Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 11/2017

31.07.2017 | Original Article

Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks

verfasst von: Jinlian Ma, Fa Wu, Tian’an Jiang, Qiyu Zhao, Dexing Kong

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 11/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Delineation of thyroid nodule boundaries from ultrasound images plays an important role in calculation of clinical indices and diagnosis of thyroid diseases. However, it is challenging for accurate and automatic segmentation of thyroid nodules because of their heterogeneous appearance and components similar to the background. In this study, we employ a deep convolutional neural network (CNN) to automatically segment thyroid nodules from ultrasound images.

Methods

Our CNN-based method formulates a thyroid nodule segmentation problem as a patch classification task, where the relationship among patches is ignored. Specifically, the CNN used image patches from images of normal thyroids and thyroid nodules as inputs and then generated the segmentation probability maps as outputs. A multi-view strategy is used to improve the performance of the CNN-based model. Additionally, we compared the performance of our approach with that of the commonly used segmentation methods on the same dataset.

Results

The experimental results suggest that our proposed method outperforms prior methods on thyroid nodule segmentation. Moreover, the results show that the CNN-based model is able to delineate multiple nodules in thyroid ultrasound images accurately and effectively. In detail, our CNN-based model can achieve an average of the overlap metric, dice ratio, true positive rate, false positive rate, and modified Hausdorff distance as \(0.8683 \pm 0.0056\), \(0.9224 \pm 0.0027\), \(0.915 \pm 0.0077\), \(0.0669 \pm 0.0032\), \(0.6228 \pm 0.1414\) on overall folds, respectively.

Conclusion

Our proposed method is fully automatic without any user interaction. Quantitative results also indicate that our method is so efficient and accurate that it can be good enough to replace the time-consuming and tedious manual segmentation approach, demonstrating the potential clinical applications.
Literatur
1.
Zurück zum Zitat Bushberg JT, Boone JM (2011) The essential physics of medical imaging. Lippincott Williams & Wilkins, Philadelphia Bushberg JT, Boone JM (2011) The essential physics of medical imaging. Lippincott Williams & Wilkins, Philadelphia
2.
Zurück zum Zitat Chang CY, Huang HC, Chen SJ (2010) Automatic thyroid nodule segmentation and component analysis in ultrasound images. Biomed Eng Appl Basis Commun 22(02):81–89CrossRef Chang CY, Huang HC, Chen SJ (2010) Automatic thyroid nodule segmentation and component analysis in ultrasound images. Biomed Eng Appl Basis Commun 22(02):81–89CrossRef
3.
Zurück zum Zitat Chang CY, Lei YF, Tseng CH, Shih SR (2010) Thyroid segmentation and volume estimation in ultrasound images. IEEE Trans Biomed Eng 57(6):1348–1357CrossRefPubMed Chang CY, Lei YF, Tseng CH, Shih SR (2010) Thyroid segmentation and volume estimation in ultrasound images. IEEE Trans Biomed Eng 57(6):1348–1357CrossRefPubMed
4.
Zurück zum Zitat Chen YW, Lin CJ (2006) Combining SVMS with various feature selection strategies. In: Guyon I, Nikravesh M, Gunn S, Zadeh LA (eds) Feature extraction. Studies in Fuzziness and Soft Computing, vol 42. Springer, Berlin, pp 315–324 Chen YW, Lin CJ (2006) Combining SVMS with various feature selection strategies. In: Guyon I, Nikravesh M, Gunn S, Zadeh LA (eds) Feature extraction. Studies in Fuzziness and Soft Computing, vol 42. Springer, Berlin, pp 315–324
5.
Zurück zum Zitat Chikui T, Okamura K, Tokumori K, Nakamura S, Shimizu M, Koga M, Yoshiura K (2006) Quantitative analyses of sonographic images of the parotid gland in patients with sjögrens syndrome. Ultrasound Med Biol 32(5):617–622CrossRefPubMed Chikui T, Okamura K, Tokumori K, Nakamura S, Shimizu M, Koga M, Yoshiura K (2006) Quantitative analyses of sonographic images of the parotid gland in patients with sjögrens syndrome. Ultrasound Med Biol 32(5):617–622CrossRefPubMed
6.
Zurück zum Zitat Ciresan D, Giusti A, Gambardella L M, Schmidhuber J (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in neural information processing systems, pp 2843–2851 Ciresan D, Giusti A, Gambardella L M, Schmidhuber J (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in neural information processing systems, pp 2843–2851
7.
Zurück zum Zitat Ciresan D, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 3642–3649 Ciresan D, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 3642–3649
8.
Zurück zum Zitat Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J (2013) Mitosis detection in breast cancer histology images with deep neural networks. In: Medical image computing and computer-assisted intervention—MICCAI 2013. Springer, pp 411–418 Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J (2013) Mitosis detection in breast cancer histology images with deep neural networks. In: Medical image computing and computer-assisted intervention—MICCAI 2013. Springer, pp 411–418
9.
Zurück zum Zitat Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202CrossRefPubMed Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202CrossRefPubMed
10.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. arXiv preprint arXiv:1502.01852 He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. arXiv preprint arXiv:​1502.​01852
11.
Zurück zum Zitat Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W (2013) Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500(7461):168–174CrossRefPubMed Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W (2013) Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500(7461):168–174CrossRefPubMed
12.
Zurück zum Zitat Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR (2012) Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR (2012) Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:​1207.​0580
13.
Zurück zum Zitat Iakovidis DK, Savelonas MA, Karkanis SA, Maroulis DE (2007) A genetically optimized level set approach to segmentation of thyroid ultrasound images. Appl Intell 27(3):193–203CrossRef Iakovidis DK, Savelonas MA, Karkanis SA, Maroulis DE (2007) A genetically optimized level set approach to segmentation of thyroid ultrasound images. Appl Intell 27(3):193–203CrossRef
14.
Zurück zum Zitat Koundal D, Gupta S, Singh S (2016) Automated delineation of thyroid nodules in ultrasound images using spatial neutrosophic clustering and level set. Appl Soft Comput 40:86–97CrossRef Koundal D, Gupta S, Singh S (2016) Automated delineation of thyroid nodules in ultrasound images using spatial neutrosophic clustering and level set. Appl Soft Comput 40:86–97CrossRef
15.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
16.
Zurück zum Zitat LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
17.
Zurück zum Zitat Li BN, Chui CK, Chang S, Ong SH (2011) Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput Biol Med 41(1):1–10CrossRefPubMed Li BN, Chui CK, Chang S, Ong SH (2011) Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput Biol Med 41(1):1–10CrossRefPubMed
18.
Zurück zum Zitat Li C, Xu C, Gui C, Fox MD (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process A Publ IEEE Signal Process Soc 19(12):3243–3254 Li C, Xu C, Gui C, Fox MD (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process A Publ IEEE Signal Process Soc 19(12):3243–3254
20.
Zurück zum Zitat MacKay DJ (1995) Probable networks and plausible predictionsa—a review of practical Bayesian methods for supervised neural networks. Netw Comput Neural Syst 6(3):469–505CrossRef MacKay DJ (1995) Probable networks and plausible predictionsa—a review of practical Bayesian methods for supervised neural networks. Netw Comput Neural Syst 6(3):469–505CrossRef
21.
Zurück zum Zitat Papini E, Guglielmi R, Bianchini A, Crescenzi A, Taccogna S, Nardi F, Panunzi C, Rinaldi R, Toscano V, Pacella CM (2002) Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab 87(5):1941–1946CrossRefPubMed Papini E, Guglielmi R, Bianchini A, Crescenzi A, Taccogna S, Nardi F, Panunzi C, Rinaldi R, Toscano V, Pacella CM (2002) Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab 87(5):1941–1946CrossRefPubMed
22.
Zurück zum Zitat Ravishankar H, Prabhu SM, Vaidya V, Singhal N (2016) Hybrid approach for automatic segmentation of fetal abdomen from ultrasound images using deep learning. In: IEEE international symposium on biomedical imaging Ravishankar H, Prabhu SM, Vaidya V, Singhal N (2016) Hybrid approach for automatic segmentation of fetal abdomen from ultrasound images using deep learning. In: IEEE international symposium on biomedical imaging
23.
Zurück zum Zitat Savelonas MA, Iakovidis DK, Legakis I, Maroulis D (2009) Active contours guided by echogenicity and texture for delineation of thyroid nodules in ultrasound images. IEEE Trans Inf Technol Biomed 13(4):519–527CrossRefPubMed Savelonas MA, Iakovidis DK, Legakis I, Maroulis D (2009) Active contours guided by echogenicity and texture for delineation of thyroid nodules in ultrasound images. IEEE Trans Inf Technol Biomed 13(4):519–527CrossRefPubMed
24.
Zurück zum Zitat Selvathi D, Sharnitha V (2011) Thyroid classification and segmentation in ultrasound images using machine learning algorithms. In: 2011 international conference on Signal processing, communication, computing and networking technologies (ICSCCN), pp 836–841. IEEE Selvathi D, Sharnitha V (2011) Thyroid classification and segmentation in ultrasound images using machine learning algorithms. In: 2011 international conference on Signal processing, communication, computing and networking technologies (ICSCCN), pp 836–841. IEEE
25.
Zurück zum Zitat Turaga SC, Murray JF, Jain V, Roth F, Helmstaedter M, Briggman K, Denk W, Seung HS (2010) Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput 22(2):511–538CrossRefPubMed Turaga SC, Murray JF, Jain V, Roth F, Helmstaedter M, Briggman K, Denk W, Seung HS (2010) Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput 22(2):511–538CrossRefPubMed
26.
Zurück zum Zitat Wan L, Zeiler M, Zhang S, Cun YL, Fergus R (2013) Regularization of neural networks using dropconnect. In: Proceedings of the 30th international conference on machine learning (ICML-13), pp 1058–1066 Wan L, Zeiler M, Zhang S, Cun YL, Fergus R (2013) Regularization of neural networks using dropconnect. In: Proceedings of the 30th international conference on machine learning (ICML-13), pp 1058–1066
27.
Zurück zum Zitat Wang L, Shi F, Gao Y, Li G, Gilmore JH, Lin W, Shen D (2014) Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain mr image segmentation. NeuroImage 89:152–164CrossRefPubMed Wang L, Shi F, Gao Y, Li G, Gilmore JH, Lin W, Shen D (2014) Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain mr image segmentation. NeuroImage 89:152–164CrossRefPubMed
28.
Zurück zum Zitat Wu F, Hu P, Kong D (2015) Flip-rotate-pooling convolution and split dropout on convolution neural networks for image classification. arXiv preprint arXiv:1507.08754 Wu F, Hu P, Kong D (2015) Flip-rotate-pooling convolution and split dropout on convolution neural networks for image classification. arXiv preprint arXiv:​1507.​08754
29.
Zurück zum Zitat Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, Shen D (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108:214–224CrossRefPubMedPubMedCentral Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, Shen D (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108:214–224CrossRefPubMedPubMedCentral
Metadaten
Titel
Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks
verfasst von
Jinlian Ma
Fa Wu
Tian’an Jiang
Qiyu Zhao
Dexing Kong
Publikationsdatum
31.07.2017
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 11/2017
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-017-1649-7

Weitere Artikel der Ausgabe 11/2017

International Journal of Computer Assisted Radiology and Surgery 11/2017 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.