Skip to main content
Erschienen in: Neuroscience Bulletin 2/2024

17.10.2023 | Original Article

Theta Oscillations Support Prefrontal-hippocampal Interactions in Sequential Working Memory

verfasst von: Minghong Su, Kejia Hu, Wei Liu, Yunhao Wu, Tao Wang, Chunyan Cao, Bomin Sun, Shikun Zhan, Zheng Ye

Erschienen in: Neuroscience Bulletin | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Abstract

The prefrontal cortex and hippocampus may support sequential working memory beyond episodic memory and spatial navigation. This stereoelectroencephalography (SEEG) study investigated how the dorsolateral prefrontal cortex (DLPFC) interacts with the hippocampus in the online processing of sequential information. Twenty patients with epilepsy (eight women, age 27.6 ± 8.2 years) completed a line ordering task with SEEG recordings over the DLPFC and the hippocampus. Participants showed longer thinking times and more recall errors when asked to arrange random lines clockwise (random trials) than to maintain ordered lines (ordered trials) before recalling the orientation of a particular line. First, the ordering-related increase in thinking time and recall error was associated with a transient theta power increase in the hippocampus and a sustained theta power increase in the DLPFC (3–10 Hz). In particular, the hippocampal theta power increase correlated with the memory precision of line orientation. Second, theta phase coherences between the DLPFC and hippocampus were enhanced for ordering, especially for more precisely memorized lines. Third, the theta band DLPFC → hippocampus influence was selectively enhanced for ordering, especially for more precisely memorized lines. This study suggests that theta oscillations may support DLPFC-hippocampal interactions in the online processing of sequential information.
Literatur
1.
Zurück zum Zitat Chase HW, Clark L, Sahakian BJ, Bullmore ET, Robbins TW. Dissociable roles of prefrontal subregions in self-ordered working memory performance. Neuropsychologia 2008, 46: 2650–2661.PubMedCrossRef Chase HW, Clark L, Sahakian BJ, Bullmore ET, Robbins TW. Dissociable roles of prefrontal subregions in self-ordered working memory performance. Neuropsychologia 2008, 46: 2650–2661.PubMedCrossRef
2.
Zurück zum Zitat Sirigu A, Cohen L, Zalla T, Pradat-Diehl P, Van Eeckhout P, Grafman J. Distinct frontal regions for processing sentence syntax and story grammar. Cortex 1998, 34: 771–778.PubMedCrossRef Sirigu A, Cohen L, Zalla T, Pradat-Diehl P, Van Eeckhout P, Grafman J. Distinct frontal regions for processing sentence syntax and story grammar. Cortex 1998, 34: 771–778.PubMedCrossRef
3.
Zurück zum Zitat Dede AJ, Frascino JC, Wixted JT, Squire LR. Learning and remembering real-world events after medial temporal lobe damage. Proc Natl Acad Sci U S A 2016, 113: 13480–13485.ADSPubMedPubMedCentralCrossRef Dede AJ, Frascino JC, Wixted JT, Squire LR. Learning and remembering real-world events after medial temporal lobe damage. Proc Natl Acad Sci U S A 2016, 113: 13480–13485.ADSPubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Hunsaker MR, Fieldsted PM, Rosenberg JS, Kesner RP. Dissociating the roles of dorsal and ventral CA1 for the temporal processing of spatial locations, visual objects, and odors. Behav Neurosci 2008, 122: 643–650.PubMedCrossRef Hunsaker MR, Fieldsted PM, Rosenberg JS, Kesner RP. Dissociating the roles of dorsal and ventral CA1 for the temporal processing of spatial locations, visual objects, and odors. Behav Neurosci 2008, 122: 643–650.PubMedCrossRef
5.
Zurück zum Zitat Heuer E, Bachevalier J. Working memory for temporal order is impaired after selective neonatal hippocampal lesions in adult rhesus macaques. Behav Brain Res 2013, 239: 55–62.PubMedCrossRef Heuer E, Bachevalier J. Working memory for temporal order is impaired after selective neonatal hippocampal lesions in adult rhesus macaques. Behav Brain Res 2013, 239: 55–62.PubMedCrossRef
6.
Zurück zum Zitat Li CX, Li Z, Hu X, Zhang X, Bachevalier J. Altered hippocampal-prefrontal functional network integrity in adult macaque monkeys with neonatal hippocampal lesions. Neuroimage 2021, 227: 117645.PubMedCrossRef Li CX, Li Z, Hu X, Zhang X, Bachevalier J. Altered hippocampal-prefrontal functional network integrity in adult macaque monkeys with neonatal hippocampal lesions. Neuroimage 2021, 227: 117645.PubMedCrossRef
7.
Zurück zum Zitat Eichenbaum H. Prefrontal-hippocampal interactions in episodic memory. Nat Rev Neurosci 2017, 18: 547–558.PubMedCrossRef Eichenbaum H. Prefrontal-hippocampal interactions in episodic memory. Nat Rev Neurosci 2017, 18: 547–558.PubMedCrossRef
8.
Zurück zum Zitat Fell J, Axmacher N. The role of phase synchronization in memory processes. Nat Rev Neurosci 2011, 12: 105–118.PubMedCrossRef Fell J, Axmacher N. The role of phase synchronization in memory processes. Nat Rev Neurosci 2011, 12: 105–118.PubMedCrossRef
9.
Zurück zum Zitat Kim J, Delcasso S, Lee I. Neural correlates of object-in-place learning in hippocampus and prefrontal cortex. J Neurosci 2011, 31: 16991–17006.PubMedPubMedCentralCrossRef Kim J, Delcasso S, Lee I. Neural correlates of object-in-place learning in hippocampus and prefrontal cortex. J Neurosci 2011, 31: 16991–17006.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Place R, Farovik A, Brockmann M, Eichenbaum H. Bidirectional prefrontal-hippocampal interactions support context-guided memory. Nat Neurosci 2016, 19: 992–994.PubMedPubMedCentralCrossRef Place R, Farovik A, Brockmann M, Eichenbaum H. Bidirectional prefrontal-hippocampal interactions support context-guided memory. Nat Neurosci 2016, 19: 992–994.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Tavares LCS, Tort ABL. Hippocampal-prefrontal interactions during spatial decision-making. Hippocampus 2022, 32: 38–54.PubMedCrossRef Tavares LCS, Tort ABL. Hippocampal-prefrontal interactions during spatial decision-making. Hippocampus 2022, 32: 38–54.PubMedCrossRef
12.
13.
Zurück zum Zitat Tanninen SE, Nouriziabari B, Morrissey MD, Bakir R, Dayton RD, Klein RL, et al. Entorhinal tau pathology disrupts hippocampal-prefrontal oscillatory coupling during associative learning. Neurobiol Aging 2017, 58: 151–162.PubMedCrossRef Tanninen SE, Nouriziabari B, Morrissey MD, Bakir R, Dayton RD, Klein RL, et al. Entorhinal tau pathology disrupts hippocampal-prefrontal oscillatory coupling during associative learning. Neurobiol Aging 2017, 58: 151–162.PubMedCrossRef
14.
Zurück zum Zitat Johnson EL, Adams JN, Solbakk AK, Endestad T, Larsson PG, Ivanovic J, et al. Dynamic frontotemporal systems process space and time in working memory. PLoS Biol 2018, 16: e2004274.PubMedPubMedCentralCrossRef Johnson EL, Adams JN, Solbakk AK, Endestad T, Larsson PG, Ivanovic J, et al. Dynamic frontotemporal systems process space and time in working memory. PLoS Biol 2018, 16: e2004274.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Kaplan R, Bush D, Bisby JA, Horner AJ, Meyer SS, Burgess N. Medial prefrontal-medial temporal Theta phase coupling in dynamic spatial imagery. J Cogn Neurosci 2017, 29: 507–519.PubMedCrossRef Kaplan R, Bush D, Bisby JA, Horner AJ, Meyer SS, Burgess N. Medial prefrontal-medial temporal Theta phase coupling in dynamic spatial imagery. J Cogn Neurosci 2017, 29: 507–519.PubMedCrossRef
16.
Zurück zum Zitat Garrido MI, Barnes GR, Kumaran D, Maguire EA, Dolan RJ. Ventromedial prefrontal cortex drives hippocampal theta oscillations induced by mismatch computations. Neuroimage 2015, 120: 362–370.PubMedCrossRef Garrido MI, Barnes GR, Kumaran D, Maguire EA, Dolan RJ. Ventromedial prefrontal cortex drives hippocampal theta oscillations induced by mismatch computations. Neuroimage 2015, 120: 362–370.PubMedCrossRef
17.
Zurück zum Zitat D’Esposito M, Postle BR, Ballard D, Lease J. Maintenance versus manipulation of information held in working memory: An event-related fMRI study. Brain Cogn 1999, 41: 66–86.PubMedCrossRef D’Esposito M, Postle BR, Ballard D, Lease J. Maintenance versus manipulation of information held in working memory: An event-related fMRI study. Brain Cogn 1999, 41: 66–86.PubMedCrossRef
18.
Zurück zum Zitat Ye Z, Zhang G, Li S, Zhang Y, Xiao W, Zhou X, et al. Age differences in the fronto-striato-parietal network underlying serial ordering. Neurobiol Aging 2020, 87: 115–124.PubMedCrossRef Ye Z, Zhang G, Li S, Zhang Y, Xiao W, Zhou X, et al. Age differences in the fronto-striato-parietal network underlying serial ordering. Neurobiol Aging 2020, 87: 115–124.PubMedCrossRef
19.
Zurück zum Zitat Sakai K, Passingham RE. Prefrontal interactions reflect future task operations. Nat Neurosci 2003, 6: 75–81.PubMedCrossRef Sakai K, Passingham RE. Prefrontal interactions reflect future task operations. Nat Neurosci 2003, 6: 75–81.PubMedCrossRef
21.
Zurück zum Zitat Barnett AJ, O’Neil EB, Watson HC, Lee ACH. The human hippocampus is sensitive to the durations of events and intervals within a sequence. Neuropsychologia 2014, 64: 1–12.PubMedCrossRef Barnett AJ, O’Neil EB, Watson HC, Lee ACH. The human hippocampus is sensitive to the durations of events and intervals within a sequence. Neuropsychologia 2014, 64: 1–12.PubMedCrossRef
22.
23.
Zurück zum Zitat Naya Y, Chen H, Yang C, Suzuki WA. Contributions of primate prefrontal cortex and medial temporal lobe to temporal-order memory. Proc Natl Acad Sci U S A 2017, 114: 13555–13560.ADSPubMedPubMedCentralCrossRef Naya Y, Chen H, Yang C, Suzuki WA. Contributions of primate prefrontal cortex and medial temporal lobe to temporal-order memory. Proc Natl Acad Sci U S A 2017, 114: 13555–13560.ADSPubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Naya Y, Suzuki WA. Integrating what and when across the primate medial temporal lobe. Science 2011, 333: 773–776.ADSPubMedCrossRef Naya Y, Suzuki WA. Integrating what and when across the primate medial temporal lobe. Science 2011, 333: 773–776.ADSPubMedCrossRef
25.
Zurück zum Zitat Chen J, Dastjerdi M, Foster BL, LaRocque KF, Rauschecker AM, Parvizi J, et al. Human hippocampal increases in low-frequency power during associative prediction violations. Neuropsychologia 2013, 51: 2344–2351.PubMedPubMedCentralCrossRef Chen J, Dastjerdi M, Foster BL, LaRocque KF, Rauschecker AM, Parvizi J, et al. Human hippocampal increases in low-frequency power during associative prediction violations. Neuropsychologia 2013, 51: 2344–2351.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Amiez C, Petrides M. Selective involvement of the mid-dorsolateral prefrontal cortex in the coding of the serial order of visual stimuli in working memory. Proc Natl Acad Sci U S A 2007, 104: 13786–13791.ADSPubMedPubMedCentralCrossRef Amiez C, Petrides M. Selective involvement of the mid-dorsolateral prefrontal cortex in the coding of the serial order of visual stimuli in working memory. Proc Natl Acad Sci U S A 2007, 104: 13786–13791.ADSPubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Rowe JB, Passingham RE. Working memory for location and time: Activity in prefrontal area 46 relates to selection rather than maintenance in memory. Neuroimage 2001, 14: 77–86.PubMedCrossRef Rowe JB, Passingham RE. Working memory for location and time: Activity in prefrontal area 46 relates to selection rather than maintenance in memory. Neuroimage 2001, 14: 77–86.PubMedCrossRef
28.
Zurück zum Zitat Hsieh LT, Ekstrom AD, Ranganath C. Neural oscillations associated with item and temporal order maintenance in working memory. J Neurosci 2011, 31: 10803–10810.PubMedPubMedCentralCrossRef Hsieh LT, Ekstrom AD, Ranganath C. Neural oscillations associated with item and temporal order maintenance in working memory. J Neurosci 2011, 31: 10803–10810.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Roberts BM, Hsieh LT, Ranganath C. Oscillatory activity during maintenance of spatial and temporal information in working memory. Neuropsychologia 2013, 51: 349–357.PubMedCrossRef Roberts BM, Hsieh LT, Ranganath C. Oscillatory activity during maintenance of spatial and temporal information in working memory. Neuropsychologia 2013, 51: 349–357.PubMedCrossRef
30.
Zurück zum Zitat Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP. Parallel processing of serial movements in prefrontal cortex. Proc Natl Acad Sci U S A 2002, 99: 13172–13177.ADSPubMedPubMedCentralCrossRef Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP. Parallel processing of serial movements in prefrontal cortex. Proc Natl Acad Sci U S A 2002, 99: 13172–13177.ADSPubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Xie Y, Hu P, Li J, Chen J, Song W, Wang XJ, et al. Geometry of sequence working memory in macaque prefrontal cortex. Science 2022, 375: 632–639.ADSPubMedCrossRef Xie Y, Hu P, Li J, Chen J, Song W, Wang XJ, et al. Geometry of sequence working memory in macaque prefrontal cortex. Science 2022, 375: 632–639.ADSPubMedCrossRef
32.
Zurück zum Zitat Bays PM, Catalao RFG, Husain M. The precision of visual working memory is set by allocation of a shared resource. J Vis 2009, 9: 1–11.CrossRef Bays PM, Catalao RFG, Husain M. The precision of visual working memory is set by allocation of a shared resource. J Vis 2009, 9: 1–11.CrossRef
33.
Zurück zum Zitat Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011, 2011: 156869.PubMedCrossRef Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011, 2011: 156869.PubMedCrossRef
34.
Zurück zum Zitat Janca R, Jezdik P, Cmejla R, Tomasek M, Worrell GA, Stead M, et al. Detection of interictal epileptiform discharges using signal envelope distribution modelling: Application to epileptic and non-epileptic intracranial recordings. Brain Topogr 2015, 28: 172–183.PubMedCrossRef Janca R, Jezdik P, Cmejla R, Tomasek M, Worrell GA, Stead M, et al. Detection of interictal epileptiform discharges using signal envelope distribution modelling: Application to epileptic and non-epileptic intracranial recordings. Brain Topogr 2015, 28: 172–183.PubMedCrossRef
36.
Zurück zum Zitat Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 2007, 164: 177–190.PubMedCrossRef Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 2007, 164: 177–190.PubMedCrossRef
37.
38.
Zurück zum Zitat Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 2004, 115: 2292–2307.PubMedCrossRef Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 2004, 115: 2292–2307.PubMedCrossRef
39.
Zurück zum Zitat Cui J, Xu L, Bressler SL, Ding M, Liang H. BSMART: A Matlab/C toolbox for analysis of multichannel neural time series. Neural Netw 2008, 21: 1094–1104.PubMedPubMedCentralCrossRef Cui J, Xu L, Bressler SL, Ding M, Liang H. BSMART: A Matlab/C toolbox for analysis of multichannel neural time series. Neural Netw 2008, 21: 1094–1104.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Dhamala M, Rangarajan G, Ding M. Estimating Granger causality from Fourier and wavelet transforms of time series data. Phys Rev Lett 2008, 100: 018701.ADSPubMedCrossRef Dhamala M, Rangarajan G, Ding M. Estimating Granger causality from Fourier and wavelet transforms of time series data. Phys Rev Lett 2008, 100: 018701.ADSPubMedCrossRef
41.
Zurück zum Zitat Mao D. Neural correlates of spatial navigation in primate hippocampus. Neurosci Bull 2023, 39: 315–327.PubMedCrossRef Mao D. Neural correlates of spatial navigation in primate hippocampus. Neurosci Bull 2023, 39: 315–327.PubMedCrossRef
42.
Zurück zum Zitat Ito HT. Prefrontal-hippocampal interactions for spatial navigation. Neurosci Res 2018, 129: 2–7.PubMedCrossRef Ito HT. Prefrontal-hippocampal interactions for spatial navigation. Neurosci Res 2018, 129: 2–7.PubMedCrossRef
43.
Zurück zum Zitat Ekstrom AD, Watrous AJ. Multifaceted roles for low-frequency oscillations in bottom-up and top-down processing during navigation and memory. Neuroimage 2014, 85: 667–677.PubMedCrossRef Ekstrom AD, Watrous AJ. Multifaceted roles for low-frequency oscillations in bottom-up and top-down processing during navigation and memory. Neuroimage 2014, 85: 667–677.PubMedCrossRef
44.
Zurück zum Zitat Watrous AJ, Tandon N, Conner CR, Pieters T, Ekstrom AD. Frequency-specific network connectivity increases underlie accurate spatiotemporal memory retrieval. Nat Neurosci 2013, 16: 349–356.PubMedPubMedCentralCrossRef Watrous AJ, Tandon N, Conner CR, Pieters T, Ekstrom AD. Frequency-specific network connectivity increases underlie accurate spatiotemporal memory retrieval. Nat Neurosci 2013, 16: 349–356.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Romero K, Barense MD, Moscovitch M. Coherence and congruency mediate medial temporal and medial prefrontal activity during event construction. Neuroimage 2019, 188: 710–721.PubMedCrossRef Romero K, Barense MD, Moscovitch M. Coherence and congruency mediate medial temporal and medial prefrontal activity during event construction. Neuroimage 2019, 188: 710–721.PubMedCrossRef
46.
Zurück zum Zitat He B, Cao L, Xia X, Zhang B, Zhang D, You B, et al. Fine-grained topography and modularity of the macaque frontal pole cortex revealed by anatomical connectivity profiles. Neurosci Bull 2020, 36: 1454–1473.PubMedPubMedCentralCrossRef He B, Cao L, Xia X, Zhang B, Zhang D, You B, et al. Fine-grained topography and modularity of the macaque frontal pole cortex revealed by anatomical connectivity profiles. Neurosci Bull 2020, 36: 1454–1473.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Itthipuripat S, Wessel JR, Aron AR. Frontal theta is a signature of successful working memory manipulation. Exp Brain Res 2013, 224: 255–262.PubMedCrossRef Itthipuripat S, Wessel JR, Aron AR. Frontal theta is a signature of successful working memory manipulation. Exp Brain Res 2013, 224: 255–262.PubMedCrossRef
48.
Zurück zum Zitat Parto Dezfouli M, Davoudi S, Knight RT, Daliri MR, Johnson EL. Prefrontal lesions disrupt oscillatory signatures of spatiotemporal integration in working memory. Cortex 2021, 138: 113–126.PubMedCrossRef Parto Dezfouli M, Davoudi S, Knight RT, Daliri MR, Johnson EL. Prefrontal lesions disrupt oscillatory signatures of spatiotemporal integration in working memory. Cortex 2021, 138: 113–126.PubMedCrossRef
49.
Zurück zum Zitat Johnson EL, Dewar CD, Solbakk AK, Endestad T, Meling TR, Knight RT. Bidirectional frontoparietal oscillatory systems support working memory. Curr Biol 2017, 27: 1829-1835.e4.PubMedPubMedCentralCrossRef Johnson EL, Dewar CD, Solbakk AK, Endestad T, Meling TR, Knight RT. Bidirectional frontoparietal oscillatory systems support working memory. Curr Biol 2017, 27: 1829-1835.e4.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Lundqvist M, Herman P, Warden MR, Brincat SL, Miller EK. Gamma and beta bursts during working memory readout suggest roles in its volitional control. Nat Commun 2018, 9: 394.ADSPubMedPubMedCentralCrossRef Lundqvist M, Herman P, Warden MR, Brincat SL, Miller EK. Gamma and beta bursts during working memory readout suggest roles in its volitional control. Nat Commun 2018, 9: 394.ADSPubMedPubMedCentralCrossRef
51.
53.
Zurück zum Zitat Jensen O, Lisman JE. Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends Neurosci 2005, 28: 67–72.PubMedCrossRef Jensen O, Lisman JE. Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends Neurosci 2005, 28: 67–72.PubMedCrossRef
54.
Zurück zum Zitat Watrous AJ, Miller J, Qasim SE, Fried I, Jacobs J. Phase-tuned neuronal firing encodes human contextual representations for navigational goals. Elife 2018, 7: e32554.PubMedPubMedCentralCrossRef Watrous AJ, Miller J, Qasim SE, Fried I, Jacobs J. Phase-tuned neuronal firing encodes human contextual representations for navigational goals. Elife 2018, 7: e32554.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Reddy L, Self MW, Zoefel B, Poncet M, Possel JK, Peters JC, et al. Theta-phase dependent neuronal coding during sequence learning in human single neurons. Nat Commun 2021, 12: 4839.ADSPubMedPubMedCentralCrossRef Reddy L, Self MW, Zoefel B, Poncet M, Possel JK, Peters JC, et al. Theta-phase dependent neuronal coding during sequence learning in human single neurons. Nat Commun 2021, 12: 4839.ADSPubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Yang AI, Dikecligil GN, Jiang H, Das SR, Stein JM, Schuele SU, et al. The what and when of olfactory working memory in humans. Curr Biol 2021, 31: 4499-4511.e8.PubMedPubMedCentralCrossRef Yang AI, Dikecligil GN, Jiang H, Das SR, Stein JM, Schuele SU, et al. The what and when of olfactory working memory in humans. Curr Biol 2021, 31: 4499-4511.e8.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Hurlstone MJ, Hitch GJ, Baddeley AD. Memory for serial order across domains: An overview of the literature and directions for future research. Psychol Bull 2014, 140: 339–373.PubMedCrossRef Hurlstone MJ, Hitch GJ, Baddeley AD. Memory for serial order across domains: An overview of the literature and directions for future research. Psychol Bull 2014, 140: 339–373.PubMedCrossRef
58.
Zurück zum Zitat Liu W, Wang C, He T, Su M, Lu Y, Zhang G, et al. Substantia nigra integrity correlates with sequential working memory in Parkinson’s disease. J Neurosci 2021, 41: 6304–6313.PubMedPubMedCentralCrossRef Liu W, Wang C, He T, Su M, Lu Y, Zhang G, et al. Substantia nigra integrity correlates with sequential working memory in Parkinson’s disease. J Neurosci 2021, 41: 6304–6313.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Berdyyeva TK, Olson CR. Rank signals in four areas of macaque frontal cortex during selection of actions and objects in serial order. J Neurophysiol 2010, 104: 141–159.PubMedPubMedCentralCrossRef Berdyyeva TK, Olson CR. Rank signals in four areas of macaque frontal cortex during selection of actions and objects in serial order. J Neurophysiol 2010, 104: 141–159.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Berdyyeva TK, Olson CR. Relation of ordinal position signals to the expectation of reward and passage of time in four areas of the macaque frontal cortex. J Neurophysiol 2011, 105: 2547–2559.PubMedPubMedCentralCrossRef Berdyyeva TK, Olson CR. Relation of ordinal position signals to the expectation of reward and passage of time in four areas of the macaque frontal cortex. J Neurophysiol 2011, 105: 2547–2559.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Kornysheva K, Bush D, Meyer SS, Sadnicka A, Barnes G, Burgess N. Neural competitive queuing of ordinal structure underlies skilled sequential action. Neuron 2019, 101: 1166-1180.e3.PubMedPubMedCentralCrossRef Kornysheva K, Bush D, Meyer SS, Sadnicka A, Barnes G, Burgess N. Neural competitive queuing of ordinal structure underlies skilled sequential action. Neuron 2019, 101: 1166-1180.e3.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Hasz BM, Redish AD. Dorsomedial prefrontal cortex and hippocampus represent strategic context even while simultaneously changing representation throughout a task session. Neurobiol Learn Mem 2020, 171: 107215.PubMedPubMedCentralCrossRef Hasz BM, Redish AD. Dorsomedial prefrontal cortex and hippocampus represent strategic context even while simultaneously changing representation throughout a task session. Neurobiol Learn Mem 2020, 171: 107215.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Kaefer K, Nardin M, Blahna K, Csicsvari J. Replay of behavioral sequences in the medial prefrontal cortex during rule switching. Neuron 2020, 106: 154-165.e6.PubMedCrossRef Kaefer K, Nardin M, Blahna K, Csicsvari J. Replay of behavioral sequences in the medial prefrontal cortex during rule switching. Neuron 2020, 106: 154-165.e6.PubMedCrossRef
64.
Zurück zum Zitat Chao OY, de Souza Silva MA, Yang YM, Huston JP. The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev 2020, 113: 373–407.PubMedPubMedCentralCrossRef Chao OY, de Souza Silva MA, Yang YM, Huston JP. The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev 2020, 113: 373–407.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Rajasethupathy P, Sankaran S, Marshel JH, Kim CK, Ferenczi E, Lee SY, et al. Projections from neocortex mediate top-down control of memory retrieval. Nature 2015, 526: 653–659.ADSPubMedPubMedCentralCrossRef Rajasethupathy P, Sankaran S, Marshel JH, Kim CK, Ferenczi E, Lee SY, et al. Projections from neocortex mediate top-down control of memory retrieval. Nature 2015, 526: 653–659.ADSPubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Jayachandran M, Linley SB, Schlecht M, Mahler SV, Vertes RP, Allen TA. Prefrontal pathways provide top-down control of memory for sequences of events. Cell Rep 2019, 28: 640-654.e6.PubMedPubMedCentralCrossRef Jayachandran M, Linley SB, Schlecht M, Mahler SV, Vertes RP, Allen TA. Prefrontal pathways provide top-down control of memory for sequences of events. Cell Rep 2019, 28: 640-654.e6.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Li J, Cao D, Dimakopoulos V, Shi W, Yu S, Fan L, et al. Anterior-posterior hippocampal dynamics support working memory processing. J Neurosci 2022, 42: 443–453.PubMedCrossRef Li J, Cao D, Dimakopoulos V, Shi W, Yu S, Fan L, et al. Anterior-posterior hippocampal dynamics support working memory processing. J Neurosci 2022, 42: 443–453.PubMedCrossRef
68.
Zurück zum Zitat D’Argembeau A, Jeunehomme O, Majerus S, Bastin C, Salmon E. The neural basis of temporal order processing in past and future thought. J Cogn Neurosci 2015, 27: 185–197.PubMedCrossRef D’Argembeau A, Jeunehomme O, Majerus S, Bastin C, Salmon E. The neural basis of temporal order processing in past and future thought. J Cogn Neurosci 2015, 27: 185–197.PubMedCrossRef
Metadaten
Titel
Theta Oscillations Support Prefrontal-hippocampal Interactions in Sequential Working Memory
verfasst von
Minghong Su
Kejia Hu
Wei Liu
Yunhao Wu
Tao Wang
Chunyan Cao
Bomin Sun
Shikun Zhan
Zheng Ye
Publikationsdatum
17.10.2023
Verlag
Springer Nature Singapore
Erschienen in
Neuroscience Bulletin / Ausgabe 2/2024
Print ISSN: 1673-7067
Elektronische ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-023-01134-6

Weitere Artikel der Ausgabe 2/2024

Neuroscience Bulletin 2/2024 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Demenzkranke durch Antipsychotika vielfach gefährdet

Demenz Nachrichten

Der Einsatz von Antipsychotika gegen psychische und Verhaltenssymptome in Zusammenhang mit Demenzerkrankungen erfordert eine sorgfältige Nutzen-Risiken-Abwägung. Neuen Erkenntnissen zufolge sind auf der Risikoseite weitere schwerwiegende Ereignisse zu berücksichtigen.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.