Skip to main content
Erschienen in: Respiratory Research 1/2020

Open Access 01.12.2020 | Research

Trends and seasonal variation of hospitalization and mortality of interstitial lung disease in the United States from 2006 to 2016

verfasst von: An Thi Nhat Ho, Artem Shmelev, Edward Charbek

Erschienen in: Respiratory Research | Ausgabe 1/2020

Abstract

Background

In the recent years, the overall trends in hospital admission and mortality of interstitial lung disease (ILD) are unknown. In addition, there was some evidence that interstitial lung disease death rate highest in the winter but this finding was only available in one study. This study will investigate the trend and seasonal variations in hospital admission and mortality rates of ILD from 2006 to 2016.

Method

From the Nationwide Inpatient Sample database, we collected all cases with the International Classification of Diseases (ICD)-9 or ICD-10 codes of ILD excluding identifiable external causes (drug, organic or inorganic dusts) from 2006 to 2016. Hospitalization rates of each year were calculated based on U.S Census population data. Monthly hospitalization and in-hospital mortality rates were analyzed by seasonal and trend decomposition. Subgroups of idiopathic interstitial fibrosis (IPF), acute respiratory failure (ARF), pneumonia were analyzed.

Results

From 2006 to 2016, all-cause hospital admission rate of patients with interstitial lung disease (ILD) and IPF-only subgroup declined but their overall mortality remained unchanged (except IPF subgroup and acute respiratory failure subgroup). Acute respiratory failure related admission account for 23% of all causes and pneumonia 17.6%. Mortality of ILD in general and subgroup of ILD with ARF was highest in winter, up to 8.13% ± 0.60 and 26.3% ± 10.2% respectively. The seasonal variations of hospital admission and mortality of ILD in general was not changed when infectious pneumonia cases were ruled out. All cause admission rates were highest in months from January to April. Subgroup analysis also showed seasonal variations with highest hospitalization rates for all subgroups (IPF, ARF, pneumonia) in the months from December to April (winter to early Spring).

Conclusion

From 2006 to 2016, admission rates of ILD of all causes and IPF subgroup declined but in-hospital mortality of ILD of all causes remained unchanged. Mortality of IPF subgroup and acute respiratory failure subgroup trended down. All-cause hospital admissions and mortality of ILD have a strong seasonal variation. Hospitalization rates for all subgroups (IPF, ARF, pneumonia) were highest in the months from December to April.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12931-020-01421-0.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ILD
Interstitial Lung Disease
IPF
Idiopathic Pulmonary Fibrosis
PF
Pulmonary Fibrosis
NIS
Nationwide Inpatient Sample
ICD-9CM
International Classification of Diseases, ninth revision, clinical modification

Introduction

Interstitial lung disease (ILD) is a group of lung disorders characterized by abnormalities within the interstitium with or without extensive alteration of alveoli and airways [1]. There have been multiple forms of interstitial lung disease described, most of which lead to progressive lung scarring and dyspnea if left untreated [2, 3]. Idiopathic pulmonary fibrosis (IPF) is one of the most well described ILD with overall very poor prognosis and median survival of 3 to 5 years [46]. ILD remains still one of the most challenging respiratory entities to fully understand effectively treat and requires high healthcare utilization. In the past decade, there have been multiple new treatments and knowledge of this complex group of lung disorder. However, study on the overall trend of hospital admission and mortality over the last decade is still needed.
Seasonal variations can play a major role in the general health and wellbeing of patients with respiratory conditions. Winter season can impact lung function and increase the risk of acute exacerbations [7]. The mechanisms of this observation are complex and not fully understood [8]. Pulmonary conditions other than interstitial lung disease such as chronic obstructive pulmonary disease (COPD) have been well studied showing significant seasonal variation [911]. Understanding how respiratory diseases change with seasonal variation could guide medical professionals in more effective health resource allocation and to direct future studies on the pathogenesis of this complex entity.
Using a large administrative database, we aimed to analyze the trends and seasonal association of hospital admission and all-cause mortality of ILD in the past 10 years.

Methods

We obtained the study population from Nationwide Inpatient Sample (NIS) of Agency for Healthcare Resource and Quality (AHRQ) Healthcare Cost and Utilization Project, years 2006 to 2016. All data contained in these database files have previously been de-identified and are off public record, therefore, our institutional review board decided no approval for the study was necessary.
Appropriate weighting was used to produce accurate nation-wide estimates.
Study population was limited to adult patients (age ≥ 18), admitted with the primary diagnosis of interstitial lung disease (ILD) of all causes excluding the identifiable external causes (drug, asbestos, silicosis, pneumoconiosis, hypersensitivity pneumonitis due to organic dusts). (International Classification of Diseases, ninth revision, clinical modification (ICD-9-CM) diagnostic codes 516.30 through 516.37 and 515); ICD-10-CM codes J84.1 through J84.117). A complete list of used ICD codes with description is available in the Appendix. Annual population estimates were obtained from U.S Census Bureau, to account for growing U.S population.

Statistical analysis

Weighted annual and monthly hospitalization and in-hospital mortality rates were calculated. Hospitalization rates within each year were calculated based on U.S. Census population estimates for a given year. In-hospital mortality rates were calculated with admission number as denominators and in-hospital death numbers as numerators. Monthly hospitalization or mortality rates represent a time series and can be analyzed by seasonal and trend decomposition procedures to reveal long-term trends, seasonality, and random fluctuations. Seasons were defined in a standard manner (“winter” includes December through February, “spring” – March through May, “summer” – June through August, and “fall” – September through November).
We performed multiple subgroup analyses. The first group included all cases with the primary diagnoses of IDL or PF. In second subgroup, we included only record with interstitial pulmonary fibrosis. Interstitial pulmonary fibrosis cases were identified based on the broad case definition algorithm proposed by Raghu et al. (see the Supplementary Appendix 2). In the third subgroup, we included only record of ILD with acute respiratory failure. The fourth subgroup included ILD with concomitant infectious pneumonia. Please se Appendix section for all ICD codes.
Inter-month and inter-seasonal differences of mean number of hospitalizations was assessed by Kruskal-Wallis rank sum test.
Significance and magnitude of observed annual trends was evaluated by Mann-Kendall test and Sen’s slope (Sen PK, 1968).

Results

Hospital admissions

Average monthly hospitalization rate per 1,000,000 population ranges from 6.9 ± 0.8 in July to 8 ± 1.2 in April. The months from January to April had higher number of admissions compared to the remaining months of the year (Fig. 1). Seasonal pattern of hospitalization rate was the same between subgroups of included and excluded pneumonia.
After merging of months into seasons, mean (±SD) number of hospitalizations in spring, summer, fall and winter were 7447.9 ± 932.0, 6643.0 ± 840.5, 6551.3 ± 922.6 and 7110.3 ± 866.1 respectively (Fig. 2). Inter-seasonal differences did not reach statistical significance (ANOVA p = 0.079). However, the difference was found to be significant (independent samples t-test p-value = 0.035) by comparison of number of hospitalizations during spring (7447.9 ± 932.0) with other seasons (summer, fall, winter) combined (6768.2 ± 884.8).
Crude monthly hospitalization rate and trend (by LOESS seasonal decomposition) over 11 years (2006–2016) is demonstrated in Fig. 3. The observed descending trends were statistically significant (p < 0.001 on Mann-Kendall test) in both subgroups (with and without exclusion of admissions with PNA). Corresponding Sen’s slopes were similar: − 0.00133 in group without exclusion of PNA admissions and − 0.001167 in group with PNA exclusion. Please note, that National Inpatient Sample switched to ICD-10 system in the third quarter of 2015 database, which could affect reporting of multiple diseases and conditions including PF, despite careful translation of ICD-9 diagnostic codes.

Mortality

The highest mortality was noted in December and February. The presence or absence of diagnosis of infectious pneumonia did not significantly affect seasonal variation of mortality.
Mortality rate in spring, summer, fall and winter were 7.61% ± 0.67, 7.13% ± 0.79, 7.57% ± 0.69 and 8.13% ± 0.60% respectively (Fig. 4). Observed differences were significant (ANOVA p = 0.018). Again, the highest mortality predisposition to winter was re-demonstrated.
Trend in mortality rate over 11 years are demonstrated in Fig. 5. Observed trends were not significant (Mann-Kendall p = 0.7144 in subgroup without exclusion of PNA admissions, and 0.2218 in subgroup of excluded PNA admissions).

Subgroups analysis (see figures in supplementary appendix 3)

Only idiopathic pulmonary fibrosis (IPF) subgroup

There was a downward trend in hospitalization and mortality of IPF over 11 years which was statistically significant (p < 0.05) (Fig. 6). IPF accounts for 88% of all admission of interstitial lung disease based on our broad diagnosis algorithm. Hospitalization rate of IPF were noted to be highest in the months from January to April compared to the rest of the months but the mortality rates were not different between months.

Only acute respiratory failure (ARF) as the cause of admission subgroup

Acute respiratory failure accounts for 23% of all admission due to interstitial lung disease. Seasonality of hospitalizations and in-hospital mortality did not reach statistical significance on analysis of crude monthly rates, however, seasonal decomposition revealed hidden seasonal variation with slightly higher admission rates in winter. Mortality ranges from 24.2% ± 9.6% in July to 29.1% ± 11% in February. Hospitalization rates demonstrated a strong significant up-going trend with almost three-fold increase during 11 years (trend p < 0.001). Mortality decreased at least two-fold with monotonous significant trend (p < 0.001) (Fig. 7).

Only pneumonia as the cause of admission subgroup

Admission with the diagnosis of pneumonia accounts for 17.6% of all admission due to interstitial lung disease. Hospitalization rates in months of December to April were observed to be higher than the remaining months of the year (p = 0.007) but mortality did not differ between the months (p = 0.876). Hospitalization rate of ILD patients admitted for pneumonia decreased (p < 0.05) but mortality rate remained the same in the period from 2006 to 2016 (p = 0.756)

Discussion

To the best of our knowledge, our study is the first to describe both seasonal variations of hospital admission and in-hospital mortality for IPF and non-IPF ILD in the United States in the 11 year- period from 2006 to 2016. Our primary findings are that from 2006 to 2016, all-cause hospital admission rate of patients with interstitial lung disease (all interstitial lung disease and IPF-only subgroup) declined but their overall mortality remained unchanged (except IPF subgroup). Acute respiratory failure related admission account for 23% of all causes and pneumonia 17.6%. Mortality of ILD in general and ILD with acute respiratory failure is highest in winter, up to 8.13% ± 0.60 and 26.3% ± 10.2% respectively. Admission rate for all cause admissions are highest in months from January to April. Subgroup analysis also showed seasonal variations with highest hospitalization rates for all subgroups (IPF, ARF, pneumonia) in the months from December to April (winter to early Spring).
Our finding of highest all-cause mortality for all causes of admissions and subgroup of acute respiratory failure in the winter was similar to the findings by Olson et al. which used a different database for analysis [12]. Seasonal variations were observed in hospitalization rates across all subgroups (acute respiratory failure, IPF, pneumonia) as well. The two most common explanations for winter and early Spring increase in admission rates are respiratory infection and cold temperature. Cold air could hypothetically induce hyperpnoea, subsequently cause drying of the airways [13] and inducing proinflammatory substances production leading to epithelial injury [8]. Infectious etiology was suggested because strong seasonal variations have been reported in COPD, pneumonia and recognized viral illness [14]. There is some evidence that a colder environment could also prolong the life span of viruses. Many viruses such as influenza A, RSV and mycoplasma pneumonia which cause infections in humans almost exclusively in winter to early spring [15, 16]. One interesting findings is that although winter has highest admission rate for all subgroups (IPF, ARF, pneumonia and ILD in general), the mortality does not have strong seasonal variations in idiopathic pulmonary fibrosis and pneumonia only subgroup. One hypothesis could be the severity of IPF related admissions and pneumonia has no weather association. We could not find literature to explain this finding thoroughly and it could be a topic for future research.
Respiratory causes of death accounted for 64 -89% in patients with ILD [1719]. We found that acute respiratory failure accounts for 23% of admission of interstitial lung disease and this types of admission has high mortality rate of 26.3% ± 10.2%. This finding concurs with the results of Moua et al. that IPF and non-IPF interstitial lung disease both have very high and similar mortality rates after admission for respiratory distress [20]. Based on a study in Finland, ischemic heart disease, heart failure and lung cancer were the other causes of death [21]. All of those conditions also have been reported to have higher mortality in winter time in the general population [12, 22], which may explain the higher mortality in IPF and non IPF ILD patients in winter time.
Of note, the in-hospital mortality of interstitial lung disease was noted to be significantly higher than the similar study in chronic obstructive lung disease (COPD) and asthma patients using the same national database,8% vs 2, 8% vs 1% respectively [23, 24]. interestingly enough, the mortality rate was 14% higher in the winter compared to the summer, which was less pronounced than the seasonal variations of all cause of deaths of COPD patients (25 to 50% higher in the winter) [12, 25]. Although both COPD and interstitial lung disease are both progressive illnesses with the pathogenesis involving accelerated cellular senescence [26]. This finding suggests that the impact of weather and viral illness on mortality might not be as pronounced in ILD, compared to COPD.
One of the utmost important roles of physicians is to prevent hospital admission for ILD patients. ILD and especially IPF related admissions are significant events after which the lung function of patients will significantly deteriorate with the mean survival only from 2.8 months to 27.7 months [27]. From our study, we found that all cause admission rates in ILD patients, subgroup of only IPF, acute respiratory failure and only pneumonia in the last 11 years were highest in the months December to April (winter to early Spring). Spring in general had highest admission rates compared to the average of other seasons, even when infectious lung diseases were ruled out. Moineddin et al. in their study in the primary care settings found a higher office visits due to respiratory disease in the months from December to April [28].
In the period of 11 years from 2006 to 2016, we observed a decrease in admissions rate for all cause hospital admission for ILD (all types ILD and subgroup of IPF) with the rise in population taken into account. The sharp decrease in 2016 hospital admissions might be a result of incomplete report of administrative data possibly due to the transition from ICD-10 system in the third quarter of 2015. In addition, many advances have been introduced in diagnosis and treatment of interstitial lung disease [29] as well as in hospital management in reducing hospital admissions [30].
The all-cause mortality rate from interstitial lung disease from 2006 to 2016 has been unchanged. However, the all-cause mortality rate of idiopathic pulmonary fibrosis subgroup encouragingly decreased in this 11-year period. Anti-fibrotic treatment availability could be a possible explanation. A recent large database study by Demsey et al. reported a decreased mortality risk in IPF patients in the first 2 years of anti-fibrotic treatment [31]. However, it is challenging to pinpoint a single factor that lead to this encouraging result based on our study especially when antifibrotic therapies were only approved since 2014 [32].
Our study has limitations. We did not include all types of interstitial lung disease We excluded the interstitial lung disease group with identifiable external agents (organic dust, drug, asbestos, silicosis, pneumoconiosis) because of two reasons. Firstly, it is for the comparison with the results of the study by Olson et al. for the interstitial lung disease group from 1992 to 2003 [12] and secondly, including ILD group with identifiable external agents with different pathogenesis will create more heterogeneity to our population. IPF cases were identified based on a broad definition algorithm which has been commonly used in the epidemiology studies. However, this algorithm was sensitive but not specific [33], thus could overestimate the prevalence of IPF in our ILD population. We also did not include the analysis of ILD with and without lung cancer subgroups because it would require extensive analysis beyond the scope of this manuscript. Concomitant lung cancer and interstitial lung disease could be a topic for future studies. Although we have included all ICD-9-CM and ICD-10-CM codes for interstitial lung disease, the results are inevitably susceptible to errors from coding inaccuracies. Nevertheless, this study has provided with an important and objective overview on the seasonal variations and trends in admissions and mortality of this entity spectrum over a long period of time.

Conclusion

All cause hospital admission and mortality of interstitial lung disease have a strong seasonal variation in 11 years from 2006 to 2016. Hospital admissions are highest in the period from January to May, in-hospital death was highest in the winter. All- cause hospital admission of patients with interstitial lung disease declined but their mortality remained unchanged, with or without the presence of infectious pneumonia.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12931-020-01421-0.

Acknowledgements

Not available
This is a study based on large national administrative database that is available for public. Consent and ethics approval was waived and not applicable.
Not applicable.

Competing interests

The authors have no conflict of interest and no financial support to disclose.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge
Literatur
1.
Zurück zum Zitat Bradley B, Branley HM, Egan JJ, Greaves MS, Hansell DM, Harrison NK, Hirani N, Hubbard R, Lake F, Millar AB, et al. Interstitial lung disease guideline: the British Thoracic Society in collaboration with the Thoracic Society of Australia and new Zealand and the Irish thoracic society. Thorax. 2008;63(Suppl 5):v1–58.PubMed Bradley B, Branley HM, Egan JJ, Greaves MS, Hansell DM, Harrison NK, Hirani N, Hubbard R, Lake F, Millar AB, et al. Interstitial lung disease guideline: the British Thoracic Society in collaboration with the Thoracic Society of Australia and new Zealand and the Irish thoracic society. Thorax. 2008;63(Suppl 5):v1–58.PubMed
2.
Zurück zum Zitat Meyer KC. Diagnosis and management of interstitial lung disease. Transl Respir Med. 2014;2:4.CrossRef Meyer KC. Diagnosis and management of interstitial lung disease. Transl Respir Med. 2014;2:4.CrossRef
3.
Zurück zum Zitat American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS executive committee, June 2001. Am J Respir Crit Care Med. 2002;165:277–304.CrossRef American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS executive committee, June 2001. Am J Respir Crit Care Med. 2002;165:277–304.CrossRef
4.
Zurück zum Zitat Hutchinson JP, McKeever TM, Fogarty AW, Navaratnam V, Hubbard RB. Increasing global mortality from idiopathic pulmonary fibrosis in the twenty-first century. Ann Am Thorac Soc. 2014;11:1176–85.CrossRef Hutchinson JP, McKeever TM, Fogarty AW, Navaratnam V, Hubbard RB. Increasing global mortality from idiopathic pulmonary fibrosis in the twenty-first century. Ann Am Thorac Soc. 2014;11:1176–85.CrossRef
5.
Zurück zum Zitat Ley B, Collard HR. Epidemiology of idiopathic pulmonary fibrosis. Clin Epidemiol. 2013;5:483–92.CrossRef Ley B, Collard HR. Epidemiology of idiopathic pulmonary fibrosis. Clin Epidemiol. 2013;5:483–92.CrossRef
6.
Zurück zum Zitat Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183:788–824.CrossRef Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183:788–824.CrossRef
7.
Zurück zum Zitat Koskela HO. Cold air-provoked respiratory symptoms: the mechanisms and management. Int J Circumpolar Health. 2007;66:91–100.CrossRef Koskela HO. Cold air-provoked respiratory symptoms: the mechanisms and management. Int J Circumpolar Health. 2007;66:91–100.CrossRef
8.
Zurück zum Zitat D'Amato M, Molino A, Calabrese G, Cecchi L, Annesi-Maesano I, D'Amato G. The impact of cold on the respiratory tract and its consequences to respiratory health. Clin Transl Allergy. 2018;8:20.CrossRef D'Amato M, Molino A, Calabrese G, Cecchi L, Annesi-Maesano I, D'Amato G. The impact of cold on the respiratory tract and its consequences to respiratory health. Clin Transl Allergy. 2018;8:20.CrossRef
9.
Zurück zum Zitat Hansel NN, McCormack MC, Kim V. The effects of air pollution and temperature on COPD. COPD. 2016;13:372–9.CrossRef Hansel NN, McCormack MC, Kim V. The effects of air pollution and temperature on COPD. COPD. 2016;13:372–9.CrossRef
10.
Zurück zum Zitat Hoffmann C, Hanisch M, Heinsohn JB, Dostal V, Jehn M, Liebers U, Pankow W, Donaldson GC, Witt C. Increased vulnerability of COPD patient groups to urban climate in view of global warming. Int J Chron Obstruct Pulmon Dis. 2018;13:3493–501.CrossRef Hoffmann C, Hanisch M, Heinsohn JB, Dostal V, Jehn M, Liebers U, Pankow W, Donaldson GC, Witt C. Increased vulnerability of COPD patient groups to urban climate in view of global warming. Int J Chron Obstruct Pulmon Dis. 2018;13:3493–501.CrossRef
11.
Zurück zum Zitat So JY, Zhao H, Voelker H, Reed RM, Sin D, Marchetti N, Criner GJ. Seasonal and regional variations in chronic obstructive pulmonary disease exacerbation rates in adults without cardiovascular risk factors. Ann Am Thorac Soc. 2018;15:1296–303.CrossRef So JY, Zhao H, Voelker H, Reed RM, Sin D, Marchetti N, Criner GJ. Seasonal and regional variations in chronic obstructive pulmonary disease exacerbation rates in adults without cardiovascular risk factors. Ann Am Thorac Soc. 2018;15:1296–303.CrossRef
12.
Zurück zum Zitat Olson AL, Swigris JJ, Raghu G, Brown KK. Seasonal variation: mortality from pulmonary fibrosis is greatest in the winter. Chest. 2009;136:16–22.CrossRef Olson AL, Swigris JJ, Raghu G, Brown KK. Seasonal variation: mortality from pulmonary fibrosis is greatest in the winter. Chest. 2009;136:16–22.CrossRef
13.
Zurück zum Zitat Daviskas E, Gonda I, Anderson SD. Mathematical modeling of heat and water transport in human respiratory tract. J Appl Physiol. 1990;69:362–72.CrossRef Daviskas E, Gonda I, Anderson SD. Mathematical modeling of heat and water transport in human respiratory tract. J Appl Physiol. 1990;69:362–72.CrossRef
14.
Zurück zum Zitat Hament JM, Kimpen JL, Fleer A, Wolfs TF. Respiratory viral infection predisposing for bacterial disease: a concise review. FEMS Immunol Med Microbiol. 1999;26:189–95.CrossRef Hament JM, Kimpen JL, Fleer A, Wolfs TF. Respiratory viral infection predisposing for bacterial disease: a concise review. FEMS Immunol Med Microbiol. 1999;26:189–95.CrossRef
15.
Zurück zum Zitat Tang JW. The effect of environmental parameters on the survival of airborne infectious agents. J R Soc Interface. 2009;6(Suppl 6):S737–46.PubMedPubMedCentral Tang JW. The effect of environmental parameters on the survival of airborne infectious agents. J R Soc Interface. 2009;6(Suppl 6):S737–46.PubMedPubMedCentral
16.
Zurück zum Zitat Monto AS. Epidemiology of viral respiratory infections. Am J Med. 2002;112(Suppl 6A):4S–12S.CrossRef Monto AS. Epidemiology of viral respiratory infections. Am J Med. 2002;112(Suppl 6A):4S–12S.CrossRef
17.
Zurück zum Zitat Daniels CE, Yi ES, Ryu JH. Autopsy findings in 42 consecutive patients with idiopathic pulmonary fibrosis. Eur Respir J. 2008;32:170–4.CrossRef Daniels CE, Yi ES, Ryu JH. Autopsy findings in 42 consecutive patients with idiopathic pulmonary fibrosis. Eur Respir J. 2008;32:170–4.CrossRef
18.
Zurück zum Zitat Martinez FJ, Safrin S, Weycker D, Starko KM, Bradford WZ, King TE Jr, Flaherty KR, Schwartz DA, Noble PW, Raghu G, et al. The clinical course of patients with idiopathic pulmonary fibrosis. Ann Intern Med. 2005;142:963–7.CrossRef Martinez FJ, Safrin S, Weycker D, Starko KM, Bradford WZ, King TE Jr, Flaherty KR, Schwartz DA, Noble PW, Raghu G, et al. The clinical course of patients with idiopathic pulmonary fibrosis. Ann Intern Med. 2005;142:963–7.CrossRef
19.
Zurück zum Zitat Collard HR, Moore BB, Flaherty KR, Brown KK, Kaner RJ, King TE Jr, Lasky JA, Loyd JE, Noth I, Olman MA, et al. Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2007;176:636–43.CrossRef Collard HR, Moore BB, Flaherty KR, Brown KK, Kaner RJ, King TE Jr, Lasky JA, Loyd JE, Noth I, Olman MA, et al. Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2007;176:636–43.CrossRef
20.
Zurück zum Zitat Moua T, Westerly BD, Dulohery MM, Daniels CE, Ryu JH, Lim KG. Patients with fibrotic interstitial lung disease hospitalized for acute respiratory worsening: a large cohort analysis. Chest. 2016;149:1205–14.CrossRef Moua T, Westerly BD, Dulohery MM, Daniels CE, Ryu JH, Lim KG. Patients with fibrotic interstitial lung disease hospitalized for acute respiratory worsening: a large cohort analysis. Chest. 2016;149:1205–14.CrossRef
21.
Zurück zum Zitat Karkkainen M, Nurmi H, Kettunen HP, Selander T, Purokivi M, Kaarteenaho R. Underlying and immediate causes of death in patients with idiopathic pulmonary fibrosis. BMC Pulm Med. 2018;18:69.CrossRef Karkkainen M, Nurmi H, Kettunen HP, Selander T, Purokivi M, Kaarteenaho R. Underlying and immediate causes of death in patients with idiopathic pulmonary fibrosis. BMC Pulm Med. 2018;18:69.CrossRef
22.
Zurück zum Zitat Marti-Soler H, Gonseth S, Gubelmann C, Stringhini S, Bovet P, Chen PC, Wojtyniak B, Paccaud F, Tsai DH, Zdrojewski T, Marques-Vidal P. Seasonal variation of overall and cardiovascular mortality: a study in 19 countries from different geographic locations. PLoS One. 2014;9:e113500.CrossRef Marti-Soler H, Gonseth S, Gubelmann C, Stringhini S, Bovet P, Chen PC, Wojtyniak B, Paccaud F, Tsai DH, Zdrojewski T, Marques-Vidal P. Seasonal variation of overall and cardiovascular mortality: a study in 19 countries from different geographic locations. PLoS One. 2014;9:e113500.CrossRef
23.
Zurück zum Zitat Patil SP, Krishnan JA, Lechtzin N, Diette GB. In-hospital mortality following acute exacerbations of chronic obstructive pulmonary disease. Arch Intern Med. 2003;163:1180–6.CrossRef Patil SP, Krishnan JA, Lechtzin N, Diette GB. In-hospital mortality following acute exacerbations of chronic obstructive pulmonary disease. Arch Intern Med. 2003;163:1180–6.CrossRef
24.
Zurück zum Zitat Kaur BP, Lahewala S, Arora S, Agnihotri K, Panaich SS, Secord E, Levine D. Asthma: hospitalization trends and predictors of in-hospital mortality and hospitalization costs in the USA (2001-2010). Int Arch Allergy Immunol. 2015;168:71–8.CrossRef Kaur BP, Lahewala S, Arora S, Agnihotri K, Panaich SS, Secord E, Levine D. Asthma: hospitalization trends and predictors of in-hospital mortality and hospitalization costs in the USA (2001-2010). Int Arch Allergy Immunol. 2015;168:71–8.CrossRef
25.
Zurück zum Zitat Wise RA, Calverley PM, Carter K, Clerisme-Beaty E, Metzdorf N, Anzueto A. Seasonal variations in exacerbations and deaths in patients with COPD during the TIOSPIR((R)) trial. Int J Chron Obstruct Pulmon Dis. 2018;13:605–16.CrossRef Wise RA, Calverley PM, Carter K, Clerisme-Beaty E, Metzdorf N, Anzueto A. Seasonal variations in exacerbations and deaths in patients with COPD during the TIOSPIR((R)) trial. Int J Chron Obstruct Pulmon Dis. 2018;13:605–16.CrossRef
26.
Zurück zum Zitat Chilosi M, Poletti V, Rossi A. The pathogenesis of COPD and IPF: distinct horns of the same devil? Respir Res. 2012;13:3.CrossRef Chilosi M, Poletti V, Rossi A. The pathogenesis of COPD and IPF: distinct horns of the same devil? Respir Res. 2012;13:3.CrossRef
27.
Zurück zum Zitat Brown AW, Fischer CP, Shlobin OA, Buhr RG, Ahmad S, Weir NA, Nathan SD. Outcomes after hospitalization in idiopathic pulmonary fibrosis: a cohort study. Chest. 2015;147:173–9.CrossRef Brown AW, Fischer CP, Shlobin OA, Buhr RG, Ahmad S, Weir NA, Nathan SD. Outcomes after hospitalization in idiopathic pulmonary fibrosis: a cohort study. Chest. 2015;147:173–9.CrossRef
28.
Zurück zum Zitat Moineddin R, Nie JX, Domb G, Leong AM, Upshur RE. Seasonality of primary care utilization for respiratory diseases in Ontario: a time-series analysis. BMC Health Serv Res. 2008;8:160.CrossRef Moineddin R, Nie JX, Domb G, Leong AM, Upshur RE. Seasonality of primary care utilization for respiratory diseases in Ontario: a time-series analysis. BMC Health Serv Res. 2008;8:160.CrossRef
29.
Zurück zum Zitat Mori S, Furukawa H, Kawaguchi Y, Suda T, Tasaka S. Current developments in interstitial lung disease. Clin Med Insights Circ Respir Pulm Med. 2015;9:173–7.PubMed Mori S, Furukawa H, Kawaguchi Y, Suda T, Tasaka S. Current developments in interstitial lung disease. Clin Med Insights Circ Respir Pulm Med. 2015;9:173–7.PubMed
30.
Zurück zum Zitat Kripalani S, Theobald CN, Anctil B, Vasilevskis EE. Reducing hospital readmission rates: current strategies and future directions. Annu Rev Med. 2014;65:471–85.CrossRef Kripalani S, Theobald CN, Anctil B, Vasilevskis EE. Reducing hospital readmission rates: current strategies and future directions. Annu Rev Med. 2014;65:471–85.CrossRef
31.
Zurück zum Zitat Dempsey TM, Sangaralingham LR, Yao X, Sanghavi D, Shah ND, Limper AH. Clinical effectiveness of Antifibrotic medications for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2019;200:168–74.CrossRef Dempsey TM, Sangaralingham LR, Yao X, Sanghavi D, Shah ND, Limper AH. Clinical effectiveness of Antifibrotic medications for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2019;200:168–74.CrossRef
32.
Zurück zum Zitat Saito S, Alkhatib A, Kolls JK, Kondoh Y, Lasky JA. Pharmacotherapy and adjunctive treatment for idiopathic pulmonary fibrosis (IPF). J Thorac Dis. 2019;11:S1740–54.CrossRef Saito S, Alkhatib A, Kolls JK, Kondoh Y, Lasky JA. Pharmacotherapy and adjunctive treatment for idiopathic pulmonary fibrosis (IPF). J Thorac Dis. 2019;11:S1740–54.CrossRef
33.
Zurück zum Zitat Ley B, Urbania T, Husson G, Vittinghoff E, Brush DR, Eisner MD, Iribarren C, Collard HR. Code-based Diagnostic Algorithms for Idiopathic Pulmonary Fibrosis. Case validation and improvement. Ann Am Thorac Soc. 2017;14:880–7.CrossRef Ley B, Urbania T, Husson G, Vittinghoff E, Brush DR, Eisner MD, Iribarren C, Collard HR. Code-based Diagnostic Algorithms for Idiopathic Pulmonary Fibrosis. Case validation and improvement. Ann Am Thorac Soc. 2017;14:880–7.CrossRef
Metadaten
Titel
Trends and seasonal variation of hospitalization and mortality of interstitial lung disease in the United States from 2006 to 2016
verfasst von
An Thi Nhat Ho
Artem Shmelev
Edward Charbek
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Respiratory Research / Ausgabe 1/2020
Elektronische ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-020-01421-0

Weitere Artikel der Ausgabe 1/2020

Respiratory Research 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.