Skip to main content
Erschienen in: Neuroscience Bulletin 2/2024

30.06.2023 | Review

Mitochondrial Regulation of Macrophages in Innate Immunity and Diverse Roles of Macrophages During Cochlear Inflammation

verfasst von: Yuan Zhang, Fanglei Ye, Xiaolong Fu, Shen Li, Le Wang, Yutian Chen, Hongmin Li, Shaojuan Hao, Kun Zhao, Qi Feng, Peipei Li

Erschienen in: Neuroscience Bulletin | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Abstract

Macrophages are essential components of the innate immune system and constitute a non-specific first line of host defense against pathogens and inflammation. Mitochondria regulate macrophage activation and innate immune responses in various inflammatory diseases, including cochlear inflammation. The distribution, number, and morphological characteristics of cochlear macrophages change significantly across different inner ear regions under various pathological conditions, including noise exposure, ototoxicity, and age-related degeneration. However, the exact mechanism underlying the role of mitochondria in macrophages in auditory function remains unclear. Here, we summarize the major factors and mitochondrial signaling pathways (e.g., metabolism, mitochondrial reactive oxygen species, mitochondrial DNA, and the inflammasome) that influence macrophage activation in the innate immune response. In particular, we focus on the properties of cochlear macrophages, activated signaling pathways, and the secretion of inflammatory cytokines after acoustic injury. We hope this review will provide new perspectives and a basis for future research on cochlear inflammation.
Literatur
1.
Zurück zum Zitat Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010, 140: 805–820.PubMedCrossRef Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010, 140: 805–820.PubMedCrossRef
3.
Zurück zum Zitat Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 2020, 20: 95–112.PubMedCrossRef Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 2020, 20: 95–112.PubMedCrossRef
4.
Zurück zum Zitat Rumpret M, von Richthofen HJ, Peperzak V, Meyaard L. Inhibitory pattern recognition receptors. J Exp Med 2022, 219: e20211463.PubMedCrossRef Rumpret M, von Richthofen HJ, Peperzak V, Meyaard L. Inhibitory pattern recognition receptors. J Exp Med 2022, 219: e20211463.PubMedCrossRef
5.
Zurück zum Zitat Hudson BI, Lippman ME. Targeting RAGE signaling in inflammatory disease. Annu Rev Med 2018, 69: 349–364.PubMedCrossRef Hudson BI, Lippman ME. Targeting RAGE signaling in inflammatory disease. Annu Rev Med 2018, 69: 349–364.PubMedCrossRef
6.
Zurück zum Zitat Heng BC, Aubel D, Fussenegger M. G protein-coupled receptors revisited: Therapeutic applications inspired by synthetic biology. Annu Rev Pharmacol Toxicol 2014, 54: 227–249.PubMedCrossRef Heng BC, Aubel D, Fussenegger M. G protein-coupled receptors revisited: Therapeutic applications inspired by synthetic biology. Annu Rev Pharmacol Toxicol 2014, 54: 227–249.PubMedCrossRef
7.
Zurück zum Zitat Eisenhut M, Wallace H. Ion channels in inflammation. Pflugers Arch Eur J Physiol 2011, 461: 401–421.CrossRef Eisenhut M, Wallace H. Ion channels in inflammation. Pflugers Arch Eur J Physiol 2011, 461: 401–421.CrossRef
9.
Zurück zum Zitat Angajala A, Lim S, Phillips JB, Kim JH, Yates C, You Z. Diverse roles of mitochondria in immune responses: Novel insights into immuno-metabolism. Front Immunol 2018, 9: 1605.PubMedPubMedCentralCrossRef Angajala A, Lim S, Phillips JB, Kim JH, Yates C, You Z. Diverse roles of mitochondria in immune responses: Novel insights into immuno-metabolism. Front Immunol 2018, 9: 1605.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Nakahira K, Haspel JA, Rathinam VAK, Lee SJ, Dolinay T, Lam HC, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 2011, 12: 222–230.PubMedCrossRef Nakahira K, Haspel JA, Rathinam VAK, Lee SJ, Dolinay T, Lam HC, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 2011, 12: 222–230.PubMedCrossRef
12.
Zurück zum Zitat Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012, 36: 401–414.PubMedPubMedCentralCrossRef Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012, 36: 401–414.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 2011, 472: 476–480.ADSPubMedPubMedCentralCrossRef West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 2011, 472: 476–480.ADSPubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008, 320: 674–677.ADSPubMedPubMedCentralCrossRef Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008, 320: 674–677.ADSPubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Park J, Choi H, Min JS, Park SJ, Kim JH, Park HJ, et al. Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem 2013, 127: 221–232.PubMedCrossRef Park J, Choi H, Min JS, Park SJ, Kim JH, Park HJ, et al. Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem 2013, 127: 221–232.PubMedCrossRef
16.
17.
Zurück zum Zitat Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018, 233: 6425–6440.PubMedCrossRef Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018, 233: 6425–6440.PubMedCrossRef
18.
Zurück zum Zitat Huang SCC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, et al. Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 2016, 45: 817–830.PubMedPubMedCentralCrossRef Huang SCC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, et al. Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 2016, 45: 817–830.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Newsholme P, Curi R, Gordon S, Newsholme EA. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J 1986, 239: 121–125.PubMedPubMedCentralCrossRef Newsholme P, Curi R, Gordon S, Newsholme EA. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J 1986, 239: 121–125.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Yu Q, Wang Y, Dong L, He Y, Liu R, Yang Q, et al. Regulations of glycolytic activities on macrophages functions in tumor and infectious inflammation. Front Cell Infect Microbiol 2020, 10: 287.PubMedPubMedCentralCrossRef Yu Q, Wang Y, Dong L, He Y, Liu R, Yang Q, et al. Regulations of glycolytic activities on macrophages functions in tumor and infectious inflammation. Front Cell Infect Microbiol 2020, 10: 287.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA, et al. Metabolic reprogramming of macrophages: Glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem 2014, 289: 7884–7896.PubMedPubMedCentralCrossRef Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA, et al. Metabolic reprogramming of macrophages: Glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem 2014, 289: 7884–7896.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 2003, 112: 645–657.PubMedPubMedCentralCrossRef Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 2003, 112: 645–657.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006, 3: 177–185.PubMedCrossRef Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006, 3: 177–185.PubMedCrossRef
25.
Zurück zum Zitat Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MAR, Sheedy FJ, Gleeson LE, et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab 2015, 21: 65–80.PubMedPubMedCentralCrossRef Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MAR, Sheedy FJ, Gleeson LE, et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab 2015, 21: 65–80.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Nagy C, Haschemi A. Time and demand are two critical dimensions of immunometabolism: The process of macrophage activation and the pentose phosphate pathway. Front Immunol 2015, 6: 164.PubMedPubMedCentralCrossRef Nagy C, Haschemi A. Time and demand are two critical dimensions of immunometabolism: The process of macrophage activation and the pentose phosphate pathway. Front Immunol 2015, 6: 164.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Baardman J, Verberk SGS, Prange KHM, van Weeghel M, van der Velden S, Ryan DG, et al. A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia. Cell Rep 2018, 25: 2044-2052.e5.PubMedCrossRef Baardman J, Verberk SGS, Prange KHM, van Weeghel M, van der Velden S, Ryan DG, et al. A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia. Cell Rep 2018, 25: 2044-2052.e5.PubMedCrossRef
28.
Zurück zum Zitat Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013, 496: 238–242.ADSPubMedPubMedCentralCrossRef Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013, 496: 238–242.ADSPubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Ma J, Wei K, Liu J, Tang K, Zhang H, Zhu L, et al. Glycogen metabolism regulates macrophage-mediated acute inflammatory responses. Nat Commun 2020, 11: 1769.ADSPubMedPubMedCentralCrossRef Ma J, Wei K, Liu J, Tang K, Zhang H, Zhu L, et al. Glycogen metabolism regulates macrophage-mediated acute inflammatory responses. Nat Commun 2020, 11: 1769.ADSPubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Haschemi A, Kosma P, Gille L, Evans CR, Burant CF, Starkl P, et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab 2012, 15: 813–826.PubMedPubMedCentralCrossRef Haschemi A, Kosma P, Gille L, Evans CR, Burant CF, Starkl P, et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab 2012, 15: 813–826.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab 2006, 4: 13–24.PubMedPubMedCentralCrossRef Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab 2006, 4: 13–24.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Huang SCC, Everts B, Ivanova Y, O’Sullivan D, Nascimento M, Smith AM, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 2014, 15: 846–855.PubMedPubMedCentralCrossRef Huang SCC, Everts B, Ivanova Y, O’Sullivan D, Nascimento M, Smith AM, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 2014, 15: 846–855.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Divakaruni AS, Hsieh WY, Minarrieta L, Duong TN, Kim KKO, DeSousa BR, et al. Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. Cell Metab 2018, 28: 490-503.e7.PubMedPubMedCentralCrossRef Divakaruni AS, Hsieh WY, Minarrieta L, Duong TN, Kim KKO, DeSousa BR, et al. Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. Cell Metab 2018, 28: 490-503.e7.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Nomura M, Liu J, Rovira II, Gonzalez-Hurtado E, Lee J, Wolfgang MJ, et al. Fatty acid oxidation in macrophage polarization. Nat Immunol 2016, 17: 216–217.PubMedPubMedCentralCrossRef Nomura M, Liu J, Rovira II, Gonzalez-Hurtado E, Lee J, Wolfgang MJ, et al. Fatty acid oxidation in macrophage polarization. Nat Immunol 2016, 17: 216–217.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Wang F, Zhang S, Vuckovic I, Jeon R, Lerman A, Folmes CD, et al. Glycolytic stimulation is not a requirement for M2 macrophage differentiation. Cell Metab 2018, 28: 463-475.e4.PubMedPubMedCentralCrossRef Wang F, Zhang S, Vuckovic I, Jeon R, Lerman A, Folmes CD, et al. Glycolytic stimulation is not a requirement for M2 macrophage differentiation. Cell Metab 2018, 28: 463-475.e4.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Liu PS, Wang H, Li X, Chao T, Teav T, Christen S, et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 2017, 18: 985–994.PubMedCrossRef Liu PS, Wang H, Li X, Chao T, Teav T, Christen S, et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 2017, 18: 985–994.PubMedCrossRef
39.
Zurück zum Zitat Jha AK, Huang SCC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 2015, 42: 419–430.PubMedCrossRef Jha AK, Huang SCC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 2015, 42: 419–430.PubMedCrossRef
40.
Zurück zum Zitat Covarrubias AJ, Aksoylar HI, Yu J, Snyder NW, Worth AJ, Iyer SS, et al. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. eLife 2016, 5: e11612. Covarrubias AJ, Aksoylar HI, Yu J, Snyder NW, Worth AJ, Iyer SS, et al. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. eLife 2016, 5: e11612.
41.
Zurück zum Zitat Infantino V, Iacobazzi V, Menga A, Avantaggiati ML, Palmieri F. A key role of the mitochondrial citrate carrier (SLC25A1) in TNFα- and IFNγ-triggered inflammation. Biochim Biophys Acta 2014, 1839: 1217–1225.PubMedPubMedCentralCrossRef Infantino V, Iacobazzi V, Menga A, Avantaggiati ML, Palmieri F. A key role of the mitochondrial citrate carrier (SLC25A1) in TNFα- and IFNγ-triggered inflammation. Biochim Biophys Acta 2014, 1839: 1217–1225.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat O’Neill LAJ. A critical role for citrate metabolism in LPS signalling. Biochem J 2011, 438: e5–e6.PubMedCrossRef O’Neill LAJ. A critical role for citrate metabolism in LPS signalling. Biochem J 2011, 438: e5–e6.PubMedCrossRef
44.
Zurück zum Zitat Infantino V, Convertini P, Cucci L, Panaro MA, Di Noia MA, Calvello R, et al. The mitochondrial citrate carrier: A new player in inflammation. Biochem J 2011, 438: 433–436.PubMedCrossRef Infantino V, Convertini P, Cucci L, Panaro MA, Di Noia MA, Calvello R, et al. The mitochondrial citrate carrier: A new player in inflammation. Biochem J 2011, 438: 433–436.PubMedCrossRef
45.
46.
Zurück zum Zitat Marrocco A, Ortiz LA. Role of metabolic reprogramming in pro-inflammatory cytokine secretion from LPS or silica-activated macrophages. Front Immunol 2022, 13: 936167.PubMedPubMedCentralCrossRef Marrocco A, Ortiz LA. Role of metabolic reprogramming in pro-inflammatory cytokine secretion from LPS or silica-activated macrophages. Front Immunol 2022, 13: 936167.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab 2016, 24: 158–166.PubMedPubMedCentralCrossRef Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab 2016, 24: 158–166.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Bambouskova M, Gorvel L, Lampropoulou V, Sergushichev A, Loginicheva E, Johnson K, et al. Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis. Nature 2018, 556: 501–504.ADSPubMedPubMedCentralCrossRef Bambouskova M, Gorvel L, Lampropoulou V, Sergushichev A, Loginicheva E, Johnson K, et al. Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis. Nature 2018, 556: 501–504.ADSPubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Mills EL, Ryan DG, Prag HA, Dikovskaya D, Menon D, Zaslona Z, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 2018, 556: 113–117.ADSPubMedPubMedCentralCrossRef Mills EL, Ryan DG, Prag HA, Dikovskaya D, Menon D, Zaslona Z, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 2018, 556: 113–117.ADSPubMedPubMedCentralCrossRef
50.
Zurück zum Zitat O’Neill LAJ, Artyomov MN. Itaconate: The poster child of metabolic reprogramming in macrophage function. Nat Rev Immunol 2019, 19: 273–281.PubMedCrossRef O’Neill LAJ, Artyomov MN. Itaconate: The poster child of metabolic reprogramming in macrophage function. Nat Rev Immunol 2019, 19: 273–281.PubMedCrossRef
51.
Zurück zum Zitat Runtsch MC, Angiari S, Hooftman A, Wadhwa R, Zhang Y, Zheng Y, et al. Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages. Cell Metab 2022, 34: 487-501.e8.PubMedCrossRef Runtsch MC, Angiari S, Hooftman A, Wadhwa R, Zhang Y, Zheng Y, et al. Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages. Cell Metab 2022, 34: 487-501.e8.PubMedCrossRef
52.
Zurück zum Zitat Mills E, O’Neill LAJ. Succinate: A metabolic signal in inflammation. Trends Cell Biol 2014, 24: 313–320.PubMedCrossRef Mills E, O’Neill LAJ. Succinate: A metabolic signal in inflammation. Trends Cell Biol 2014, 24: 313–320.PubMedCrossRef
53.
Zurück zum Zitat Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 2016, 167: 457-470.e13.PubMedPubMedCentralCrossRef Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 2016, 167: 457-470.e13.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Littlewood-Evans A, Sarret S, Apfel V, Loesle P, Dawson J, Zhang J, et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J Exp Med 2016, 213: 1655–1662.PubMedPubMedCentralCrossRef Littlewood-Evans A, Sarret S, Apfel V, Loesle P, Dawson J, Zhang J, et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J Exp Med 2016, 213: 1655–1662.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Keiran N, Ceperuelo-Mallafré V, Calvo E, Hernández-Alvarez MI, Ejarque M, Núñez-Roa C, et al. SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nat Immunol 2019, 20: 581–592.PubMedCrossRef Keiran N, Ceperuelo-Mallafré V, Calvo E, Hernández-Alvarez MI, Ejarque M, Núñez-Roa C, et al. SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nat Immunol 2019, 20: 581–592.PubMedCrossRef
56.
Zurück zum Zitat Peruzzotti-Jametti L, Bernstock JD, Vicario N, Costa ASH, Kwok CK, Leonardi T, et al. Macrophage-derived extracellular succinate licenses neural stem cells to suppress chronic neuroinflammation. Cell Stem Cell 2018, 22: 355-368.e13.PubMedPubMedCentralCrossRef Peruzzotti-Jametti L, Bernstock JD, Vicario N, Costa ASH, Kwok CK, Leonardi T, et al. Macrophage-derived extracellular succinate licenses neural stem cells to suppress chronic neuroinflammation. Cell Stem Cell 2018, 22: 355-368.e13.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Canton M, Sánchez-Rodríguez R, Spera I, Venegas FC, Favia M, Viola A, et al. Reactive oxygen species in macrophages: Sources and targets. Front Immunol 2021, 12: 734229.PubMedPubMedCentralCrossRef Canton M, Sánchez-Rodríguez R, Spera I, Venegas FC, Favia M, Viola A, et al. Reactive oxygen species in macrophages: Sources and targets. Front Immunol 2021, 12: 734229.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 2015, 12: 5–23.PubMedCrossRef Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 2015, 12: 5–23.PubMedCrossRef
59.
Zurück zum Zitat Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 2013, 6: 19.PubMedPubMedCentralCrossRef Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 2013, 6: 19.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Wang D, Malo D, Hekimi S. Elevated mitochondrial reactive oxygen species generation affects the immune response via hypoxia-inducible factor-1alpha in long-lived Mclk1+/- mouse mutants. J Immunol 2010, 184: 582–590.PubMedCrossRef Wang D, Malo D, Hekimi S. Elevated mitochondrial reactive oxygen species generation affects the immune response via hypoxia-inducible factor-1alpha in long-lived Mclk1+/- mouse mutants. J Immunol 2010, 184: 582–590.PubMedCrossRef
61.
Zurück zum Zitat Chandel NS, Trzyna WC, McClintock DS, Schumacker PT. Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J Immunol 2000, 165: 1013–1021.PubMedCrossRef Chandel NS, Trzyna WC, McClintock DS, Schumacker PT. Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J Immunol 2000, 165: 1013–1021.PubMedCrossRef
63.
Zurück zum Zitat Chandel NS, Schumacker PT, Arch RH. Reactive oxygen species are downstream products of TRAF-mediated signal transduction. J Biol Chem 2001, 276: 42728–42736.PubMedCrossRef Chandel NS, Schumacker PT, Arch RH. Reactive oxygen species are downstream products of TRAF-mediated signal transduction. J Biol Chem 2001, 276: 42728–42736.PubMedCrossRef
64.
Zurück zum Zitat Herb M, Gluschko A, Wiegmann K, Farid A, Wolf A, Utermöhlen O, et al. Mitochondrial reactive oxygen species enable proinflammatory signaling through disulfide linkage of NEMO. Sci Signal 2019, 12: eaar5926. Herb M, Gluschko A, Wiegmann K, Farid A, Wolf A, Utermöhlen O, et al. Mitochondrial reactive oxygen species enable proinflammatory signaling through disulfide linkage of NEMO. Sci Signal 2019, 12: eaar5926.
65.
Zurück zum Zitat Roca FJ, Whitworth LJ, Prag HA, Murphy MP, Ramakrishnan L. Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport. Science 2022, 376: eabh2841. Roca FJ, Whitworth LJ, Prag HA, Murphy MP, Ramakrishnan L. Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport. Science 2022, 376: eabh2841.
67.
Zurück zum Zitat Xiao F, Wang C, Yin H, Yu J, Chen S, Fang J, et al. Leucine deprivation inhibits proliferation and induces apoptosis of human breast cancer cells via fatty acid synthase. Oncotarget 2016, 7: 63679–63689.PubMedPubMedCentralCrossRef Xiao F, Wang C, Yin H, Yu J, Chen S, Fang J, et al. Leucine deprivation inhibits proliferation and induces apoptosis of human breast cancer cells via fatty acid synthase. Oncotarget 2016, 7: 63679–63689.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Kausar S, Yang L, Abbas MN, Hu X, Zhao Y, Zhu Y, et al. Mitochondrial DNA: A key regulator of anti-microbial innate immunity. Genes 2020, 11: 86.PubMedPubMedCentralCrossRef Kausar S, Yang L, Abbas MN, Hu X, Zhao Y, Zhu Y, et al. Mitochondrial DNA: A key regulator of anti-microbial innate immunity. Genes 2020, 11: 86.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Zhang W, Li G, Luo R, Lei J, Song Y, Wang B, et al. Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis. Exp Mol Med 2022, 54: 129–142.PubMedPubMedCentralCrossRef Zhang W, Li G, Luo R, Lei J, Song Y, Wang B, et al. Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis. Exp Mol Med 2022, 54: 129–142.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Huang LS, Hong Z, Wu W, Xiong S, Zhong M, Gao X, et al. mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury. Immunity 2020, 52: 475-486.e5.PubMedPubMedCentralCrossRef Huang LS, Hong Z, Wu W, Xiong S, Zhong M, Gao X, et al. mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury. Immunity 2020, 52: 475-486.e5.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Lin HB, Wei GS, Li FX, Guo WJ, Hong P, Weng YQ, et al. Macrophage-NLRP3 inflammasome activation exacerbates cardiac dysfunction after ischemic stroke in a mouse model of diabetes. Neurosci Bull 2020, 36: 1035–1045.PubMedPubMedCentralCrossRef Lin HB, Wei GS, Li FX, Guo WJ, Hong P, Weng YQ, et al. Macrophage-NLRP3 inflammasome activation exacerbates cardiac dysfunction after ischemic stroke in a mouse model of diabetes. Neurosci Bull 2020, 36: 1035–1045.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011, 469: 221–225.ADSPubMedCrossRef Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011, 469: 221–225.ADSPubMedCrossRef
74.
75.
Zurück zum Zitat Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015, 526: 660–665.ADSPubMedCrossRef Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015, 526: 660–665.ADSPubMedCrossRef
77.
Zurück zum Zitat Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 2005, 122: 669–682.PubMedCrossRef Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 2005, 122: 669–682.PubMedCrossRef
78.
Zurück zum Zitat Belgnaoui SM, Paz S, Hiscott J. Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr Opin Immunol 2011, 23: 564–572.PubMedCrossRef Belgnaoui SM, Paz S, Hiscott J. Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr Opin Immunol 2011, 23: 564–572.PubMedCrossRef
79.
Zurück zum Zitat Dixit E, Boulant S, Zhang Y, Lee ASY, Odendall C, Shum B, et al. Peroxisomes are signaling platforms for antiviral innate immunity. Cell 2010, 141: 668–681.PubMedPubMedCentralCrossRef Dixit E, Boulant S, Zhang Y, Lee ASY, Odendall C, Shum B, et al. Peroxisomes are signaling platforms for antiviral innate immunity. Cell 2010, 141: 668–681.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, Durbin AF, et al. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol 2014, 15: 717–726.PubMedPubMedCentralCrossRef Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, Durbin AF, et al. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol 2014, 15: 717–726.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Camões F, Bonekamp NA, Delille HK, Schrader M. Organelle dynamics and dysfunction: A closer link between peroxisomes and mitochondria. J Inher Metab Disea 2009, 32: 163–180.CrossRef Camões F, Bonekamp NA, Delille HK, Schrader M. Organelle dynamics and dysfunction: A closer link between peroxisomes and mitochondria. J Inher Metab Disea 2009, 32: 163–180.CrossRef
83.
Zurück zum Zitat Koshiba T. Mitochondrial-mediated antiviral immunity. Biochim Biophys Acta 2013, 1833: 225–232. Koshiba T. Mitochondrial-mediated antiviral immunity. Biochim Biophys Acta 2013, 1833: 225–232.
84.
Zurück zum Zitat Tur J, Vico T, Lloberas J, Zorzano A, Celada A. Macrophages and mitochondria: A critical interplay between metabolism, signaling, and the functional activity. Adv Immunol 2017, 133: 1–36.PubMedCrossRef Tur J, Vico T, Lloberas J, Zorzano A, Celada A. Macrophages and mitochondria: A critical interplay between metabolism, signaling, and the functional activity. Adv Immunol 2017, 133: 1–36.PubMedCrossRef
85.
Zurück zum Zitat Zhang Y, Li Y, Fu X, Wang P, Wang Q, Meng W, et al. The detrimental and beneficial functions of macrophages after cochlear injury. Front Cell Dev Biol 2021, 9: 631904.PubMedPubMedCentralCrossRef Zhang Y, Li Y, Fu X, Wang P, Wang Q, Meng W, et al. The detrimental and beneficial functions of macrophages after cochlear injury. Front Cell Dev Biol 2021, 9: 631904.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Zhang Y, Fu X, Li Y, Li W, Hong G, Guo S, et al. Macrophage-mediated immune response aggravates hearing disfunction caused by the disorder of mitochondrial dynamics in cochlear hair cells. Hum Mol Genet 2023, 32: 1137–1151.PubMedCrossRef Zhang Y, Fu X, Li Y, Li W, Hong G, Guo S, et al. Macrophage-mediated immune response aggravates hearing disfunction caused by the disorder of mitochondrial dynamics in cochlear hair cells. Hum Mol Genet 2023, 32: 1137–1151.PubMedCrossRef
87.
Zurück zum Zitat Liu W, Molnar M, Garnham C, Benav H, Rask-Andersen H. Macrophages in the human cochlea: Saviors or predators-a study using super-resolution immunohistochemistry. Front Immunol 2018, 9: 223.PubMedPubMedCentralCrossRef Liu W, Molnar M, Garnham C, Benav H, Rask-Andersen H. Macrophages in the human cochlea: Saviors or predators-a study using super-resolution immunohistochemistry. Front Immunol 2018, 9: 223.PubMedPubMedCentralCrossRef
88.
89.
Zurück zum Zitat Yang W, Vethanayagam RR, Dong Y, Cai Q, Hu BH. Activation of the antigen presentation function of mononuclear phagocyte populations associated with the basilar membrane of the cochlea after acoustic overstimulation. Neuroscience 2015, 303: 1–15.PubMedCrossRef Yang W, Vethanayagam RR, Dong Y, Cai Q, Hu BH. Activation of the antigen presentation function of mononuclear phagocyte populations associated with the basilar membrane of the cochlea after acoustic overstimulation. Neuroscience 2015, 303: 1–15.PubMedCrossRef
90.
Zurück zum Zitat Kaur T, Zamani D, Tong L, Rubel EW, Ohlemiller KK, Hirose K, et al. Fractalkine signaling regulates macrophage recruitment into the cochlea and promotes the survival of spiral ganglion neurons after selective hair cell lesion. J Neurosci 2015, 35: 15050–15061.PubMedPubMedCentralCrossRef Kaur T, Zamani D, Tong L, Rubel EW, Ohlemiller KK, Hirose K, et al. Fractalkine signaling regulates macrophage recruitment into the cochlea and promotes the survival of spiral ganglion neurons after selective hair cell lesion. J Neurosci 2015, 35: 15050–15061.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Kaur T, Ohlemiller KK, Warchol ME. Genetic disruption of fractalkine signaling leads to enhanced loss of cochlear afferents following ototoxic or acoustic injury. J Comp Neurol 2018, 526: 824–835.PubMedCrossRef Kaur T, Ohlemiller KK, Warchol ME. Genetic disruption of fractalkine signaling leads to enhanced loss of cochlear afferents following ototoxic or acoustic injury. J Comp Neurol 2018, 526: 824–835.PubMedCrossRef
92.
Zurück zum Zitat Hirose K, Rutherford MA, Warchol ME. Two cell populations participate in clearance of damaged hair cells from the sensory epithelia of the inner ear. Hear Res 2017, 352: 70–81.PubMedPubMedCentralCrossRef Hirose K, Rutherford MA, Warchol ME. Two cell populations participate in clearance of damaged hair cells from the sensory epithelia of the inner ear. Hear Res 2017, 352: 70–81.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Fredelius L, Rask-Andersen H. The role of macrophages in the disposal of degeneration products within the organ of corti after acoustic overstimulation. Acta Otolaryngol 1990, 109: 76–82.PubMedCrossRef Fredelius L, Rask-Andersen H. The role of macrophages in the disposal of degeneration products within the organ of corti after acoustic overstimulation. Acta Otolaryngol 1990, 109: 76–82.PubMedCrossRef
94.
Zurück zum Zitat Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal 2009, 2: re3. Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal 2009, 2: re3.
95.
Zurück zum Zitat Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H. Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res 2006, 83: 575–583.PubMedCrossRef Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H. Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res 2006, 83: 575–583.PubMedCrossRef
96.
Zurück zum Zitat Cai Q, Cai Q, Yang S, Bard J, Jamison J, Cartwright D, et al. Molecular profile of cochlear immunity in the resident cells of the organ of Corti. J Neuroinflammation 2014, 11: 173.PubMedPubMedCentralCrossRef Cai Q, Cai Q, Yang S, Bard J, Jamison J, Cartwright D, et al. Molecular profile of cochlear immunity in the resident cells of the organ of Corti. J Neuroinflammation 2014, 11: 173.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Hashimoto S, Billings P, Harris JP, Firestein GS, Keithley EM. Innate immunity contributes to cochlear adaptive immune responses. Audiol Neurootol 2005, 10: 35–43.PubMedCrossRef Hashimoto S, Billings P, Harris JP, Firestein GS, Keithley EM. Innate immunity contributes to cochlear adaptive immune responses. Audiol Neurootol 2005, 10: 35–43.PubMedCrossRef
98.
99.
Zurück zum Zitat Hu BH, Zhang C, Frye MD. Immune cells and non-immune cells with immune function in mammalian cochleae. Hear Res 2018, 362: 14–24.PubMedCrossRef Hu BH, Zhang C, Frye MD. Immune cells and non-immune cells with immune function in mammalian cochleae. Hear Res 2018, 362: 14–24.PubMedCrossRef
100.
Zurück zum Zitat Rai V, Wood MB, Feng H, Schabla NM, Tu S, Zuo J. The immune response after noise damage in the cochlea is characterized by a heterogeneous mix of adaptive and innate immune cells. Sci Rep 2020, 10: 15167.PubMedPubMedCentralCrossRef Rai V, Wood MB, Feng H, Schabla NM, Tu S, Zuo J. The immune response after noise damage in the cochlea is characterized by a heterogeneous mix of adaptive and innate immune cells. Sci Rep 2020, 10: 15167.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Zhou H, Qian X, Xu N, Zhang S, Zhu G, Zhang Y, et al. Disruption of Atg7-dependent autophagy causes electromotility disturbances, outer hair cell loss, and deafness in mice. Cell Death Dis 2020, 11: 913.PubMedPubMedCentralCrossRef Zhou H, Qian X, Xu N, Zhang S, Zhu G, Zhang Y, et al. Disruption of Atg7-dependent autophagy causes electromotility disturbances, outer hair cell loss, and deafness in mice. Cell Death Dis 2020, 11: 913.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat He ZH, Zou SY, Li M, Liao FL, Wu X, Sun HY, et al. The nuclear transcription factor FoxG1 affects the sensitivity of mimetic aging hair cells to inflammation by regulating autophagy pathways. Redox Biol 2020, 28: 101364.PubMedCrossRef He ZH, Zou SY, Li M, Liao FL, Wu X, Sun HY, et al. The nuclear transcription factor FoxG1 affects the sensitivity of mimetic aging hair cells to inflammation by regulating autophagy pathways. Redox Biol 2020, 28: 101364.PubMedCrossRef
103.
Zurück zum Zitat Wang J, Ye C, Chen C, Xiong H, Xie B, Zhou J, et al. Glucose transporter GLUT1 expression and clinical outcome in solid tumors: A systematic review and meta-analysis. Oncotarget 2017, 8: 16875–16886.PubMedPubMedCentralCrossRef Wang J, Ye C, Chen C, Xiong H, Xie B, Zhou J, et al. Glucose transporter GLUT1 expression and clinical outcome in solid tumors: A systematic review and meta-analysis. Oncotarget 2017, 8: 16875–16886.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat He ZH, Li M, Fang QJ, Liao FL, Zou SY, Wu X, et al. FOXG1 promotes aging inner ear hair cell survival through activation of the autophagy pathway. Autophagy 2021, 17: 4341–4362.PubMedPubMedCentralCrossRef He ZH, Li M, Fang QJ, Liao FL, Zou SY, Wu X, et al. FOXG1 promotes aging inner ear hair cell survival through activation of the autophagy pathway. Autophagy 2021, 17: 4341–4362.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Liu W, Danckwardt-Lillieström N, Schrott-Fischer A, Glueckert R, Rask-Andersen H. Distribution of immune cells including macrophages in the human cochlea. Front Neurol 2021, 12: 781702.PubMedPubMedCentralCrossRef Liu W, Danckwardt-Lillieström N, Schrott-Fischer A, Glueckert R, Rask-Andersen H. Distribution of immune cells including macrophages in the human cochlea. Front Neurol 2021, 12: 781702.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Frye MD, Yang W, Zhang C, Xiong B, Hu BH. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae. Hear Res 2017, 344: 125–134.PubMedCrossRef Frye MD, Yang W, Zhang C, Xiong B, Hu BH. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae. Hear Res 2017, 344: 125–134.PubMedCrossRef
108.
109.
Zurück zum Zitat Shi X. Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells. Cell Tissue Res 2010, 342: 21–30.PubMedCrossRef Shi X. Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells. Cell Tissue Res 2010, 342: 21–30.PubMedCrossRef
110.
Zurück zum Zitat Zhang W, Dai M, Fridberger A, Hassan A, Degagne J, Neng L, et al. Perivascular-resident macrophage-like melanocytes in the inner ear are essential for the integrity of the intrastrial fluid-blood barrier. Proc Natl Acad Sci U S A 2012, 109: 10388–10393.ADSPubMedPubMedCentralCrossRef Zhang W, Dai M, Fridberger A, Hassan A, Degagne J, Neng L, et al. Perivascular-resident macrophage-like melanocytes in the inner ear are essential for the integrity of the intrastrial fluid-blood barrier. Proc Natl Acad Sci U S A 2012, 109: 10388–10393.ADSPubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Neng L, Zhang J, Yang J, Zhang F, Lopez IA, Dong M, et al. Structural changes in thestrial blood-labyrinth barrier of aged C57BL/6 mice. Cell Tissue Res 2015, 361: 685–696.PubMedPubMedCentralCrossRef Neng L, Zhang J, Yang J, Zhang F, Lopez IA, Dong M, et al. Structural changes in thestrial blood-labyrinth barrier of aged C57BL/6 mice. Cell Tissue Res 2015, 361: 685–696.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Hirose K, Discolo CM, Keasler JR, Ransohoff R. Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol 2005, 489: 180–194.PubMedCrossRef Hirose K, Discolo CM, Keasler JR, Ransohoff R. Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol 2005, 489: 180–194.PubMedCrossRef
113.
Zurück zum Zitat Dong Y, Zhang C, Frye M, Yang W, Ding D, Sharma A, et al. Differential fates of tissue macrophages in the cochlea during postnatal development. Hear Res 2018, 365: 110–126.PubMedPubMedCentralCrossRef Dong Y, Zhang C, Frye M, Yang W, Ding D, Sharma A, et al. Differential fates of tissue macrophages in the cochlea during postnatal development. Hear Res 2018, 365: 110–126.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Fu X, Wan P, Li P, Wang J, Guo S, Zhang Y, et al. Mechanism and prevention of ototoxicity induced by aminoglycosides. Front Cell Neurosci 2021, 15: 692762.PubMedPubMedCentralCrossRef Fu X, Wan P, Li P, Wang J, Guo S, Zhang Y, et al. Mechanism and prevention of ototoxicity induced by aminoglycosides. Front Cell Neurosci 2021, 15: 692762.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Li P, Liu Z, Wang J, Bi X, Xiao Y, Qiao R, et al. Gstm1/Gstt1 is essential for reducing cisplatin ototoxicity in CBA/CaJ mice. FASEB J 2022, 36: e22373.PubMedCrossRef Li P, Liu Z, Wang J, Bi X, Xiao Y, Qiao R, et al. Gstm1/Gstt1 is essential for reducing cisplatin ototoxicity in CBA/CaJ mice. FASEB J 2022, 36: e22373.PubMedCrossRef
116.
Zurück zum Zitat Beutler BA. The role of tumor necrosis factor in health and disease. J Rheumatol Suppl 1999, 57: 16–21.PubMed Beutler BA. The role of tumor necrosis factor in health and disease. J Rheumatol Suppl 1999, 57: 16–21.PubMed
117.
Zurück zum Zitat Nishimoto N, Kishimoto T. Inhibition of IL-6 for the treatment of inflammatory diseases. Curr Opin Pharmacol 2004, 4: 386–391.PubMedCrossRef Nishimoto N, Kishimoto T. Inhibition of IL-6 for the treatment of inflammatory diseases. Curr Opin Pharmacol 2004, 4: 386–391.PubMedCrossRef
118.
Zurück zum Zitat Duque GA, Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front Immunol 2014, 5: 491. Duque GA, Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front Immunol 2014, 5: 491.
119.
Zurück zum Zitat Shin SA, Lyu AR, Jeong SH, Kim TH, Park MJ, Park YH. Acoustic trauma modulates cochlear blood flow and vasoactive factors in a rodent model of noise-induced hearing loss. Int J Mol Sci 2019, 20: 5316.PubMedPubMedCentralCrossRef Shin SA, Lyu AR, Jeong SH, Kim TH, Park MJ, Park YH. Acoustic trauma modulates cochlear blood flow and vasoactive factors in a rodent model of noise-induced hearing loss. Int J Mol Sci 2019, 20: 5316.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat So H, Kim H, Lee JH, Park C, Kim Y, Kim E, et al. Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB. J Assoc Res Otolaryngol 2007, 8: 338–355.PubMedPubMedCentralCrossRef So H, Kim H, Lee JH, Park C, Kim Y, Kim E, et al. Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB. J Assoc Res Otolaryngol 2007, 8: 338–355.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Kim HJ, Oh GS, Lee JH, Lyu AR, Ji HM, Lee SH, et al. Cisplatin ototoxicity involves cytokines and STAT6 signaling network. Cell Res 2011, 21: 944–956.PubMedPubMedCentralCrossRef Kim HJ, Oh GS, Lee JH, Lyu AR, Ji HM, Lee SH, et al. Cisplatin ototoxicity involves cytokines and STAT6 signaling network. Cell Res 2011, 21: 944–956.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Tornabene SV, Sato K, Pham L, Billings P, Keithley EM. Immune cell recruitment following acoustic trauma. Hear Res 2006, 222: 115–124.PubMedCrossRef Tornabene SV, Sato K, Pham L, Billings P, Keithley EM. Immune cell recruitment following acoustic trauma. Hear Res 2006, 222: 115–124.PubMedCrossRef
123.
Zurück zum Zitat Seidman MD, Tang W, Shirwany N, Bai U, Rubin CJ, Henig JP, et al. Anti-intercellular adhesion molecule-1 antibody’s effect on noise damage. Laryngoscope 2009, 119: 707–712.PubMedCrossRef Seidman MD, Tang W, Shirwany N, Bai U, Rubin CJ, Henig JP, et al. Anti-intercellular adhesion molecule-1 antibody’s effect on noise damage. Laryngoscope 2009, 119: 707–712.PubMedCrossRef
124.
Zurück zum Zitat Hermand P, Pincet F, Carvalho S, Ansanay H, Trinquet E, Daoudi M, et al. Functional adhesiveness of the CX3CL1 chemokine requires its aggregation. Role of the transmembrane domain. J Biol Chem 2008, 283: 30225–30234. Hermand P, Pincet F, Carvalho S, Ansanay H, Trinquet E, Daoudi M, et al. Functional adhesiveness of the CX3CL1 chemokine requires its aggregation. Role of the transmembrane domain. J Biol Chem 2008, 283: 30225–30234.
125.
Zurück zum Zitat Sato E, Ransohoff RM, Hirose K. Expression of fractalkine receptor CX3CR1 on cochlear macrophages influences survival of hair cells following ototoxic injury. JARO 2010, 11: 223–234.PubMedCrossRef Sato E, Ransohoff RM, Hirose K. Expression of fractalkine receptor CX3CR1 on cochlear macrophages influences survival of hair cells following ototoxic injury. JARO 2010, 11: 223–234.PubMedCrossRef
126.
Zurück zum Zitat Kaur T, Clayman AC, Nash AJ, Schrader AD, Warchol ME, Ohlemiller KK. Lack of fractalkine receptor on macrophages impairs spontaneous recovery of ribbon synapses after moderate noise trauma in C57BL/6 mice. Front Neurosci 2019, 13: 620.PubMedPubMedCentralCrossRef Kaur T, Clayman AC, Nash AJ, Schrader AD, Warchol ME, Ohlemiller KK. Lack of fractalkine receptor on macrophages impairs spontaneous recovery of ribbon synapses after moderate noise trauma in C57BL/6 mice. Front Neurosci 2019, 13: 620.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Wang SK, Xue Y, Rana P, Hong CM, Cepko CL. Soluble CX3CL1 gene therapy improves cone survival and function in mouse models of retinitis pigmentosa. Proc Natl Acad Sci U S A 2019, 116: 10140–10149.ADSPubMedPubMedCentralCrossRef Wang SK, Xue Y, Rana P, Hong CM, Cepko CL. Soluble CX3CL1 gene therapy improves cone survival and function in mouse models of retinitis pigmentosa. Proc Natl Acad Sci U S A 2019, 116: 10140–10149.ADSPubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Stothert AR, Kaur T. Innate immunity to spiral ganglion neuron loss: A neuroprotective role of fractalkine signaling in injured cochlea. Front Cell Neurosci 2021, 15: 694292.PubMedPubMedCentralCrossRef Stothert AR, Kaur T. Innate immunity to spiral ganglion neuron loss: A neuroprotective role of fractalkine signaling in injured cochlea. Front Cell Neurosci 2021, 15: 694292.PubMedPubMedCentralCrossRef
129.
130.
Zurück zum Zitat Seicol BJ, Lin S, Xie R. Age-related hearing loss is accompanied by chronic inflammation in the cochlea and the cochlear nucleus. Front Aging Neurosci 2022, 14: 846804.PubMedPubMedCentralCrossRef Seicol BJ, Lin S, Xie R. Age-related hearing loss is accompanied by chronic inflammation in the cochlea and the cochlear nucleus. Front Aging Neurosci 2022, 14: 846804.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Noble K, Brown L, Elvis P, Lang H. Cochlear immune response in presbyacusis: A focus on dysregulation of macrophage activity. J Assoc Res Otolaryngol 2022, 23: 1–16.PubMedCrossRef Noble K, Brown L, Elvis P, Lang H. Cochlear immune response in presbyacusis: A focus on dysregulation of macrophage activity. J Assoc Res Otolaryngol 2022, 23: 1–16.PubMedCrossRef
132.
Zurück zum Zitat Shigemoto-Mogami Y, Hoshikawa K, Sato K. Activated microglia disrupt the blood-brain barrier and induce chemokines and cytokines in a rat in vitro model. Front Cell Neurosci 2018, 12: 494.PubMedPubMedCentralCrossRef Shigemoto-Mogami Y, Hoshikawa K, Sato K. Activated microglia disrupt the blood-brain barrier and induce chemokines and cytokines in a rat in vitro model. Front Cell Neurosci 2018, 12: 494.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012, 74: 691–705.PubMedPubMedCentralCrossRef Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012, 74: 691–705.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018, 17: 865–886.PubMedCrossRef Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018, 17: 865–886.PubMedCrossRef
135.
136.
Zurück zum Zitat Li Y, Li YC, Liu XT, Zhang L, Chen YH, Zhao Q, et al. Blockage of citrate export prevents TCA cycle fragmentation via Irg1 inactivation. Cell Rep 2022, 38: 110391.PubMedCrossRef Li Y, Li YC, Liu XT, Zhang L, Chen YH, Zhao Q, et al. Blockage of citrate export prevents TCA cycle fragmentation via Irg1 inactivation. Cell Rep 2022, 38: 110391.PubMedCrossRef
137.
Zurück zum Zitat Fu X, Li P, Zhang L, Song Y, An Y, Zhang A, et al. Activation of Rictor/mTORC2 signaling acts as a pivotal strategy to protect against sensorineural hearing loss. Proc Natl Acad Sci U S A 2022, 119: e2107357119.PubMedPubMedCentralCrossRef Fu X, Li P, Zhang L, Song Y, An Y, Zhang A, et al. Activation of Rictor/mTORC2 signaling acts as a pivotal strategy to protect against sensorineural hearing loss. Proc Natl Acad Sci U S A 2022, 119: e2107357119.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Martina JA, Puertollano R. The IRG1/itaconate/TFEB axis: A new weapon in macrophage antibacterial defense. Mol Cell 2022, 82: 2732–2734.PubMedCrossRef Martina JA, Puertollano R. The IRG1/itaconate/TFEB axis: A new weapon in macrophage antibacterial defense. Mol Cell 2022, 82: 2732–2734.PubMedCrossRef
139.
Zurück zum Zitat Zhang L, Tian L, Dai X, Yu H, Wang J, Lei A, et al. Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. J Hematol Oncol 2020, 13: 153.PubMedPubMedCentralCrossRef Zhang L, Tian L, Dai X, Yu H, Wang J, Lei A, et al. Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. J Hematol Oncol 2020, 13: 153.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Takata K, Kozaki T, Lee CZW, Thion MS, Otsuka M, Lim S, et al. Induced-pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident macrophage differentiation and function. Immunity 2020, 52: 417–418.PubMedCrossRef Takata K, Kozaki T, Lee CZW, Thion MS, Otsuka M, Lim S, et al. Induced-pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident macrophage differentiation and function. Immunity 2020, 52: 417–418.PubMedCrossRef
Metadaten
Titel
Mitochondrial Regulation of Macrophages in Innate Immunity and Diverse Roles of Macrophages During Cochlear Inflammation
verfasst von
Yuan Zhang
Fanglei Ye
Xiaolong Fu
Shen Li
Le Wang
Yutian Chen
Hongmin Li
Shaojuan Hao
Kun Zhao
Qi Feng
Peipei Li
Publikationsdatum
30.06.2023
Verlag
Springer Nature Singapore
Erschienen in
Neuroscience Bulletin / Ausgabe 2/2024
Print ISSN: 1673-7067
Elektronische ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-023-01085-y

Weitere Artikel der Ausgabe 2/2024

Neuroscience Bulletin 2/2024 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.