Skip to main content
Erschienen in: Pediatric Surgery International 6/2010

01.06.2010 | Original Article

Tracheal defect repair using a PLGA–collagen hybrid scaffold reinforced by a copolymer stent with bFGF-impregnated gelatin hydrogel

verfasst von: Yukihiro Tatekawa, Naoki Kawazoe, Guoping Chen, Yoshio Shirasaki, Hiroaki Komuro, Michio Kaneko

Erschienen in: Pediatric Surgery International | Ausgabe 6/2010

Einloggen, um Zugang zu erhalten

Abstract

Purpose

We studied the regenerated cartilage in tracheal defect repair and compared the bio-materials used versus native trachea using basic fibroblast growth factor (bFGF)-impregnated gelatin hydrogel.

Materials and methods

A full-thickness anterior defect was created in the cervical trachea of 15 experimental rabbits. The defect was implanted with a hybrid scaffold of poly(lactic-co-glycolic acid) (PLGA) knitted mesh and collagen sponge. The implanted trachea was reinforced with a copolymer stent of polycaprolactone and poly(lactic acid) coarse fiber mesh. A gelatin hydrogel was used for providing a sustained release of bFGF. The reconstructed tracheas were divided into three groups with wrapped materials; without gelatin hydrogel (control group, n = 5), a gelatin hydrogel with saline (gelatin group, n = 5), and a gelatin hydrogel with 100 μg of bFGF (bFGF group, n = 5). One of the five rabbits in each group at 1 month after operation, one at 3 months, and three at 6 months were killed and the engineered tracheas were evaluated histologically. Biomechanical properties were evaluated on samples at 6 months postoperatively.

Results

The rigid support in the defect portion was maintained during 6 months postoperatively. The newly regenerated cartilages were recognized between the host cartilage stumps at 3 months postoperatively in the bFGF group, and limited new cartilage growth and epithelialization were observed at 6 months postoperatively.

Conclusions

The experiment shows that using bFGF, better mechanical strength was obtained but with poor cartilage growth.
Literatur
1.
Zurück zum Zitat Okumura N, Nakamura T, Natsume T, Tomihata K, Ikada Y, Shimizu Y (1994) Experimental study on a new tracheal prosthesis made from collagen-conjugated mesh. J Thorac Cardiovasc Surg 108:337–345PubMed Okumura N, Nakamura T, Natsume T, Tomihata K, Ikada Y, Shimizu Y (1994) Experimental study on a new tracheal prosthesis made from collagen-conjugated mesh. J Thorac Cardiovasc Surg 108:337–345PubMed
2.
Zurück zum Zitat Yamashita M, Kanemaru S, Hirano S et al (2007) Tracheal regeneration after partial resection: a tissue engineering approach. Laryngoscope 117:497–502CrossRefPubMed Yamashita M, Kanemaru S, Hirano S et al (2007) Tracheal regeneration after partial resection: a tissue engineering approach. Laryngoscope 117:497–502CrossRefPubMed
3.
Zurück zum Zitat Nakamura T, Sato T, Araki M et al (2009) In situ tissue engineering for tracheal reconstruction using a luminar remodeling type of artificial trachea. J Thorac Cardiovasc Surg 138:811–819CrossRefPubMed Nakamura T, Sato T, Araki M et al (2009) In situ tissue engineering for tracheal reconstruction using a luminar remodeling type of artificial trachea. J Thorac Cardiovasc Surg 138:811–819CrossRefPubMed
4.
Zurück zum Zitat Omori K, Nakamura T, Kanemaru S et al (2005) Regenerative medicine of the trachea: the first human case. Ann Otol Rhinol Laryngol 114:429–433PubMed Omori K, Nakamura T, Kanemaru S et al (2005) Regenerative medicine of the trachea: the first human case. Ann Otol Rhinol Laryngol 114:429–433PubMed
5.
Zurück zum Zitat Sato T, Araki M, Nakajima N, Omori K, Nakamura T (2010) Biodegradable polymer coating promotes the epithelization of tissue-engineered airway prostheses. J Thorac Cardiovasc Surg 139:26–31CrossRefPubMed Sato T, Araki M, Nakajima N, Omori K, Nakamura T (2010) Biodegradable polymer coating promotes the epithelization of tissue-engineered airway prostheses. J Thorac Cardiovasc Surg 139:26–31CrossRefPubMed
6.
Zurück zum Zitat Chen G, Sato T, Ushida T, Hirochika R, Tateishi T (2003) Redifferentiation of dedifferentiated bovine chondrocytes when cultured in vitro in a PLGA–collagen hybrid mesh. FEBS Lett 8(542):95–99CrossRef Chen G, Sato T, Ushida T, Hirochika R, Tateishi T (2003) Redifferentiation of dedifferentiated bovine chondrocytes when cultured in vitro in a PLGA–collagen hybrid mesh. FEBS Lett 8(542):95–99CrossRef
7.
Zurück zum Zitat Chen G, Sato T, Ushida T et al (2003) The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness. J Biomed Mater Res A 15(67):1170–1180CrossRef Chen G, Sato T, Ushida T et al (2003) The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness. J Biomed Mater Res A 15(67):1170–1180CrossRef
8.
Zurück zum Zitat Chen G, Sato T, Ushida T, Ochiai N, Tateishi T (2004) Tissue engineering of cartilage using a hybrid scaffold of synthetic polymer and collagen. Tissue Eng 10:323–330CrossRefPubMed Chen G, Sato T, Ushida T, Ochiai N, Tateishi T (2004) Tissue engineering of cartilage using a hybrid scaffold of synthetic polymer and collagen. Tissue Eng 10:323–330CrossRefPubMed
9.
Zurück zum Zitat Chen G, Liu D, Tadokoro M et al (2004) Chondrogenic differentiation of human mesenchymal stem cells cultured in a cobweb-like biodegradable scaffold. Biochem Biophys Res Commun 322:50–55CrossRefPubMed Chen G, Liu D, Tadokoro M et al (2004) Chondrogenic differentiation of human mesenchymal stem cells cultured in a cobweb-like biodegradable scaffold. Biochem Biophys Res Commun 322:50–55CrossRefPubMed
10.
Zurück zum Zitat Korpela A, Aarnio P, Sariola H, Törmälä P, Harjula A (1988) Comparison of tissue reactions in the tracheal mucosa surrounding a bioabsorbable and silicone airway stents. Ann Thorac Surg 66:1772–1776CrossRef Korpela A, Aarnio P, Sariola H, Törmälä P, Harjula A (1988) Comparison of tissue reactions in the tracheal mucosa surrounding a bioabsorbable and silicone airway stents. Ann Thorac Surg 66:1772–1776CrossRef
11.
Zurück zum Zitat Robey TC, Välimaa T, Murphy HS, Tôrmâlâ P, Mooney DJ, Weatherly RA (2000) Use of internal bioabsorbable PLGA “finger-type” stents in a rabbit tracheal reconstruction model. Arch Otolaryngol Head Neck Surg 126:985–991PubMed Robey TC, Välimaa T, Murphy HS, Tôrmâlâ P, Mooney DJ, Weatherly RA (2000) Use of internal bioabsorbable PLGA “finger-type” stents in a rabbit tracheal reconstruction model. Arch Otolaryngol Head Neck Surg 126:985–991PubMed
12.
Zurück zum Zitat Aikawa M, Miyazawa M, Okada K et al (2007) Regeneration of extrahepatic bile duct—possibility to clinical application by recognition of the regenerative process. J Smooth Muscle Res 43:211–218CrossRefPubMed Aikawa M, Miyazawa M, Okada K et al (2007) Regeneration of extrahepatic bile duct—possibility to clinical application by recognition of the regenerative process. J Smooth Muscle Res 43:211–218CrossRefPubMed
13.
Zurück zum Zitat Tabata Y, Nagano A, Muniruzzaman M, Ikada Y (1998) In vitro sorption and desorption of basic fibroblast growth factor from biodegradable hydrogels. Biomaterials 19:1781–1789CrossRefPubMed Tabata Y, Nagano A, Muniruzzaman M, Ikada Y (1998) In vitro sorption and desorption of basic fibroblast growth factor from biodegradable hydrogels. Biomaterials 19:1781–1789CrossRefPubMed
14.
Zurück zum Zitat Tabata Y, Nagano A, Ikada Y (1999) Biodegradation of hydrogel carrier incorporating fibroblast growth factor. Tissue Eng 5:127–138CrossRefPubMed Tabata Y, Nagano A, Ikada Y (1999) Biodegradation of hydrogel carrier incorporating fibroblast growth factor. Tissue Eng 5:127–138CrossRefPubMed
15.
Zurück zum Zitat Isogai N, Morotomi T, Hayakawa S et al (2005) Combined chondrocyte-copolymer implantation with slow release of basic fibroblast growth factor for tissue engineering an auricular cartilage construct. J Biomed Mater Res A 74:408–418PubMed Isogai N, Morotomi T, Hayakawa S et al (2005) Combined chondrocyte-copolymer implantation with slow release of basic fibroblast growth factor for tissue engineering an auricular cartilage construct. J Biomed Mater Res A 74:408–418PubMed
16.
Zurück zum Zitat Igai H, Chang SS, Gotoh M et al (2006) Regeneration of canine tracheal cartilage by slow release of basic fibroblast growth factor from gelatin sponge. ASAIO J 52:86–91CrossRefPubMed Igai H, Chang SS, Gotoh M et al (2006) Regeneration of canine tracheal cartilage by slow release of basic fibroblast growth factor from gelatin sponge. ASAIO J 52:86–91CrossRefPubMed
17.
Zurück zum Zitat Tatekawa Y, Ikada Y, Komuro H, Kaneko M (2010) Experimental repair of tracheal defect using a bioabsorbable copolymer. J Surg Res 160:114–121CrossRefPubMed Tatekawa Y, Ikada Y, Komuro H, Kaneko M (2010) Experimental repair of tracheal defect using a bioabsorbable copolymer. J Surg Res 160:114–121CrossRefPubMed
18.
Zurück zum Zitat Chen G, Ushida T, Tateishi T (2000) A hybrid network of synthetic polymer mesh and collagen sponge. Chem Commun 16:1505–1506CrossRef Chen G, Ushida T, Tateishi T (2000) A hybrid network of synthetic polymer mesh and collagen sponge. Chem Commun 16:1505–1506CrossRef
19.
Zurück zum Zitat Chen G, Ushida T, Tateishi T (2002) Scaffold design for tissue engineering. Macromol Biosci 2:67–77CrossRef Chen G, Ushida T, Tateishi T (2002) Scaffold design for tissue engineering. Macromol Biosci 2:67–77CrossRef
20.
Zurück zum Zitat Suzuki T, Kobayashi K, Tada Y et al (2008) Regeneration of the trachea using a bioengineered scaffold with adipose-derived stem cells. Ann Otol Rhinol Laryngol 117:453–463PubMed Suzuki T, Kobayashi K, Tada Y et al (2008) Regeneration of the trachea using a bioengineered scaffold with adipose-derived stem cells. Ann Otol Rhinol Laryngol 117:453–463PubMed
21.
Zurück zum Zitat Nomoto Y, Suzuki T, Tada Y et al (2006) Tissue engineering for regeneration of the tracheal epithelium. Ann Otol Rhinol Laryngol 115:501–506PubMed Nomoto Y, Suzuki T, Tada Y et al (2006) Tissue engineering for regeneration of the tracheal epithelium. Ann Otol Rhinol Laryngol 115:501–506PubMed
22.
Zurück zum Zitat Igai H, Chang SS, Gotoh M et al (2009) Widespread and early tracheal cartilage regeneration by synchronous slow release of b-FGF and BMP-2. ASAIO J 55:266–270CrossRefPubMed Igai H, Chang SS, Gotoh M et al (2009) Widespread and early tracheal cartilage regeneration by synchronous slow release of b-FGF and BMP-2. ASAIO J 55:266–270CrossRefPubMed
23.
Zurück zum Zitat Kojima K, Bonassar LJ, Ignotz RA, Syed K, Cortiella J, Vacanti CA (2003) Comparison of tracheal and nasal chondrocytes for tissue engineering of the trachea. Ann Thorac Surg 76:1884–1888CrossRefPubMed Kojima K, Bonassar LJ, Ignotz RA, Syed K, Cortiella J, Vacanti CA (2003) Comparison of tracheal and nasal chondrocytes for tissue engineering of the trachea. Ann Thorac Surg 76:1884–1888CrossRefPubMed
24.
Zurück zum Zitat Weidenbecher M, Tucker HM, Awadallah A, Dennis JE (2008) Fabrication of a neotrachea using engineered cartilage. Laryngoscope 118:593–598CrossRefPubMed Weidenbecher M, Tucker HM, Awadallah A, Dennis JE (2008) Fabrication of a neotrachea using engineered cartilage. Laryngoscope 118:593–598CrossRefPubMed
Metadaten
Titel
Tracheal defect repair using a PLGA–collagen hybrid scaffold reinforced by a copolymer stent with bFGF-impregnated gelatin hydrogel
verfasst von
Yukihiro Tatekawa
Naoki Kawazoe
Guoping Chen
Yoshio Shirasaki
Hiroaki Komuro
Michio Kaneko
Publikationsdatum
01.06.2010
Verlag
Springer-Verlag
Erschienen in
Pediatric Surgery International / Ausgabe 6/2010
Print ISSN: 0179-0358
Elektronische ISSN: 1437-9813
DOI
https://doi.org/10.1007/s00383-010-2609-2

Weitere Artikel der Ausgabe 6/2010

Pediatric Surgery International 6/2010 Zur Ausgabe

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.

Erstmanifestation eines Diabetes-Typ-1 bei Kindern: Ein Notfall!

16.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Manifestiert sich ein Typ-1-Diabetes bei Kindern, ist das ein Notfall – ebenso wie eine diabetische Ketoazidose. Die Grundsäulen der Therapie bestehen aus Rehydratation, Insulin und Kaliumgabe. Insulin ist das Medikament der Wahl zur Behandlung der Ketoazidose.

Frühe Hypertonie erhöht späteres kardiovaskuläres Risiko

Wie wichtig es ist, pädiatrische Patienten auf Bluthochdruck zu screenen, zeigt eine kanadische Studie: Hypertone Druckwerte in Kindheit und Jugend steigern das Risiko für spätere kardiovaskuläre Komplikationen.

Betalaktam-Allergie: praxisnahes Vorgehen beim Delabeling

16.05.2024 Pädiatrische Allergologie Nachrichten

Die große Mehrheit der vermeintlichen Penicillinallergien sind keine. Da das „Etikett“ Betalaktam-Allergie oft schon in der Kindheit erworben wird, kann ein frühzeitiges Delabeling lebenslange Vorteile bringen. Ein Team von Pädiaterinnen und Pädiatern aus Kanada stellt vor, wie sie dabei vorgehen.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.