Skip to main content
Erschienen in: Breast Cancer Research 2/2000

01.04.2000 | Review

Transforming growth factor-β and breast cancer: Cell cycle arrest by transforming growth factor-β and its disruption in cancer

verfasst von: Jeffrey Donovan, Joyce Slingerland

Erschienen in: Breast Cancer Research | Ausgabe 2/2000

Einloggen, um Zugang zu erhalten

Abstract

Altered responsiveness to extracellular signals and cell cycle dysregulation are hallmarks of cancer. The cell cycle is governed by cyclin-dependent kinases (cdks) that integrate mitogenic and growth inhibitory signals. Transforming growth factor (TGF)-β mediates G1 cell cycle arrest by inducing or activating cdk inhibitors, and by inhibiting factors required for cdk activation. Mechanisms that lead to cell cycle arrest by TGF-β are reviewed. Loss of growth inhibition by TGF-β occurs early in breast cell transformation, and may contribute to breast cancer progression. Dysregulation of cell cycle effectors at many different levels may contribute to loss of G1 arrest by TGF-β. Elucidation of these pathways in breast cancer may ultimately lead to novel and more effective treatments for this disease.
Literatur
1.
Zurück zum Zitat Massague J, Cheifetz S, Laiho M, et al: Transforming growth factor-β. Cancer Surv. 1992, 12: 81-103.PubMed Massague J, Cheifetz S, Laiho M, et al: Transforming growth factor-β. Cancer Surv. 1992, 12: 81-103.PubMed
2.
Zurück zum Zitat Alexandrow MG, Moses H: Transforming growth factor β and cell cycle regulation. Cancer Res. 1995, 55: 1452-1457.PubMed Alexandrow MG, Moses H: Transforming growth factor β and cell cycle regulation. Cancer Res. 1995, 55: 1452-1457.PubMed
3.
Zurück zum Zitat Daniel CW, Silberstein GB, van Horn K, Strickland P, Robinson S: TGF-β1-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization. Dev Biol. 1989, 135: 20-30.PubMedCrossRef Daniel CW, Silberstein GB, van Horn K, Strickland P, Robinson S: TGF-β1-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization. Dev Biol. 1989, 135: 20-30.PubMedCrossRef
4.
Zurück zum Zitat Silberstein GB, Daniel CW: Reversible inhibition of mammary gland growth by transforming growth factor-β. Science. 1987, 237: 291-293.PubMedCrossRef Silberstein GB, Daniel CW: Reversible inhibition of mammary gland growth by transforming growth factor-β. Science. 1987, 237: 291-293.PubMedCrossRef
5.
Zurück zum Zitat Barcellos-Hoff MH, Ewan KB: Transforming growth factor-β and breast cancer: mammary gland development. Breast Cancer Res. 2000, 2: 92-99. 10.1186/bcr40.PubMedPubMedCentralCrossRef Barcellos-Hoff MH, Ewan KB: Transforming growth factor-β and breast cancer: mammary gland development. Breast Cancer Res. 2000, 2: 92-99. 10.1186/bcr40.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Pierce DFJ, Johnson MD, Matzui Y, et al: Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β1. Genes Dev. 1993, 7: 2308-2317.PubMedCrossRef Pierce DFJ, Johnson MD, Matzui Y, et al: Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β1. Genes Dev. 1993, 7: 2308-2317.PubMedCrossRef
7.
Zurück zum Zitat Pierce DF, Gorska AE, Chytil A, et al: Mammary tumor suppression by transforming growth factor β1 transgene expression. Proc Natl Acad Sci USA. 1995, 92: 4254-4258.PubMedPubMedCentralCrossRef Pierce DF, Gorska AE, Chytil A, et al: Mammary tumor suppression by transforming growth factor β1 transgene expression. Proc Natl Acad Sci USA. 1995, 92: 4254-4258.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Wakefield LM: Transforming growth factor-β and breast cancer: lessons learned from genetically altered mouse models. Breast Cancer Res. 2000, 2: 100-106. 10.1186/bcr41.PubMedPubMedCentralCrossRef Wakefield LM: Transforming growth factor-β and breast cancer: lessons learned from genetically altered mouse models. Breast Cancer Res. 2000, 2: 100-106. 10.1186/bcr41.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Hosobuchi M, Stampfer M: Effects of the transforming growth factor β on growth of human mammary epithelial cells in culture. In Vitro Cell Dev Biol. 1989, 25: 705-713.PubMedCrossRef Hosobuchi M, Stampfer M: Effects of the transforming growth factor β on growth of human mammary epithelial cells in culture. In Vitro Cell Dev Biol. 1989, 25: 705-713.PubMedCrossRef
10.
Zurück zum Zitat Fynan TM, Reiss M: Resistance to inhibition of cell growth by transforming growth factor-beta and its role in oncogenesis. Crit Rev Oncogenesis. 1993, 4: 493-540.PubMed Fynan TM, Reiss M: Resistance to inhibition of cell growth by transforming growth factor-beta and its role in oncogenesis. Crit Rev Oncogenesis. 1993, 4: 493-540.PubMed
11.
Zurück zum Zitat Massague J: TGF-β signal transduction. Annu Rev Biochem. 1998, 67: 753-791. 10.1146/annurev.biochem.67.1.753.PubMedCrossRef Massague J: TGF-β signal transduction. Annu Rev Biochem. 1998, 67: 753-791. 10.1146/annurev.biochem.67.1.753.PubMedCrossRef
12.
Zurück zum Zitat Kretzschmar M: Transforming growth factor-β and breast cancer: transforming growth factor-β/SMAD signaling defects and cancer. Breast Cancer Res. 2000, 2: 107-115. 10.1186/bcr42.PubMedPubMedCentralCrossRef Kretzschmar M: Transforming growth factor-β and breast cancer: transforming growth factor-β/SMAD signaling defects and cancer. Breast Cancer Res. 2000, 2: 107-115. 10.1186/bcr42.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Kerbel RS: Expression of multi-cytokine resistance and multigrowth factor independence in advanced stage metatstatic cancer: malignant melanoma as a paradigm. Am J Pathol. 1992, 141: 519-524.PubMedPubMedCentral Kerbel RS: Expression of multi-cytokine resistance and multigrowth factor independence in advanced stage metatstatic cancer: malignant melanoma as a paradigm. Am J Pathol. 1992, 141: 519-524.PubMedPubMedCentral
14.
Zurück zum Zitat Massague J: The transforming growth factor-β family. Ann Rev Cell Biol. 1990, 6: 597-641. 10.1146/annurev.cellbio.6.1.597.PubMedCrossRef Massague J: The transforming growth factor-β family. Ann Rev Cell Biol. 1990, 6: 597-641. 10.1146/annurev.cellbio.6.1.597.PubMedCrossRef
15.
Zurück zum Zitat Shipley GD, Pittelkow MR, Wille JJ, Scott RE, Moses HL: Reversible inhibition of normal human prokeratinocyte proliferation by type β transforming growth factor-growth inhibitor in serum-free medium. Cancer Res. 1986, 46: 2068-2071. This study showed that G1 arrest by TGF-b in normal human prokeratinocytes was reversible.PubMed Shipley GD, Pittelkow MR, Wille JJ, Scott RE, Moses HL: Reversible inhibition of normal human prokeratinocyte proliferation by type β transforming growth factor-growth inhibitor in serum-free medium. Cancer Res. 1986, 46: 2068-2071. This study showed that G1 arrest by TGF-b in normal human prokeratinocytes was reversible.PubMed
16.
Zurück zum Zitat Coffey RJ, Bascom CC, Sipes NJ, et al: Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta. Mol Cell Biol. 1988, 8: 3088-3093.PubMedPubMedCentralCrossRef Coffey RJ, Bascom CC, Sipes NJ, et al: Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta. Mol Cell Biol. 1988, 8: 3088-3093.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Zentella A, Massague J: Transforming growth factor beta induces myoblast differentiation in the presence of mitogens. Proc Natl Acad Sci USA. 1992, 89: 5176-5180. This paper showed that TGF-β mediated irreversible cell cycle arrest and differentiation of myoblasts.PubMedPubMedCentralCrossRef Zentella A, Massague J: Transforming growth factor beta induces myoblast differentiation in the presence of mitogens. Proc Natl Acad Sci USA. 1992, 89: 5176-5180. This paper showed that TGF-β mediated irreversible cell cycle arrest and differentiation of myoblasts.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Masui T, Wakefield LM, Lechner JF, et al: Type β transforming growth factor is the primary differentiation inducing serum factor for normal human bronchial epithelial cells. Proc Natl Acad Sci USA. 1986, 83: 2438-2442.PubMedPubMedCentralCrossRef Masui T, Wakefield LM, Lechner JF, et al: Type β transforming growth factor is the primary differentiation inducing serum factor for normal human bronchial epithelial cells. Proc Natl Acad Sci USA. 1986, 83: 2438-2442.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Jetten AM, Shirley JE, Stoner G: Regulation of proliferation and differentiation of respiratory tract epithelial cells by TGF-β. Exp Cell Res. 1986, 167: 539-549.PubMedCrossRef Jetten AM, Shirley JE, Stoner G: Regulation of proliferation and differentiation of respiratory tract epithelial cells by TGF-β. Exp Cell Res. 1986, 167: 539-549.PubMedCrossRef
20.
22.
Zurück zum Zitat Sherr CJ, Roberts JM: Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995, 9: 1149-1163.PubMedCrossRef Sherr CJ, Roberts JM: Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995, 9: 1149-1163.PubMedCrossRef
23.
Zurück zum Zitat Sherr CJ, Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999, 13: 1501-1512.PubMedCrossRef Sherr CJ, Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999, 13: 1501-1512.PubMedCrossRef
24.
Zurück zum Zitat Murray AW: Creative blocks: cell cycle checkpoints and feedback controls. Nature. 1992, 359: 599-604. 10.1038/359599a0.PubMedCrossRef Murray AW: Creative blocks: cell cycle checkpoints and feedback controls. Nature. 1992, 359: 599-604. 10.1038/359599a0.PubMedCrossRef
25.
Zurück zum Zitat Hartwell L: Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell. 1992, 71: 543-546.PubMedCrossRef Hartwell L: Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell. 1992, 71: 543-546.PubMedCrossRef
26.
Zurück zum Zitat Adams PD, Kaelin WG: Transcriptional control by E2F. Semin Cancer Biol. 1995, 6: 99-108. 10.1006/scbi.1995.0013.PubMedCrossRef Adams PD, Kaelin WG: Transcriptional control by E2F. Semin Cancer Biol. 1995, 6: 99-108. 10.1006/scbi.1995.0013.PubMedCrossRef
27.
Zurück zum Zitat Solomon MJ, Kaldis P: Regulation of CDKs by phosphorylation. Results Probl Cell Diff. 1998, 22: 79-109.CrossRef Solomon MJ, Kaldis P: Regulation of CDKs by phosphorylation. Results Probl Cell Diff. 1998, 22: 79-109.CrossRef
28.
Zurück zum Zitat Solomon MJ: Activation of the various cyclin/cdc2 proteins. Curr Opin Cell Biol. 1993, 5: 180-186.PubMedCrossRef Solomon MJ: Activation of the various cyclin/cdc2 proteins. Curr Opin Cell Biol. 1993, 5: 180-186.PubMedCrossRef
29.
Zurück zum Zitat Kato JY, Matsuoka M, Polyak K, Massague J, Sherr CJ: Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation. Cell. 1994, 79: 487-496.PubMedCrossRef Kato JY, Matsuoka M, Polyak K, Massague J, Sherr CJ: Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation. Cell. 1994, 79: 487-496.PubMedCrossRef
30.
Zurück zum Zitat Draetta G, Eckstein J: Cdc25 protein phosphatases in cell proliferation. Biochim Biophys Acta. 1997, 1332: M53-M63. 10.1016/S0304-419X(96)00049-2.PubMed Draetta G, Eckstein J: Cdc25 protein phosphatases in cell proliferation. Biochim Biophys Acta. 1997, 1332: M53-M63. 10.1016/S0304-419X(96)00049-2.PubMed
31.
Zurück zum Zitat Bates S, Peters G: Cyclin D1 as a cellular proto-oncogene. Semin Cancer Biol. 1995, 6: 73-82. 10.1006/scbi.1995.0010.PubMedCrossRef Bates S, Peters G: Cyclin D1 as a cellular proto-oncogene. Semin Cancer Biol. 1995, 6: 73-82. 10.1006/scbi.1995.0010.PubMedCrossRef
32.
Zurück zum Zitat Slingerland JM, Hengst L, Pan C-H, et al: A novel inhibitor of cyclin-Cdk activity detected in transforming growth factor β-arrested epithelial cells. Mol Cell Biol. 1994, 14: 3683-3694. TGF-β caused inhibition of cyclin E–cdk2 and cyclin A–cdk2 through the induction of a heat stable inhibitor that bound to target cdks. This protein was later shown to be p27. TGF-β was also shown to inhibit CAK activation of cdk2 in the Mv1Lu cell line.PubMedPubMedCentralCrossRef Slingerland JM, Hengst L, Pan C-H, et al: A novel inhibitor of cyclin-Cdk activity detected in transforming growth factor β-arrested epithelial cells. Mol Cell Biol. 1994, 14: 3683-3694. TGF-β caused inhibition of cyclin E–cdk2 and cyclin A–cdk2 through the induction of a heat stable inhibitor that bound to target cdks. This protein was later shown to be p27. TGF-β was also shown to inhibit CAK activation of cdk2 in the Mv1Lu cell line.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Hengst L, Dulic V, Slingerland J, Lees E, Reed SI: A cell cycle regulated inhibitor of cyclin dependant kinases. Proc Natl Acad Sci USA. 1994, 91: 5291-5294.PubMedPubMedCentralCrossRef Hengst L, Dulic V, Slingerland J, Lees E, Reed SI: A cell cycle regulated inhibitor of cyclin dependant kinases. Proc Natl Acad Sci USA. 1994, 91: 5291-5294.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Koff A, Ohtsuki M, Polyak K, Roberts JM, Massague J: Negative regulation of G1 in mammalian cells: inhibition of cyclin E-dependent kinase by TGF-β. Science. 1993, 260: 536-539.PubMedCrossRef Koff A, Ohtsuki M, Polyak K, Roberts JM, Massague J: Negative regulation of G1 in mammalian cells: inhibition of cyclin E-dependent kinase by TGF-β. Science. 1993, 260: 536-539.PubMedCrossRef
35.
Zurück zum Zitat Polyak K, Kato JY, Solomon MJ, et al: p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev. 1994, 8: 9-22.PubMedCrossRef Polyak K, Kato JY, Solomon MJ, et al: p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev. 1994, 8: 9-22.PubMedCrossRef
36.
Zurück zum Zitat Polyak C, Lee M-H, Erdjument-Romage H, et al: Cloning of p27KIP1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell. 1994, 78: 59-66.PubMedCrossRef Polyak C, Lee M-H, Erdjument-Romage H, et al: Cloning of p27KIP1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell. 1994, 78: 59-66.PubMedCrossRef
37.
Zurück zum Zitat Slingerland J, Pagano M: Regulation of the Cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol. 2000, 183: 10-17. 10.1002/(SICI)1097-4652(200004)183:1<10::AID-JCP2>3.0.CO;2-I.PubMedCrossRef Slingerland J, Pagano M: Regulation of the Cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol. 2000, 183: 10-17. 10.1002/(SICI)1097-4652(200004)183:1<10::AID-JCP2>3.0.CO;2-I.PubMedCrossRef
38.
Zurück zum Zitat Aktas H, Cai H, Cooper GM: Ras links growth factor signalling to the cell cycle machinery via regulation of cyclin D1 and the cdk inhibitor p27Kip1. Mol Cell Biol. 1997, 17: 3850-3857.PubMedPubMedCentralCrossRef Aktas H, Cai H, Cooper GM: Ras links growth factor signalling to the cell cycle machinery via regulation of cyclin D1 and the cdk inhibitor p27Kip1. Mol Cell Biol. 1997, 17: 3850-3857.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Leone G, DeGregori J, Sears R, Jakoi L, Nevins JR: Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F [published erratum appears in Nature 1997, 387:932]. Nature. 1997, 387: 422-426. 10.1038/43230.PubMedCrossRef Leone G, DeGregori J, Sears R, Jakoi L, Nevins JR: Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F [published erratum appears in Nature 1997, 387:932]. Nature. 1997, 387: 422-426. 10.1038/43230.PubMedCrossRef
40.
Zurück zum Zitat Kawada M, Yamagoe S, Murakami Y, et al: Induction of p27Kip1 degradation and anchorage independence by Ras through the MAP kinase signaling pathway. Oncogene. 1997, 15: 629-637. 10.1038/sj.onc.1201228.PubMedCrossRef Kawada M, Yamagoe S, Murakami Y, et al: Induction of p27Kip1 degradation and anchorage independence by Ras through the MAP kinase signaling pathway. Oncogene. 1997, 15: 629-637. 10.1038/sj.onc.1201228.PubMedCrossRef
41.
Zurück zum Zitat Takuwa N, Takuwa Y: Ras activity late in G1 phase required for p27kip1 downregulation, passage through the restriction point, and entry into S phase in growth factor-stimulated NIH 3T3 fibroblasts. Mol Cell Biol. 1997, 17: 5348-5358.PubMedPubMedCentralCrossRef Takuwa N, Takuwa Y: Ras activity late in G1 phase required for p27kip1 downregulation, passage through the restriction point, and entry into S phase in growth factor-stimulated NIH 3T3 fibroblasts. Mol Cell Biol. 1997, 17: 5348-5358.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Hu W, Bellone CJ, Baldassare JJ: RhoA stimulates p27 Kip degradation through its regulation of cyclin E/Cdk2 activity. J Biol Chem. 1999, 274: 3396-3401. 10.1074/jbc.274.6.3396.PubMedCrossRef Hu W, Bellone CJ, Baldassare JJ: RhoA stimulates p27 Kip degradation through its regulation of cyclin E/Cdk2 activity. J Biol Chem. 1999, 274: 3396-3401. 10.1074/jbc.274.6.3396.PubMedCrossRef
43.
Zurück zum Zitat Vlach J, Hennecke S, Amati B: Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27Kip1. EMBO J. 1997, 16: 5334-5344. 10.1093/emboj/16.17.5334.PubMedPubMedCentralCrossRef Vlach J, Hennecke S, Amati B: Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27Kip1. EMBO J. 1997, 16: 5334-5344. 10.1093/emboj/16.17.5334.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE: Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev. 1997, 11: 1464-1478.PubMedCrossRef Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE: Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev. 1997, 11: 1464-1478.PubMedCrossRef
45.
Zurück zum Zitat LaBaer J, Garret M, Steenson M, et al: New functional activities for the p21 family of cdk inhibitors. Genes Dev. 1997, 11: 847-862. This study demonstrated a role for KIPs as assembly molecules for cyclin D1–cdk4 and cyclin D1–cdk6 complexes. It was shown that KIPs can function to assemble D-type cyclin–cdk complexes in vitro and in vivo. PubMedCrossRef LaBaer J, Garret M, Steenson M, et al: New functional activities for the p21 family of cdk inhibitors. Genes Dev. 1997, 11: 847-862. This study demonstrated a role for KIPs as assembly molecules for cyclin D1–cdk4 and cyclin D1–cdk6 complexes. It was shown that KIPs can function to assemble D-type cyclin–cdk complexes in vitro and in vivo. PubMedCrossRef
46.
Zurück zum Zitat Cheng M, Olivier P, Diehl JA, et al: The p21(Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 1999, 18: 1571-1583. 10.1093/emboj/18.6.1571. This paper was the first to demonstrate that TGF-β inhibits pRb phosphorylation during a limited period in early G1 phase. It was shown that TGF-β inhibits a pRb kinase and stimulated further investigation of the effects of TGF-β on cyclin–cdk regulation.PubMedPubMedCentralCrossRef Cheng M, Olivier P, Diehl JA, et al: The p21(Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 1999, 18: 1571-1583. 10.1093/emboj/18.6.1571. This paper was the first to demonstrate that TGF-β inhibits pRb phosphorylation during a limited period in early G1 phase. It was shown that TGF-β inhibits a pRb kinase and stimulated further investigation of the effects of TGF-β on cyclin–cdk regulation.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Laiho M, DeCaprio JA, Ludlow JW, Livingston DM, Massague J: Growth inhibition by TGF-β1 linked to suppression of retinoblastoma protein phosphorylation. Cell. 1990, 62: 175-185.PubMedCrossRef Laiho M, DeCaprio JA, Ludlow JW, Livingston DM, Massague J: Growth inhibition by TGF-β1 linked to suppression of retinoblastoma protein phosphorylation. Cell. 1990, 62: 175-185.PubMedCrossRef
48.
Zurück zum Zitat Howe PH, Draetta G, Leof EB: Transforming growth factor β1 inhibition of p34cdc2 phosphorylation and histone H1 kinase activity is associated with G1/S-phase growth arrest. Mol Cell Biol. 1991, 11: 1185-1194.PubMedPubMedCentralCrossRef Howe PH, Draetta G, Leof EB: Transforming growth factor β1 inhibition of p34cdc2 phosphorylation and histone H1 kinase activity is associated with G1/S-phase growth arrest. Mol Cell Biol. 1991, 11: 1185-1194.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Schwarz JK, Bassing CH, Kovesdi I, et al: Expression of the E2F1 transcription factor overcomes type beta transforming growth factor-mediated growth suppression. Proc Natl Acad Sci USA. 1995, 92: 483-487.PubMedPubMedCentralCrossRef Schwarz JK, Bassing CH, Kovesdi I, et al: Expression of the E2F1 transcription factor overcomes type beta transforming growth factor-mediated growth suppression. Proc Natl Acad Sci USA. 1995, 92: 483-487.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Pietenpol JA, Stein RW, Moran E, et al: TGF-β1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell. 1990, 61: 777-785.PubMedCrossRef Pietenpol JA, Stein RW, Moran E, et al: TGF-β1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell. 1990, 61: 777-785.PubMedCrossRef
51.
Zurück zum Zitat Alexandrow MG, Kawabata M, Aakre M, Moses H: Overexpression of the c-Myc oncoprotein blocks the growth-inhibitory response but is required for the mitogenic effects of transforming growth factor beta-1. Proc Natl Acad Sci USA. 1995, 92: 3239-3243. This paper demonstrates that c-myc overexpression can abrogate TGF-β-mediated arrest.PubMedPubMedCentralCrossRef Alexandrow MG, Kawabata M, Aakre M, Moses H: Overexpression of the c-Myc oncoprotein blocks the growth-inhibitory response but is required for the mitogenic effects of transforming growth factor beta-1. Proc Natl Acad Sci USA. 1995, 92: 3239-3243. This paper demonstrates that c-myc overexpression can abrogate TGF-β-mediated arrest.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Jansen-Durr P, Meichle A, Steiner P, et al: Differential modulation of cyclin gene expression by MYC. Proc Natl Acad Sci USA. 1993, 90: 3685-3690.PubMedPubMedCentralCrossRef Jansen-Durr P, Meichle A, Steiner P, et al: Differential modulation of cyclin gene expression by MYC. Proc Natl Acad Sci USA. 1993, 90: 3685-3690.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Shibuya HJ, Yoneyama M, Ninomiya-Tsuji J, Matsumoto K, Taniguchi T: IL-2 and EGF receptors stimulate the hematopoietic cell cycle via different signaling pathways: demonstration of a novel role for c-myc. Cell. 1992, 70: 57-67.PubMedCrossRef Shibuya HJ, Yoneyama M, Ninomiya-Tsuji J, Matsumoto K, Taniguchi T: IL-2 and EGF receptors stimulate the hematopoietic cell cycle via different signaling pathways: demonstration of a novel role for c-myc. Cell. 1992, 70: 57-67.PubMedCrossRef
54.
Zurück zum Zitat Iavarone A, Massague J: Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-beta in cells lacking the CDK inhibitor p15. Nature. 1997, 387: 417-422. 10.1038/387417a0. It was demonstrated that mammary epithelial cells lacking p15 expression can undergo TGF-β-mediated arrest. TGF-β was shown to reduce Cdc25A expression.PubMedCrossRef Iavarone A, Massague J: Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-beta in cells lacking the CDK inhibitor p15. Nature. 1997, 387: 417-422. 10.1038/387417a0. It was demonstrated that mammary epithelial cells lacking p15 expression can undergo TGF-β-mediated arrest. TGF-β was shown to reduce Cdc25A expression.PubMedCrossRef
55.
Zurück zum Zitat Warner BJ, Blain SW, Seoane J, Massague J: Myc downregulation by transforming growth factor beta required for activation of the p15(Ink4b) G(1) arrest pathway. Mol Cell Biol. 1999, 19: 5913-5922.PubMedPubMedCentralCrossRef Warner BJ, Blain SW, Seoane J, Massague J: Myc downregulation by transforming growth factor beta required for activation of the p15(Ink4b) G(1) arrest pathway. Mol Cell Biol. 1999, 19: 5913-5922.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Geng Y, Weinberg RA: Transforming growth factor β effects on expression of G1 cyclins and cyclin-dependant protein kinases. Proc Natl Acad Sci USA. 1993, 90: 10315-10319. It was shown that TGF-β causes inhibition of cyclin E-dependent and cyclin A-dependent kinases, in part through inhibition of cyclin E and cyclin A mRNA levels.PubMedPubMedCentralCrossRef Geng Y, Weinberg RA: Transforming growth factor β effects on expression of G1 cyclins and cyclin-dependant protein kinases. Proc Natl Acad Sci USA. 1993, 90: 10315-10319. It was shown that TGF-β causes inhibition of cyclin E-dependent and cyclin A-dependent kinases, in part through inhibition of cyclin E and cyclin A mRNA levels.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Feng X-H, Filvaroff EH, Derynck R: Transforming growth factor-beta (TGF-beta)-induced down-regulation of cyclin A expression requires a functional TGF-beta receptor complex. J Cell Biol Chem. 1995, 270: 24237-24245. Feng X-H, Filvaroff EH, Derynck R: Transforming growth factor-beta (TGF-beta)-induced down-regulation of cyclin A expression requires a functional TGF-beta receptor complex. J Cell Biol Chem. 1995, 270: 24237-24245.
58.
Zurück zum Zitat Ko TC, Sheng HM, Reisman D, Thompson EA, Beauchamp RD: Transforming growth factor-β1 inhibits cyclin D1 expression in intestinal epithelial cells. Oncogene. 1995, 10: 177-184.PubMed Ko TC, Sheng HM, Reisman D, Thompson EA, Beauchamp RD: Transforming growth factor-β1 inhibits cyclin D1 expression in intestinal epithelial cells. Oncogene. 1995, 10: 177-184.PubMed
59.
Zurück zum Zitat Florenes VA, Bhattacharya N, Bani MR, et al: TGF-β mediated G1 arrest in a human melanoma cell line lacking p15INK4B: evidence for cooperation between p21Cip1 and p27Kip1. Oncogene. 1996, 13: 2447-2547. That p15 was not essential for TGF-β-induced cell cycle arrest was demonstrated in a melanoma model.PubMed Florenes VA, Bhattacharya N, Bani MR, et al: TGF-β mediated G1 arrest in a human melanoma cell line lacking p15INK4B: evidence for cooperation between p21Cip1 and p27Kip1. Oncogene. 1996, 13: 2447-2547. That p15 was not essential for TGF-β-induced cell cycle arrest was demonstrated in a melanoma model.PubMed
60.
Zurück zum Zitat Reynisdottir I, Polyak K, Iavarone A, Massague J: Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-β. Genes Dev. 1995, 9: 1831-1845. This study showed that p15 and p27 cooperate to mediate G1 arrest. Upregulation of a 15-kDa protein in cdk6 complexes was observed. TGF-β caused release of p27 from cdk4 and cdk6 complexes, and an increase in p27 binding to cyclin E–cdk2. In keratinocytes, p21 levels were increased by TGF-β and p21 binding to cdk2 was increased.PubMedCrossRef Reynisdottir I, Polyak K, Iavarone A, Massague J: Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-β. Genes Dev. 1995, 9: 1831-1845. This study showed that p15 and p27 cooperate to mediate G1 arrest. Upregulation of a 15-kDa protein in cdk6 complexes was observed. TGF-β caused release of p27 from cdk4 and cdk6 complexes, and an increase in p27 binding to cyclin E–cdk2. In keratinocytes, p21 levels were increased by TGF-β and p21 binding to cdk2 was increased.PubMedCrossRef
61.
Zurück zum Zitat Sandhu C, Garbe J, Daksis J, et al: Transforming growth factor β stabilizes p15INK4B protein, increases p15INK4B-cdk4 complexes and inhibits cyclin D1/cdk4 association in human mammary epithelial cells. Mol Cell Biol. 1997, 17: 2458-2467. Cooperation between p15 and p27 was demonstrated in HMECs. TGF-β not only induced p15 expression, but also stabilized p15 protein. Cyclin D1–cdk4–KIP complexes from a TGF-β-resistant line could not be dissociated by p15 in vitro, suggesting that a defect in KIP function may underlie resistance to TGF-β in these cells.PubMedPubMedCentralCrossRef Sandhu C, Garbe J, Daksis J, et al: Transforming growth factor β stabilizes p15INK4B protein, increases p15INK4B-cdk4 complexes and inhibits cyclin D1/cdk4 association in human mammary epithelial cells. Mol Cell Biol. 1997, 17: 2458-2467. Cooperation between p15 and p27 was demonstrated in HMECs. TGF-β not only induced p15 expression, but also stabilized p15 protein. Cyclin D1–cdk4–KIP complexes from a TGF-β-resistant line could not be dissociated by p15 in vitro, suggesting that a defect in KIP function may underlie resistance to TGF-β in these cells.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Hannon GJ, Beach D: p15INK4B is a potential effector of TGF-β induced cell cycle arrest. Nature. 1994, 371: 257-261. 10.1038/371257a0.PubMedCrossRef Hannon GJ, Beach D: p15INK4B is a potential effector of TGF-β induced cell cycle arrest. Nature. 1994, 371: 257-261. 10.1038/371257a0.PubMedCrossRef
63.
Zurück zum Zitat Li JM, Nichols MA, Chandrasekharan S, Xiong Y, Wang XF: Transforming growth factor beta activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J Biol Chem. 1995, 270: 26750-26753. 10.1074/jbc.270.45.26750.PubMedCrossRef Li JM, Nichols MA, Chandrasekharan S, Xiong Y, Wang XF: Transforming growth factor beta activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J Biol Chem. 1995, 270: 26750-26753. 10.1074/jbc.270.45.26750.PubMedCrossRef
64.
Zurück zum Zitat Datto MB, Li Y, Panus JF, et al: Transforming growth factor β induces the cyclin-dependent kinase inhibitor p21 through a p53 independent mechanism. Proc Natl Acad Sci USA. 1995, 92: 5545-5549. It is demonstrated that p21 is induced by TGF-b in a p53-independent manner.PubMedPubMedCentralCrossRef Datto MB, Li Y, Panus JF, et al: Transforming growth factor β induces the cyclin-dependent kinase inhibitor p21 through a p53 independent mechanism. Proc Natl Acad Sci USA. 1995, 92: 5545-5549. It is demonstrated that p21 is induced by TGF-b in a p53-independent manner.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Malliri A, Yeudall WA, Nikolic M, et al: Sensitivity to transforming growth factor β1-induced growth arrest is common in human squamous cell carcinoma cell lines: c-MYC down-regulation and p21waf1 induction are important early events. Cell Growth Differ. 1996, 7: 1291-1304.PubMed Malliri A, Yeudall WA, Nikolic M, et al: Sensitivity to transforming growth factor β1-induced growth arrest is common in human squamous cell carcinoma cell lines: c-MYC down-regulation and p21waf1 induction are important early events. Cell Growth Differ. 1996, 7: 1291-1304.PubMed
66.
Zurück zum Zitat Elbendary A, Berchuck A, Davis P, et al: Transforming growth factor β1 can induce CIP1/WAF1 expression independent of the p53 pathway in ovarian cancer cells. Cell Growth Differ. 1994, 12: 1301-1307. It was demonstrated that p21 is upregulated by TGF-b. Elbendary A, Berchuck A, Davis P, et al: Transforming growth factor β1 can induce CIP1/WAF1 expression independent of the p53 pathway in ovarian cancer cells. Cell Growth Differ. 1994, 12: 1301-1307. It was demonstrated that p21 is upregulated by TGF-b.
67.
Zurück zum Zitat Hunt KK, Fleming JB, Abramian A, et al: Overexpression of the tumor suppressor gene Smad4/DPC4 induces p21 waf1 expression and growth inhibition in human carcinoma cells. Cancer Res. 1998, 58: 5656-5661.PubMed Hunt KK, Fleming JB, Abramian A, et al: Overexpression of the tumor suppressor gene Smad4/DPC4 induces p21 waf1 expression and growth inhibition in human carcinoma cells. Cancer Res. 1998, 58: 5656-5661.PubMed
68.
Zurück zum Zitat Datto MB, Hu PP, Kowalik TF, Yingling J, Wang XF: The viral oncoprotein E1A blocks transforming growth factor beta-mediated induction of p21/WAF1/Cip1 and p15/INK4B. Mol Cell Biol. 1997, 17: 2030-2037.PubMedPubMedCentralCrossRef Datto MB, Hu PP, Kowalik TF, Yingling J, Wang XF: The viral oncoprotein E1A blocks transforming growth factor beta-mediated induction of p21/WAF1/Cip1 and p15/INK4B. Mol Cell Biol. 1997, 17: 2030-2037.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Nagahara H, Ezhevsky SA, Vocero-Akbani AM, et al: Transforming growth factor beta targeted inactivation of cyclin E:cyclin-dependent kinase 2 (Cdk2) complexes by inhibition of Cdk2 activating kinase activity. Proc Natl Acad Sci USA. 1999, 96: 14961-14966. 10.1073/pnas.96.26.14961.PubMedPubMedCentralCrossRef Nagahara H, Ezhevsky SA, Vocero-Akbani AM, et al: Transforming growth factor beta targeted inactivation of cyclin E:cyclin-dependent kinase 2 (Cdk2) complexes by inhibition of Cdk2 activating kinase activity. Proc Natl Acad Sci USA. 1999, 96: 14961-14966. 10.1073/pnas.96.26.14961.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Galaktionov K, Chen X, Beach D: Cdc25 cell-cycle phosphatase as a target of c-myc. Nature. 1996, 382: 511-517. 10.1038/382511a0. It was shown that c-myc upregulates Cdc25A expression. This effect is not seen in all cell types.PubMedCrossRef Galaktionov K, Chen X, Beach D: Cdc25 cell-cycle phosphatase as a target of c-myc. Nature. 1996, 382: 511-517. 10.1038/382511a0. It was shown that c-myc upregulates Cdc25A expression. This effect is not seen in all cell types.PubMedCrossRef
71.
Zurück zum Zitat Dumont N, Arteaga CL: Transforming growth factor-β and breast cancer: tumor promoting effects of transforming growth factor-β. Breast Cancer Res. 2000, 2: 125-132. 10.1186/bcr44.PubMedPubMedCentralCrossRef Dumont N, Arteaga CL: Transforming growth factor-β and breast cancer: tumor promoting effects of transforming growth factor-β. Breast Cancer Res. 2000, 2: 125-132. 10.1186/bcr44.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Cairns P, Mao L, Merlo A, et al: Rates of p16 (MTS1) mutations in primary tumors with 9p loss. Science. 1994, 265: 415-417.PubMedCrossRef Cairns P, Mao L, Merlo A, et al: Rates of p16 (MTS1) mutations in primary tumors with 9p loss. Science. 1994, 265: 415-417.PubMedCrossRef
73.
Zurück zum Zitat Cairns P, Polascik TJ, Eby Y, et al: Frequency of homozygous deletion at p16/CDKN2 in primary human tumours. Nature Genet. 1995, 11: 210-212.PubMedCrossRef Cairns P, Polascik TJ, Eby Y, et al: Frequency of homozygous deletion at p16/CDKN2 in primary human tumours. Nature Genet. 1995, 11: 210-212.PubMedCrossRef
74.
Zurück zum Zitat Kamb A, Shattuch-Eidens D, Eetes R, et al: Analysis of the p16 gene(CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nature Genet. 1994, 8: 23-26.PubMedCrossRef Kamb A, Shattuch-Eidens D, Eetes R, et al: Analysis of the p16 gene(CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nature Genet. 1994, 8: 23-26.PubMedCrossRef
75.
Zurück zum Zitat Batova A, Diccianni MB, Yu JC, et al: Frequent and selective methylation of p15 and deletion of both p15 and p16 in T-cell lymphoblastic leukemia. Cancer Res. 1997, 57: 832-836.PubMed Batova A, Diccianni MB, Yu JC, et al: Frequent and selective methylation of p15 and deletion of both p15 and p16 in T-cell lymphoblastic leukemia. Cancer Res. 1997, 57: 832-836.PubMed
76.
Zurück zum Zitat Quesnel B, Guillerm G, Vereecque R, et al: Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired druing disease progression. Blood. 1998, 91: 2985-2990.PubMed Quesnel B, Guillerm G, Vereecque R, et al: Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired druing disease progression. Blood. 1998, 91: 2985-2990.PubMed
77.
Zurück zum Zitat Nakayama K, Ishida N, Shirane M, et al: Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell. 1996, 85: 707-720.PubMedCrossRef Nakayama K, Ishida N, Shirane M, et al: Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell. 1996, 85: 707-720.PubMedCrossRef
78.
Zurück zum Zitat Kawamata N, Morosetti R, Miller CW, et al: Molecular analysis of the cyclin-dependent kinase inhibitor gene p27 Kip1 in human malignancies. Cancer Res. 1995, 55: 2266-2269.PubMed Kawamata N, Morosetti R, Miller CW, et al: Molecular analysis of the cyclin-dependent kinase inhibitor gene p27 Kip1 in human malignancies. Cancer Res. 1995, 55: 2266-2269.PubMed
79.
Zurück zum Zitat Pietenpol JA, Bohlander SK, Sato Y, et al: Assignment of human p27 Kip1 gene to 12p13 and its analysis in leukemias. Cancer Res. 1995, 55: 1206-1210.PubMed Pietenpol JA, Bohlander SK, Sato Y, et al: Assignment of human p27 Kip1 gene to 12p13 and its analysis in leukemias. Cancer Res. 1995, 55: 1206-1210.PubMed
80.
Zurück zum Zitat Porter PL, Malone KE, Heagerty PJ, et al: Expression of cell cycle regulators p27kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nature Med. 1997, 3: 222-225.PubMedCrossRef Porter PL, Malone KE, Heagerty PJ, et al: Expression of cell cycle regulators p27kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nature Med. 1997, 3: 222-225.PubMedCrossRef
81.
Zurück zum Zitat Tan P, Cady B, Wanner M, et al: The cell cycle inhibitor p27 is an independent prognostic marker in small (T1a,b) invasive breast carcinomas. Cancer Res. 1997, 57: 1259-1263.PubMed Tan P, Cady B, Wanner M, et al: The cell cycle inhibitor p27 is an independent prognostic marker in small (T1a,b) invasive breast carcinomas. Cancer Res. 1997, 57: 1259-1263.PubMed
82.
Zurück zum Zitat Catzavelos C, Bhattacharya N, Ung YC, et al: Decreased levels of the cell cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. Nature Medicine. 1997, 3: 227-230.PubMedCrossRef Catzavelos C, Bhattacharya N, Ung YC, et al: Decreased levels of the cell cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. Nature Medicine. 1997, 3: 227-230.PubMedCrossRef
83.
Zurück zum Zitat Orend G, Hunter T, Ruoslahti E: Cytoplasmic displacement of cyclin E-cdk2 inhibitors p21Cip1 and p27Kip1 in anchorage-independent cells. Oncogene. 1998, 16: 2575-2583. 10.1038/sj.onc.1201791.PubMedCrossRef Orend G, Hunter T, Ruoslahti E: Cytoplasmic displacement of cyclin E-cdk2 inhibitors p21Cip1 and p27Kip1 in anchorage-independent cells. Oncogene. 1998, 16: 2575-2583. 10.1038/sj.onc.1201791.PubMedCrossRef
84.
Zurück zum Zitat Cipriano SC, Chen YQ: Insensitivity to growth inhibition by TGF-beta1 correlates with a lack of inhibition of the CDK2 activity in prostate carcinoma cells. Oncogene. 1998, 17: 1949-1556. 10.1038/sj.onc.1202069.CrossRef Cipriano SC, Chen YQ: Insensitivity to growth inhibition by TGF-beta1 correlates with a lack of inhibition of the CDK2 activity in prostate carcinoma cells. Oncogene. 1998, 17: 1949-1556. 10.1038/sj.onc.1202069.CrossRef
85.
Zurück zum Zitat Jiang M, Shao Z-M, Wu J, et al: p21/waf1/cip1 and mdm-2 expression in breast carcinoma patients as related to prognosis. Int J Cancer. 1997, 74: 529-534. 10.1002/(SICI)1097-0215(19971021)74:5<529::AID-IJC9>3.0.CO;2-5.PubMedCrossRef Jiang M, Shao Z-M, Wu J, et al: p21/waf1/cip1 and mdm-2 expression in breast carcinoma patients as related to prognosis. Int J Cancer. 1997, 74: 529-534. 10.1002/(SICI)1097-0215(19971021)74:5<529::AID-IJC9>3.0.CO;2-5.PubMedCrossRef
86.
Zurück zum Zitat Tsihlias J, Kapusta LR, DeBoer G, et al: Loss of cyclin dependent kinase inhibitor p27Kip1 is a novel prognostic factor in localized human prostate adenocarcinoma. Cancer Res. 1998, 58: 542-548.PubMed Tsihlias J, Kapusta LR, DeBoer G, et al: Loss of cyclin dependent kinase inhibitor p27Kip1 is a novel prognostic factor in localized human prostate adenocarcinoma. Cancer Res. 1998, 58: 542-548.PubMed
87.
Zurück zum Zitat Lammie GA, Fantl V, Smith R, et al: D11S287, a putative oncogene on chromosome 11q13, is amplified and expressed in squamous cell and mammary carcinomas and linked to BCL-1. Oncogene. 1991, 6: 439-444.PubMed Lammie GA, Fantl V, Smith R, et al: D11S287, a putative oncogene on chromosome 11q13, is amplified and expressed in squamous cell and mammary carcinomas and linked to BCL-1. Oncogene. 1991, 6: 439-444.PubMed
88.
Zurück zum Zitat Buckley MF, Sweeney KJE, Hamilton JA, et al: Expression and amplification of cyclin genes in human breast cancer. Oncogene. 1993, 8: 2127-2133.PubMed Buckley MF, Sweeney KJE, Hamilton JA, et al: Expression and amplification of cyclin genes in human breast cancer. Oncogene. 1993, 8: 2127-2133.PubMed
89.
Zurück zum Zitat Okamoto A, Jiang W, Kim SJ, et al: Overexpression of human cyclin D1 reduces the transforming growth factor beta (TGF-beta) type II receptor and growth inhibition by TGF-beta 1 in an immortalized human esophageal epithelial cell line. Proc Natl Acad Sci USA. 1994, 91: 11576-11580.PubMedPubMedCentralCrossRef Okamoto A, Jiang W, Kim SJ, et al: Overexpression of human cyclin D1 reduces the transforming growth factor beta (TGF-beta) type II receptor and growth inhibition by TGF-beta 1 in an immortalized human esophageal epithelial cell line. Proc Natl Acad Sci USA. 1994, 91: 11576-11580.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Nielsen N, Arnerlov C, Emdin S, Landberg G: Cyclin E overexpression, a negative prognostic factor in breast cancer with strong correlation to estrogen receptor status. Br J Cancer. 1996, 74: 874-880.PubMedPubMedCentralCrossRef Nielsen N, Arnerlov C, Emdin S, Landberg G: Cyclin E overexpression, a negative prognostic factor in breast cancer with strong correlation to estrogen receptor status. Br J Cancer. 1996, 74: 874-880.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Ewen ME, Sluss HK, Whitehouse LL, Livingston DM: TGF-β inhibition of cdk4 synthesis is linked to cell cycle arrest. Cell. 1993, 74: 1009-1020. Overexpression of cdk4, but not of cdk2, was shown to abrogate sensitivity to G1 arrest by TGF-β.PubMedCrossRef Ewen ME, Sluss HK, Whitehouse LL, Livingston DM: TGF-β inhibition of cdk4 synthesis is linked to cell cycle arrest. Cell. 1993, 74: 1009-1020. Overexpression of cdk4, but not of cdk2, was shown to abrogate sensitivity to G1 arrest by TGF-β.PubMedCrossRef
92.
Zurück zum Zitat An H-X, Beckmann MW, Reifenberger G, Bender HG, Niederacher D: Gene amplification and overexpression of Cdk4 in sporadic breast carcinomas is associated with high tumor cell proliferation. Am J Pathol. 1999, 154: 113-118.PubMedPubMedCentralCrossRef An H-X, Beckmann MW, Reifenberger G, Bender HG, Niederacher D: Gene amplification and overexpression of Cdk4 in sporadic breast carcinomas is associated with high tumor cell proliferation. Am J Pathol. 1999, 154: 113-118.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Perez-Roger I, Kim SH, Griffiths B, Sweing A, Land H: Cyclins D1 and D2 mediate Myc-induced proliferation via sequestration of p27Kip1 and p21 Cip1. EMBO J. 1999, 18: 5310-5320. 10.1093/emboj/18.19.5310.PubMedPubMedCentralCrossRef Perez-Roger I, Kim SH, Griffiths B, Sweing A, Land H: Cyclins D1 and D2 mediate Myc-induced proliferation via sequestration of p27Kip1 and p21 Cip1. EMBO J. 1999, 18: 5310-5320. 10.1093/emboj/18.19.5310.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Bouchard C, Thisted K, Maier A, et al: Direct induction of cyclin D2 by Myc contributes to cell cycle induction and sequestration of p27. EMBO J. 1999, 18: 5321-5333. 10.1093/emboj/18.19.5321.PubMedPubMedCentralCrossRef Bouchard C, Thisted K, Maier A, et al: Direct induction of cyclin D2 by Myc contributes to cell cycle induction and sequestration of p27. EMBO J. 1999, 18: 5321-5333. 10.1093/emboj/18.19.5321.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Vlach J, Hennecke S, Alevizopoulos K, Conti D, Amati B: Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1 is abrogated by c-Myc. EMBO J. 1996, 15: 6595-6604.PubMedPubMedCentral Vlach J, Hennecke S, Alevizopoulos K, Conti D, Amati B: Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1 is abrogated by c-Myc. EMBO J. 1996, 15: 6595-6604.PubMedPubMedCentral
96.
Zurück zum Zitat Filmus J, Zhao J, Buick RN: Overexpression of H-ras oncogene induces resistance to the growth- inhibitory action of transforming growth factor beta-1 (TGF-beta 1) and alters the number and type of TGF-beta 1 receptors in rat intestinal epithelial cell clones. Oncogene. 1992, 7: 521-526.PubMed Filmus J, Zhao J, Buick RN: Overexpression of H-ras oncogene induces resistance to the growth- inhibitory action of transforming growth factor beta-1 (TGF-beta 1) and alters the number and type of TGF-beta 1 receptors in rat intestinal epithelial cell clones. Oncogene. 1992, 7: 521-526.PubMed
97.
Zurück zum Zitat Kretzschmar M, Doody J, Timokhina I, Massague J: A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev. 1999, 13: 804-816.PubMedPubMedCentralCrossRef Kretzschmar M, Doody J, Timokhina I, Massague J: A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev. 1999, 13: 804-816.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Cheng M, Sexl V, Sherr CJ, Roussel MF: Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc Natl Acad Sci USA. 1998, 95: 1091-1096. 10.1073/pnas.95.3.1091.PubMedPubMedCentralCrossRef Cheng M, Sexl V, Sherr CJ, Roussel MF: Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc Natl Acad Sci USA. 1998, 95: 1091-1096. 10.1073/pnas.95.3.1091.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Diehl JA, Cheng M, Roussel MF, Sherr CJ: Glycogen synthase kinase-3 beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998, 12: 3499-3511.PubMedPubMedCentralCrossRef Diehl JA, Cheng M, Roussel MF, Sherr CJ: Glycogen synthase kinase-3 beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998, 12: 3499-3511.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Ram TG, Ethier SP: Phosphatidylinositol 3-kinase recruitment by p185erbB-2 and erbB-3 is potently induced by neu differentiation factor/heregulin during mitogenesis and is constitutively elevated in growth factor-independent breast carcinoma cells with c-erbB-2 gene amplification. Cell Growth Differ. 1996, 7: 551-561.PubMed Ram TG, Ethier SP: Phosphatidylinositol 3-kinase recruitment by p185erbB-2 and erbB-3 is potently induced by neu differentiation factor/heregulin during mitogenesis and is constitutively elevated in growth factor-independent breast carcinoma cells with c-erbB-2 gene amplification. Cell Growth Differ. 1996, 7: 551-561.PubMed
101.
Zurück zum Zitat Brennan P, Babbage JW, Burgering BMT, et al: Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity. 1997, 7: 679-689.PubMedCrossRef Brennan P, Babbage JW, Burgering BMT, et al: Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity. 1997, 7: 679-689.PubMedCrossRef
102.
Zurück zum Zitat Gerwin BI, Spillare E, Forrester K, et al: Mutant p53 can induce tumorigenic conversion of human bronchial epithelial cells and reduce responsiveness to a negative growth factor, transforming growth factor β1. Proc Natl Acad Sci USA. 1992, 89: 2759-2763.PubMedPubMedCentralCrossRef Gerwin BI, Spillare E, Forrester K, et al: Mutant p53 can induce tumorigenic conversion of human bronchial epithelial cells and reduce responsiveness to a negative growth factor, transforming growth factor β1. Proc Natl Acad Sci USA. 1992, 89: 2759-2763.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Reiss M, Vellucci VF, Zhou ZL: Mutant p53 tumor suppressor gene causes resistance to transforming growth factor beta 1 in murine keratinocytes. Cancer Res. 1993, 53: 899-904.PubMed Reiss M, Vellucci VF, Zhou ZL: Mutant p53 tumor suppressor gene causes resistance to transforming growth factor beta 1 in murine keratinocytes. Cancer Res. 1993, 53: 899-904.PubMed
104.
Zurück zum Zitat Wyllie FS, Dawson T, Bond JA, et al: Correlated abnormalities of transforming growth factor-β1 response and p53 expression in thyroid epithelial cell transformation. Mol Cell Endocrinol. 1991, 76: 13-21. 10.1016/0303-7207(91)90255-Q.PubMedCrossRef Wyllie FS, Dawson T, Bond JA, et al: Correlated abnormalities of transforming growth factor-β1 response and p53 expression in thyroid epithelial cell transformation. Mol Cell Endocrinol. 1991, 76: 13-21. 10.1016/0303-7207(91)90255-Q.PubMedCrossRef
105.
Zurück zum Zitat Sun P, Dong P, Dai K, Hannon GJ, Beach D: p53-independent role of MDM2 in TGF-beta 1 resistance. Science. 1998, 282: 2270-2272. 10.1126/science.282.5397.2270.PubMedCrossRef Sun P, Dong P, Dai K, Hannon GJ, Beach D: p53-independent role of MDM2 in TGF-beta 1 resistance. Science. 1998, 282: 2270-2272. 10.1126/science.282.5397.2270.PubMedCrossRef
106.
Zurück zum Zitat Bueso-Ramos CE, Manshouri T, Haidar MA, et al: Abnormal expression of MDM-2 in breast carcinomas. Breast Cancer Res Treat. 1996, 37: 179-188.PubMedCrossRef Bueso-Ramos CE, Manshouri T, Haidar MA, et al: Abnormal expression of MDM-2 in breast carcinomas. Breast Cancer Res Treat. 1996, 37: 179-188.PubMedCrossRef
107.
Zurück zum Zitat Gunther T, Schneider-Stock R, Rys J, Niezabitowski A, Roessner A: p53 gene mutations and expression of p53 and mdm2 proteins in invasive breast carcinoma. A comparative analysis with clinicopathological factors. J Cancer Res Clin Oncol. 1997, 123: 388-394. 10.1007/s004320050076.PubMedCrossRef Gunther T, Schneider-Stock R, Rys J, Niezabitowski A, Roessner A: p53 gene mutations and expression of p53 and mdm2 proteins in invasive breast carcinoma. A comparative analysis with clinicopathological factors. J Cancer Res Clin Oncol. 1997, 123: 388-394. 10.1007/s004320050076.PubMedCrossRef
Metadaten
Titel
Transforming growth factor-β and breast cancer: Cell cycle arrest by transforming growth factor-β and its disruption in cancer
verfasst von
Jeffrey Donovan
Joyce Slingerland
Publikationsdatum
01.04.2000
Verlag
BioMed Central
Erschienen in
Breast Cancer Research / Ausgabe 2/2000
Elektronische ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr43

Weitere Artikel der Ausgabe 2/2000

Breast Cancer Research 2/2000 Zur Ausgabe

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.