Skip to main content
Erschienen in: European Journal of Applied Physiology 5/2020

14.03.2020 | Original Article

“Two sides of the same coin”: constant motor learning speeds up, whereas variable motor learning stabilizes, speed–accuracy movements

verfasst von: Albertas Skurvydas, Andrius Satas, Dovile Valanciene, Gediminas Mamkus, Dalia Mickeviciene, Daiva Majauskiene, Marius Brazaitis

Erschienen in: European Journal of Applied Physiology | Ausgabe 5/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The aim of this study was to determine the time course of the trade-off between speed and accuracy, intraindividual variability, and movement transfer and retention (4 weeks after learning) of speed–accuracy tasks.

Methods

The participants in this study were healthy adults randomly divided into three groups (control versus constant versus variable). They were aged 19–24 years, and 30 (15 men and 15 women) were in each group. Participants had to perform various tasks with the right dominant hand: (a) simple reaction test; (b) maximal velocity measurement; and (c) a speed–accuracy task.

Results

During constant and variable learning, the trade-off in a speed–accuracy task in specific situations shifted toward improved motor planning and motor execution speed, and to reduced intraindividual variability. However, during variable learning, the maximal velocity and variability of motor planning time did not change. Constant learning effectively transferred into variable tasks in terms of reaction time, average velocity and maximal velocity, and these effects were greater than those associated with variable learning. However, the effects of constant learning did not transfer fully into the performance variability of variable movements. Variable learning effectively transferred into constant tasks for the coefficient of variation of the path of movement, average velocity, maximal velocity and reaction time. The retention effect depended neither on learning nor task specificity (constant versus variable tasks).

Conclusion

Constant learning speeds up but does not stabilize speed–accuracy movements in variable tasks; whereas, variable learning stabilizes but does not speed up speed–accuracy movements in constant tasks.
Literatur
Zurück zum Zitat Bernecke V, Pukenas K, Daniuseviciute L, Baranauskiene N, Paulauskas H, Eimantas N, Brazaitis M (2017) Sex-specific reliability and multidimensional stability of responses to tests assessing neuromuscular function. Homo 68:452–464CrossRef Bernecke V, Pukenas K, Daniuseviciute L, Baranauskiene N, Paulauskas H, Eimantas N, Brazaitis M (2017) Sex-specific reliability and multidimensional stability of responses to tests assessing neuromuscular function. Homo 68:452–464CrossRef
Zurück zum Zitat Braun DA, Aertsen A, Wolpert DM, Mehring C (2009) Motor task variation induces structural learning. Curr Biol 19:352–357CrossRef Braun DA, Aertsen A, Wolpert DM, Mehring C (2009) Motor task variation induces structural learning. Curr Biol 19:352–357CrossRef
Zurück zum Zitat Chittka L, Skorupski P, Raine NE (2009) Speed–accuracy tradeoffs in animal decision making. Trends Ecol Evol 24(7):400–407CrossRef Chittka L, Skorupski P, Raine NE (2009) Speed–accuracy tradeoffs in animal decision making. Trends Ecol Evol 24(7):400–407CrossRef
Zurück zum Zitat Forstmann BU, Anwander A, Schäfer A, Neumann J, Brown S, Wagenmakers EJ, Bogacz R, Turner R (2010) Cortico-striatal connections predict control over speed and accuracy in perceptual decision making. PNAS 107(36):15916–15920CrossRef Forstmann BU, Anwander A, Schäfer A, Neumann J, Brown S, Wagenmakers EJ, Bogacz R, Turner R (2010) Cortico-striatal connections predict control over speed and accuracy in perceptual decision making. PNAS 107(36):15916–15920CrossRef
Zurück zum Zitat Haith AM, Huberdeau DM, Krakauer JW (2015) The influence of movement preparation time on the expression of visuomotor learning and savings. J Neurosci 35:5109–5117CrossRef Haith AM, Huberdeau DM, Krakauer JW (2015) The influence of movement preparation time on the expression of visuomotor learning and savings. J Neurosci 35:5109–5117CrossRef
Zurück zum Zitat Hardwick RM, Rottschy C, Chriss Miall R, Eickhoff SB (2013) A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage 67:283–297CrossRef Hardwick RM, Rottschy C, Chriss Miall R, Eickhoff SB (2013) A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage 67:283–297CrossRef
Zurück zum Zitat Izawa J, Criscimagna-Hemminger SE, Shadmehr R (2012) Cerebellar contributions to reach adaptation and learning sensory consequences of action. J Neurosci 32:4230–4239CrossRef Izawa J, Criscimagna-Hemminger SE, Shadmehr R (2012) Cerebellar contributions to reach adaptation and learning sensory consequences of action. J Neurosci 32:4230–4239CrossRef
Zurück zum Zitat Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, Ungerleider LG (1998) The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci USA 95:861–868CrossRef Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, Ungerleider LG (1998) The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci USA 95:861–868CrossRef
Zurück zum Zitat Körding K (2007) Decision theory: what “should” the nervous system do? Science 318:606–610CrossRef Körding K (2007) Decision theory: what “should” the nervous system do? Science 318:606–610CrossRef
Zurück zum Zitat Korenberg AT, Ghahramani Z (2002) A Bayesian view of motor adaptation. Curr Perspect Cognit Divers 21:537–564 Korenberg AT, Ghahramani Z (2002) A Bayesian view of motor adaptation. Curr Perspect Cognit Divers 21:537–564
Zurück zum Zitat Müller H, Sternad D (2004) Decomposition of variability in the execution of goal-oriented tasks: three components of skill improvement. J Exp Psychol Hum Percept Perform 30:212–233CrossRef Müller H, Sternad D (2004) Decomposition of variability in the execution of goal-oriented tasks: three components of skill improvement. J Exp Psychol Hum Percept Perform 30:212–233CrossRef
Zurück zum Zitat Newell KM, Liu YT, Mayer-Kress G (2001) Time scales in motor learning and development. Psychol Rev 108:57–82CrossRef Newell KM, Liu YT, Mayer-Kress G (2001) Time scales in motor learning and development. Psychol Rev 108:57–82CrossRef
Zurück zum Zitat Pasupathy A, Miller EK (2005) Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 433:873–876CrossRef Pasupathy A, Miller EK (2005) Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 433:873–876CrossRef
Zurück zum Zitat Perri RL, Berchicci M, Spinelli D, Di Russo F (2014) Individual differences in response speed and accuracy are associated to specific brain activities of two interacting systems. Front Behav Neurosci 8:251PubMedPubMedCentral Perri RL, Berchicci M, Spinelli D, Di Russo F (2014) Individual differences in response speed and accuracy are associated to specific brain activities of two interacting systems. Front Behav Neurosci 8:251PubMedPubMedCentral
Zurück zum Zitat Schmidt RA, Lee TD (2005) Motor control and learning: a behavioral emphasis. Human Kinetics, Champaign Schmidt RA, Lee TD (2005) Motor control and learning: a behavioral emphasis. Human Kinetics, Champaign
Zurück zum Zitat Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nature 407:742–747CrossRef Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nature 407:742–747CrossRef
Zurück zum Zitat Vahdat S, Darainy M, Ostry DJ (2014) Structure of plasticity in human sensory and motor networks due to perceptual learning. J Neurosci 34(7):2451–2463CrossRef Vahdat S, Darainy M, Ostry DJ (2014) Structure of plasticity in human sensory and motor networks due to perceptual learning. J Neurosci 34(7):2451–2463CrossRef
Zurück zum Zitat Wolpert DM, Flanagan JR (2016) Computations underlying sensorimotor learning. Curr Opin Neurobiol 37:7–11CrossRef Wolpert DM, Flanagan JR (2016) Computations underlying sensorimotor learning. Curr Opin Neurobiol 37:7–11CrossRef
Zurück zum Zitat Wulf G, Schmidt RA (1997) Variability of practice and implicit motor learning. J Exp Psychol Learn Mem Cognit 23:987–1006CrossRef Wulf G, Schmidt RA (1997) Variability of practice and implicit motor learning. J Exp Psychol Learn Mem Cognit 23:987–1006CrossRef
Metadaten
Titel
“Two sides of the same coin”: constant motor learning speeds up, whereas variable motor learning stabilizes, speed–accuracy movements
verfasst von
Albertas Skurvydas
Andrius Satas
Dovile Valanciene
Gediminas Mamkus
Dalia Mickeviciene
Daiva Majauskiene
Marius Brazaitis
Publikationsdatum
14.03.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Applied Physiology / Ausgabe 5/2020
Print ISSN: 1439-6319
Elektronische ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-020-04342-4

Weitere Artikel der Ausgabe 5/2020

European Journal of Applied Physiology 5/2020 Zur Ausgabe