Skip to main content
Erschienen in: Comparative Clinical Pathology 5/2017

24.06.2017 | Original Article

Ultrastructure of bioscaffolds derived from bovine articular cartilage as an experimental model to support blastema cells

verfasst von: Zari Majidi Mohammadie, Kazem Parivar, Nasser Mahdavi Shahri, Masoud Fereidoni, Nasim Hayati-Roodbari

Erschienen in: Comparative Clinical Pathology | Ausgabe 5/2017

Einloggen, um Zugang zu erhalten

Abstract

Decellularized cartilage extracellular matrix (ECM)-derived bioscaffolds have been designed as they provide a unique opportunity to carry out research on the mechanisms of chondrogenesis and its regulation. These scaffolds are used as a model in order to emulate different aspects relating to the formation, degeneration, and regeneration of the cartilage. This project has studied the interaction between the decellularized bovine articular cartilage and the blastema cells derived from the punched rabbit’s ear. Articular cartilage was dissected in fragments with 10 mm length and 2 mm thickness. Then, they were chemically decellularized with 2% sodium dodecyl sulfate (SDS) for 2 h. The tissue rings derived from the rabbit’s ear were assembled with the decellularized scaffolds and they were placed in a culture media for 30 days. These samples were fixed, sectioned, and microscopically studied. Micrographs of SEM electron microscopy and DAPI staining confirmed the decellularization of the scaffolds. FTIR analysis confirmed the preservation of ECM components including collagen II and proteoglycans. The optical microscopy observations confirmed migration, adherence, and penetration of the blastema cells into the scaffolds. The electron microscopy studies demonstrated that the blastema cells beside the scaffolds have triggered mutual interactions and merely progressed toward chondrogenic differentiation. The main objective is to identify and comprehend the interaction between cartilage matrix and blastema cells. The proposed model is an ideal model for fundamental studies in cartilage tissue engineering. The principles of tissue engineering must be taken in to account while studying such interactions.
Literatur
Zurück zum Zitat Aszodi A, Hunziker EB, Brakebusch C, Fassler R (2003) Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis. Genes Dev 17:2465–2479CrossRefPubMedPubMedCentral Aszodi A, Hunziker EB, Brakebusch C, Fassler R (2003) Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis. Genes Dev 17:2465–2479CrossRefPubMedPubMedCentral
Zurück zum Zitat Baghaban Eslaminejad MR, Bordbar S (2013) Isolation and characterization of the progenitor cells from the blastema tissue formed at experimentally-created rabbit ear hole. Iran J Basic Med Sci. 16:109–115PubMedPubMedCentral Baghaban Eslaminejad MR, Bordbar S (2013) Isolation and characterization of the progenitor cells from the blastema tissue formed at experimentally-created rabbit ear hole. Iran J Basic Med Sci. 16:109–115PubMedPubMedCentral
Zurück zum Zitat Benders KE, van Weeren PR, Badylak SF, Saris DB, Dhert WJ, Malda J (2013) Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol 31:169–176CrossRefPubMed Benders KE, van Weeren PR, Badylak SF, Saris DB, Dhert WJ, Malda J (2013) Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol 31:169–176CrossRefPubMed
Zurück zum Zitat Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL, Martin I, Ghosh S (2015) Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev 84:107–122CrossRefPubMed Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL, Martin I, Ghosh S (2015) Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev 84:107–122CrossRefPubMed
Zurück zum Zitat Brockes JP, Kumar A (2002) Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat RevMol Cell Biol 3:566–574CrossRef Brockes JP, Kumar A (2002) Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat RevMol Cell Biol 3:566–574CrossRef
Zurück zum Zitat Cheng CW, Solorio LD, Alsberg E (2014) Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv 32:462–484CrossRefPubMedPubMedCentral Cheng CW, Solorio LD, Alsberg E (2014) Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv 32:462–484CrossRefPubMedPubMedCentral
Zurück zum Zitat Choi JS, Kim BS, Kim JD, Choi YC, Lee HY, Cho YW (2012) In vitro cartilage tissue engineering using adipose-derived extracellular matrix scaffolds seeded with adipose-derived stem cells. Tissue Eng Part A 18:80–92CrossRefPubMed Choi JS, Kim BS, Kim JD, Choi YC, Lee HY, Cho YW (2012) In vitro cartilage tissue engineering using adipose-derived extracellular matrix scaffolds seeded with adipose-derived stem cells. Tissue Eng Part A 18:80–92CrossRefPubMed
Zurück zum Zitat Darling EM, Athanasiou KA (2005) Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res 23:425–432CrossRefPubMed Darling EM, Athanasiou KA (2005) Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res 23:425–432CrossRefPubMed
Zurück zum Zitat Domm C, Schünke M, Christesen K, Kurz B (2002) Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture under low oxygen tension. Osteoarthr Cartil 10:13–22CrossRefPubMed Domm C, Schünke M, Christesen K, Kurz B (2002) Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture under low oxygen tension. Osteoarthr Cartil 10:13–22CrossRefPubMed
Zurück zum Zitat Elder BD, Eleswarapu SV, Athanasiou KA (2009) Extraction techniques for the decellularization of tissue engineered articular cartilage constructs. Biomaterials 30:3749–3756CrossRefPubMedPubMedCentral Elder BD, Eleswarapu SV, Athanasiou KA (2009) Extraction techniques for the decellularization of tissue engineered articular cartilage constructs. Biomaterials 30:3749–3756CrossRefPubMedPubMedCentral
Zurück zum Zitat Elder BD, Vigneswaran K, Athanasiou KA, Kim DH (2010) Biomechanical, biochemical, and histological characterization of canine lumbar facet joint cartilage. Neurosurgery 66:722–727CrossRefPubMedPubMedCentral Elder BD, Vigneswaran K, Athanasiou KA, Kim DH (2010) Biomechanical, biochemical, and histological characterization of canine lumbar facet joint cartilage. Neurosurgery 66:722–727CrossRefPubMedPubMedCentral
Zurück zum Zitat Geoffrion R, Murphy M, Robert M, Birch C, Ross S, Tang S, Milne J (2011) Vaginal paravaginal repair with porcine small intestine submucosa: midterm outcomes. Female Pelvic Med Reconstr Surg 17:174–179CrossRefPubMed Geoffrion R, Murphy M, Robert M, Birch C, Ross S, Tang S, Milne J (2011) Vaginal paravaginal repair with porcine small intestine submucosa: midterm outcomes. Female Pelvic Med Reconstr Surg 17:174–179CrossRefPubMed
Zurück zum Zitat Grauss RW, Hazekamp MG, Oppenhuizen F, van Munsteren CJ, Gittenberger-de Groot AC, DeRuiter MC (2005) Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg 27:566–571CrossRefPubMed Grauss RW, Hazekamp MG, Oppenhuizen F, van Munsteren CJ, Gittenberger-de Groot AC, DeRuiter MC (2005) Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg 27:566–571CrossRefPubMed
Zurück zum Zitat Hartmann C, Tabin CJ (2001) Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104:341–351CrossRefPubMed Hartmann C, Tabin CJ (2001) Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104:341–351CrossRefPubMed
Zurück zum Zitat Hashemzadeh MR, Mahdavi-Shahri N, Bahrami AR, Kheirabadi M, Naseri F, Atighi M (2015) Use of an in vitro model in tissue engineering to study wound repair and differentiation of blastema tissue from rabbit pinna. In Vitro Cell Dev Biol Anim 51:680–689CrossRefPubMed Hashemzadeh MR, Mahdavi-Shahri N, Bahrami AR, Kheirabadi M, Naseri F, Atighi M (2015) Use of an in vitro model in tissue engineering to study wound repair and differentiation of blastema tissue from rabbit pinna. In Vitro Cell Dev Biol Anim 51:680–689CrossRefPubMed
Zurück zum Zitat Hoshiba T, Lu H, Yamada T, Kawazoe N, Tateishi T, Chen G (2011) Effects of extracellular matrices derived from different cell sources on chondrocyte functions. Biotechnol Prog 27:788–795CrossRefPubMed Hoshiba T, Lu H, Yamada T, Kawazoe N, Tateishi T, Chen G (2011) Effects of extracellular matrices derived from different cell sources on chondrocyte functions. Biotechnol Prog 27:788–795CrossRefPubMed
Zurück zum Zitat Khalil S, Sun W (2009) Bioprinting endothelial cells with alginate for 3D tissue constructs. J Biomech Eng 131:111002CrossRefPubMed Khalil S, Sun W (2009) Bioprinting endothelial cells with alginate for 3D tissue constructs. J Biomech Eng 131:111002CrossRefPubMed
Zurück zum Zitat Liao J, Guo X, Grande-Allen KJ, Kasper FK, Mikos AG (2010) Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for cartilage tissue engineering. Biomaterials 31:8911–8920CrossRefPubMedPubMedCentral Liao J, Guo X, Grande-Allen KJ, Kasper FK, Mikos AG (2010) Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for cartilage tissue engineering. Biomaterials 31:8911–8920CrossRefPubMedPubMedCentral
Zurück zum Zitat Lu H, Hoshiba T, Kawazoe N, Chen G (2012) Comparison of decellularization techniques for preparation of extracellular matrix scaffolds derived from three-dimensional cell culture. J Biomed Mater Res A 100:2507–2516PubMed Lu H, Hoshiba T, Kawazoe N, Chen G (2012) Comparison of decellularization techniques for preparation of extracellular matrix scaffolds derived from three-dimensional cell culture. J Biomed Mater Res A 100:2507–2516PubMed
Zurück zum Zitat Malda J, van Blitterswijk CA, Grojec M, Martens DE, Tramper J, Riesle J (2003a) Expansion of bovine chondrocytes on microcarriers enhances redifferentiation. Tissue Eng 9:939–948CrossRefPubMed Malda J, van Blitterswijk CA, Grojec M, Martens DE, Tramper J, Riesle J (2003a) Expansion of bovine chondrocytes on microcarriers enhances redifferentiation. Tissue Eng 9:939–948CrossRefPubMed
Zurück zum Zitat Malda J, Kreijveld E, Temenoff JS, van Blitterswijk CA, Riesle J (2003b) Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation. Biomaterials 24:5153–5161CrossRefPubMed Malda J, Kreijveld E, Temenoff JS, van Blitterswijk CA, Riesle J (2003b) Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation. Biomaterials 24:5153–5161CrossRefPubMed
Zurück zum Zitat Martin I, Baldomero H, Bocelli-Tyndall C, Emmert MY, Hoerstrup SP, Ireland H, Passweq J, Tyndall A (2014) The survey on cellular and engineered tissue therapies in Europe in 2011. Tissue Eng Part A. 20:842–853CrossRefPubMed Martin I, Baldomero H, Bocelli-Tyndall C, Emmert MY, Hoerstrup SP, Ireland H, Passweq J, Tyndall A (2014) The survey on cellular and engineered tissue therapies in Europe in 2011. Tissue Eng Part A. 20:842–853CrossRefPubMed
Zurück zum Zitat Musumeci G, Castrogiovanni P, Leonardi R, Trovato FM, Szychlinska MA, Di Giunta A, Loreto C, Castorina S (2014) New perspectives for articular cartilage repair treatment through tissue engineering: a contemporary review. World J Orthop 5:80–88CrossRefPubMedPubMedCentral Musumeci G, Castrogiovanni P, Leonardi R, Trovato FM, Szychlinska MA, Di Giunta A, Loreto C, Castorina S (2014) New perspectives for articular cartilage repair treatment through tissue engineering: a contemporary review. World J Orthop 5:80–88CrossRefPubMedPubMedCentral
Zurück zum Zitat Padalino MA, Castellani C, Dedja A, Fedrigo M, Vida VL, Thiene G, Stellin G, Angelini A (2012) Extracellular matrix graft for vascular reconstructive surgery: evidence of autologous regeneration of the neoaorta in a murine model. Eur J Cardiothorac Surg 42:e128–e135CrossRefPubMed Padalino MA, Castellani C, Dedja A, Fedrigo M, Vida VL, Thiene G, Stellin G, Angelini A (2012) Extracellular matrix graft for vascular reconstructive surgery: evidence of autologous regeneration of the neoaorta in a murine model. Eur J Cardiothorac Surg 42:e128–e135CrossRefPubMed
Zurück zum Zitat Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470CrossRefPubMed Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470CrossRefPubMed
Zurück zum Zitat Rosario DJ, Reilly GC, Ali Salah E, Glover M, Bullock AJ, Macneil S (2008) Decellularization and sterilization of porcine urinary bladder matrix for tissue engineering in the lower urinary tract. Regen Med 3:145–156CrossRefPubMed Rosario DJ, Reilly GC, Ali Salah E, Glover M, Bullock AJ, Macneil S (2008) Decellularization and sterilization of porcine urinary bladder matrix for tissue engineering in the lower urinary tract. Regen Med 3:145–156CrossRefPubMed
Zurück zum Zitat Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vécsei V, Schlegel J (2002) Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthr Cartil 10:62–70CrossRefPubMed Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vécsei V, Schlegel J (2002) Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthr Cartil 10:62–70CrossRefPubMed
Zurück zum Zitat Shakibaei M, De Souza P, Merker HJ (1997) Integrin expression and collagen type II implicated in maintenance of chondrocyte shape in monolayer culture: an immunomorphological study. Cell Biol Int 21:115–125CrossRefPubMed Shakibaei M, De Souza P, Merker HJ (1997) Integrin expression and collagen type II implicated in maintenance of chondrocyte shape in monolayer culture: an immunomorphological study. Cell Biol Int 21:115–125CrossRefPubMed
Zurück zum Zitat Simkin J, Sammarco MC, Dawson LA, Schanes PP, Yu L, Muneoka K (2015) The mammalian blastema: regeneration at our fingertips. Regeneration 2:93–105CrossRefPubMedPubMedCentral Simkin J, Sammarco MC, Dawson LA, Schanes PP, Yu L, Muneoka K (2015) The mammalian blastema: regeneration at our fingertips. Regeneration 2:93–105CrossRefPubMedPubMedCentral
Zurück zum Zitat Tavassoli A, Moghaddam Matin M, Akbarzade Niaki M, Mahdavi-Shahri N, Shahabipour F (2015) Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold. Iran J Basic Med Sci 18:1221–1227PubMedPubMedCentral Tavassoli A, Moghaddam Matin M, Akbarzade Niaki M, Mahdavi-Shahri N, Shahabipour F (2015) Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold. Iran J Basic Med Sci 18:1221–1227PubMedPubMedCentral
Zurück zum Zitat Ten Koppel PG, van Osch GJ, Verwoerd CD, Verwoerd-Verhoef HL (2001) A new in vivo model for testing cartilage grafts and biomaterials: the rabbit pinna punch-hole model. Biomaterials 22:1407–1414CrossRefPubMed Ten Koppel PG, van Osch GJ, Verwoerd CD, Verwoerd-Verhoef HL (2001) A new in vivo model for testing cartilage grafts and biomaterials: the rabbit pinna punch-hole model. Biomaterials 22:1407–1414CrossRefPubMed
Zurück zum Zitat Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noël D (2009) Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol 27:307–314CrossRefPubMed Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noël D (2009) Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol 27:307–314CrossRefPubMed
Zurück zum Zitat Yang Z, Shi Y, Wei X, He J, Yang S, Dickson G, Tang J, Xiang J, Song C, Li G (2010) Fabrication and repair of cartilage defects with a novel acellular cartilage matrix scaffold. Tissue Eng Part C Methods 16:865–876CrossRefPubMed Yang Z, Shi Y, Wei X, He J, Yang S, Dickson G, Tang J, Xiang J, Song C, Li G (2010) Fabrication and repair of cartilage defects with a novel acellular cartilage matrix scaffold. Tissue Eng Part C Methods 16:865–876CrossRefPubMed
Zurück zum Zitat Yang Q, Peng J, Lu SB, Guo QY, Zhao B, Zhang L, Wang AY, Xu WJ, Xia Q, Ma XL, Hu YC, Xu BS (2011) Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model. Chin Med J 124:3930–3938PubMed Yang Q, Peng J, Lu SB, Guo QY, Zhao B, Zhang L, Wang AY, Xu WJ, Xia Q, Ma XL, Hu YC, Xu BS (2011) Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model. Chin Med J 124:3930–3938PubMed
Metadaten
Titel
Ultrastructure of bioscaffolds derived from bovine articular cartilage as an experimental model to support blastema cells
verfasst von
Zari Majidi Mohammadie
Kazem Parivar
Nasser Mahdavi Shahri
Masoud Fereidoni
Nasim Hayati-Roodbari
Publikationsdatum
24.06.2017
Verlag
Springer London
Erschienen in
Comparative Clinical Pathology / Ausgabe 5/2017
Print ISSN: 1618-5641
Elektronische ISSN: 1618-565X
DOI
https://doi.org/10.1007/s00580-017-2505-4

Weitere Artikel der Ausgabe 5/2017

Comparative Clinical Pathology 5/2017 Zur Ausgabe

Neu im Fachgebiet Pathologie

Open Access 15.04.2024 | Biomarker | Schwerpunkt: Next Generation Pathology

Molekularpathologische Untersuchungen im Wandel der Zeit

11.04.2024 | Pathologie | Schwerpunkt: Next Generation Pathology

Vergleichende Pathologie in der onkologischen Forschung

Open Access 08.04.2024 | GIST | CME

Gastrointestinale Stromatumoren

Wo stehen wir?

03.04.2024 | Zielgerichtete Therapie | Schwerpunkt: Next Generation Pathology

Personalisierte Medizin in der Onkologie