes mellitus (χ2 = 0.948, p = 0.330). This is consistent with the conclusion of Moore et al.[7]. However, when epidermolysis and distal necrosis were analysed independently, we found that epidermolysis was correlated with hypertension (χ2 = 4.667, p = 0.031) and that diabetes mellitus also exhibited a non-significant trend toward a greater complication rate. Among 13 hypertensive patients with free flap reconstructions in our hospital, two (15.4%) patients experienced the complication of total flap loss. Although the overall complication rate of our cervicofacial and cervicothoracic flaps in hypertensive patients (4/9, 44.4%) was higher than with free flaps, the impact of these complications on aesthetic outcomes was often slight, with the epidermolysis and distal necrosis recovering gradually. Furthermore, we suggest that the low complication rate of the free flaps may be partially due to strict indications. Hakim et al. reported 6 patients with dorsally pedicled platysma cervicofacial rotation flap-reconstructed orbital and cheek defects with no significant complications[13]. They believed that the dorsal pedicle and platysma would enhance the blood supply to the flaps. In our series, cervicofacial flaps were all medially pedicled. Although 1 patient in our series experienced epidermolysis of the distal tip of the flap (1/10, 10%), the scar was inconspicuous, with an incision following the pre-auricular, anterior edge of the trapezius muscle and a natural neck skin crease. The use of deep planes for cervicofacial flaps has been advocated recently, mainly because of greater reliability with excellent vascularity[1]. Tan, in the largest study to date of deep-plane cervicofacial flaps, reports a 6% tip necrosis rate (1/18)[1], consistent with our finding of 10% in traditional subcutaneous cervicofacial flaps (1/10). These results are too similar to advocate for one approach over the other, however, we have avoided the deep-plane methods because they are more time consuming, pose a greater risk of facial nerve damage and require very experienced surgeons for success[14].
Cervicofacial and cervicothoracic flaps are not suitable for the repair of all possible defects of the head and neck. They are primarily useful in relatively superficial defects because they are too thin to provide the necessary bulk of tissue for deeper repairs. However, they have also exhibited their versatility in this respect. In this study, 4 patients with through-and-through cheek defects required the reconstruction of mucosa and cheek skin simultaneously. The single forearm flap is too thin for this application, and the anterolateral thigh free flap or PMMF would seem to be too thick after being folded. Therefore, we used the combination of cervicothoracic flaps and PMMF with good results (Figure 2). Moore et al. reported that they performed a PMF combined with cervicothoracic flaps to supplement additional soft tissue in the case of an extended radical neck dissection and carotid artery replacement[7]. In contrast with the PMF, the PMMF requires the harvest of some skin, which might make it more difficult to close the donor site on the chest; however, in our series, the defects from 7 cm × 6 cm to 10 cm × 7 cm on the chest were all able to be closed primarily. There were also 2 patients with orbital defects for whom we used temporalis myofacial flaps to replenish the dead space and cervicofacial flaps to cover the surface, thus not only shortening the operation times but also reducing the postoperative complications (Figure 3).

Conclusions

Because cervicofacial and cervicothoracic flap techniques are anatomically sound, technically simple, reliable and safe, we believe that they are useful methods for the reconstruction of surgical defects of the head and neck and will more frequently attract the attention of surgeons in the future.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

LF and CS formulated the manuscript. ZX and PL carried out the statistical analysis of studies. CS, RL, JL, SG, SH and XT participated the design and the performance of operation. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Tan ST, MacKinnon CA: Deep plane cervicofacial flap: a useful and versatile technique in head and neck surgery. Head Neck. 2006, 28: 46-55. 10.1002/hed.20317.CrossRefPubMed Tan ST, MacKinnon CA: Deep plane cervicofacial flap: a useful and versatile technique in head and neck surgery. Head Neck. 2006, 28: 46-55. 10.1002/hed.20317.CrossRefPubMed
2.
Zurück zum Zitat Guillamondegui OM, Campbell BH: The folded trapezius flap for through-and-through cheek defects. Otolaryngol Head Neck Surg. 1987, 97: 24-27.PubMed Guillamondegui OM, Campbell BH: The folded trapezius flap for through-and-through cheek defects. Otolaryngol Head Neck Surg. 1987, 97: 24-27.PubMed
3.
Zurück zum Zitat Ahmad QG, Navadgi S, Agarwal R, Kanhere H, Shetty KP, Prasad R: Bipaddle pectoralis major myocutaneous flap in reconstructing full thickness defects of cheek: a review of 47 cases. J Plast Reconstr Aesthet Surg. 2006, 59: 166-173. 10.1016/j.bjps.2005.07.008.CrossRefPubMed Ahmad QG, Navadgi S, Agarwal R, Kanhere H, Shetty KP, Prasad R: Bipaddle pectoralis major myocutaneous flap in reconstructing full thickness defects of cheek: a review of 47 cases. J Plast Reconstr Aesthet Surg. 2006, 59: 166-173. 10.1016/j.bjps.2005.07.008.CrossRefPubMed
4.
Zurück zum Zitat Wong CH, Wei FC: Microsurgical free flap in head and neck reconstruction. Head Neck. 2009 Wong CH, Wei FC: Microsurgical free flap in head and neck reconstruction. Head Neck. 2009
5.
Zurück zum Zitat Schliephake H, Schmelzeisen R, Neukam FW: The free revascularized rectus abdominis myocutaneous flap for the repair of tumour related defects in the head and neck area. Br J Oral Maxillofac Surg. 1996, 34: 18-22. 10.1016/S0266-4356(96)90129-1.CrossRefPubMed Schliephake H, Schmelzeisen R, Neukam FW: The free revascularized rectus abdominis myocutaneous flap for the repair of tumour related defects in the head and neck area. Br J Oral Maxillofac Surg. 1996, 34: 18-22. 10.1016/S0266-4356(96)90129-1.CrossRefPubMed
6.
Zurück zum Zitat Valentini V, Gennaro P, Torroni A, Longo G, Aboh IV, Cassoni A, Battisti A, Anelli A: Scapula free flap for complex maxillofacial reconstruction. J Craniofac Surg. 2009, 20: 1125-1131. 10.1097/SCS.0b013e3181abb482.CrossRefPubMed Valentini V, Gennaro P, Torroni A, Longo G, Aboh IV, Cassoni A, Battisti A, Anelli A: Scapula free flap for complex maxillofacial reconstruction. J Craniofac Surg. 2009, 20: 1125-1131. 10.1097/SCS.0b013e3181abb482.CrossRefPubMed
7.
Zurück zum Zitat Moore BA, Wine T, Netterville JL: Cervicofacial and cervicothoracic rotation flaps in head and neck reconstruction. Head Neck. 2005, 27: 1092-1101. 10.1002/hed.20252.CrossRefPubMed Moore BA, Wine T, Netterville JL: Cervicofacial and cervicothoracic rotation flaps in head and neck reconstruction. Head Neck. 2005, 27: 1092-1101. 10.1002/hed.20252.CrossRefPubMed
8.
Zurück zum Zitat Peng LW, Zhang WF, Zhao JH, He SG, Zhao YF: Two designs of platysma myocutaneous flap for reconstruction of oral and facial defects following cancer surgery. Int J Oral Maxillofac Surg. 2005, 34: 507-513. 10.1016/j.ijom.2004.10.022.CrossRefPubMed Peng LW, Zhang WF, Zhao JH, He SG, Zhao YF: Two designs of platysma myocutaneous flap for reconstruction of oral and facial defects following cancer surgery. Int J Oral Maxillofac Surg. 2005, 34: 507-513. 10.1016/j.ijom.2004.10.022.CrossRefPubMed
9.
Zurück zum Zitat Conley JJ: The use of regional flaps in head and neck surgery. Ann Otol Rhinol Laryngol. 1960, 69: 1223-1234.CrossRefPubMed Conley JJ: The use of regional flaps in head and neck surgery. Ann Otol Rhinol Laryngol. 1960, 69: 1223-1234.CrossRefPubMed
10.
Zurück zum Zitat Garrett WS, Giblin TR, Hoffman GW: Closure of skin defects of the face and neck by rotation and advancement of cervicopectoral flaps. Plast Reconstr Surg. 1966, 38: 342-346. 10.1097/00006534-196610000-00008.CrossRefPubMed Garrett WS, Giblin TR, Hoffman GW: Closure of skin defects of the face and neck by rotation and advancement of cervicopectoral flaps. Plast Reconstr Surg. 1966, 38: 342-346. 10.1097/00006534-196610000-00008.CrossRefPubMed
11.
Zurück zum Zitat Kaplan I, Goldwyn RM: The versatility of the laterally based cervicofacial flap for cheek repairs. Plast Reconstr Surg. 1978, 61: 390-393. 10.1097/00006534-197803000-00013.CrossRefPubMed Kaplan I, Goldwyn RM: The versatility of the laterally based cervicofacial flap for cheek repairs. Plast Reconstr Surg. 1978, 61: 390-393. 10.1097/00006534-197803000-00013.CrossRefPubMed
12.
Zurück zum Zitat Cook TA, Israel JM, Wang TD, Murakami CS, Brownrigg PJ: Cervical rotation flaps for midface resurfacing. Arch Otolaryngol Head Neck Surg. 1991, 117: 77-82.CrossRefPubMed Cook TA, Israel JM, Wang TD, Murakami CS, Brownrigg PJ: Cervical rotation flaps for midface resurfacing. Arch Otolaryngol Head Neck Surg. 1991, 117: 77-82.CrossRefPubMed
13.
Zurück zum Zitat Hakim SG, Jacobsen HC, Aschoff HH, Sieg P: Including the platysma muscle in a cervicofacial skin rotation flap to enhance blood supply for reconstruction of vast orbital and cheek defects: anatomical considerations and surgical technique. Int J Oral Maxillofac Surg. 2009, 38: 1316-1319. 10.1016/j.ijom.2009.07.015.CrossRefPubMed Hakim SG, Jacobsen HC, Aschoff HH, Sieg P: Including the platysma muscle in a cervicofacial skin rotation flap to enhance blood supply for reconstruction of vast orbital and cheek defects: anatomical considerations and surgical technique. Int J Oral Maxillofac Surg. 2009, 38: 1316-1319. 10.1016/j.ijom.2009.07.015.CrossRefPubMed
14.
Zurück zum Zitat Austen WG, Parrett BM, Taghinia A, Wolfort SF, Upton J: The subcutaneous cervicofacial flap revisited. Ann Plast Surg. 2009, 62: 149-153. 10.1097/SAP.0b013e31819354f5.CrossRefPubMed Austen WG, Parrett BM, Taghinia A, Wolfort SF, Upton J: The subcutaneous cervicofacial flap revisited. Ann Plast Surg. 2009, 62: 149-153. 10.1097/SAP.0b013e31819354f5.CrossRefPubMed
Metadaten
Titel
The versatile application of cervicofacial and cervicothoracic rotation flaps in head and neck surgery
verfasst von
Fa-yu Liu
Zhong-fei Xu
Peng Li
Chang-fu Sun
Rui-wu Li
Shu-fen Ge
Jun-lin Li
Shao-hui Huang
Xuexin Tan
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2011
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/1477-7819-9-135

Weitere Artikel der Ausgabe 1/2011

World Journal of Surgical Oncology 1/2011 Zur Ausgabe

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Deutlich weniger Infektionen: Wundprotektoren schützen!

08.05.2024 Postoperative Wundinfektion Nachrichten

Der Einsatz von Wundprotektoren bei offenen Eingriffen am unteren Gastrointestinaltrakt schützt vor Infektionen im Op.-Gebiet – und dient darüber hinaus der besseren Sicht. Das bestätigt mit großer Robustheit eine randomisierte Studie im Fachblatt JAMA Surgery.

Chirurginnen und Chirurgen sind stark suizidgefährdet

07.05.2024 Suizid Nachrichten

Der belastende Arbeitsalltag wirkt sich negativ auf die psychische Gesundheit der Angehörigen ärztlicher Berufsgruppen aus. Chirurginnen und Chirurgen bilden da keine Ausnahme, im Gegenteil.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.