Skip to main content
Erschienen in: Current Cardiology Reports 3/2024

15.02.2024 | Congenital Heart Disease (RA Krasuski and G Fleming, Section Editors)

Understanding the Genetic and Non-Genetic Interconnections in the Aetiology of Syndromic Congenital Heart Disease: An Updated Review: Part 2

verfasst von: Jyoti Maddhesiya, Bhagyalaxmi Mohapatra

Erschienen in: Current Cardiology Reports | Ausgabe 3/2024

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Approximately 30% of syndromic cases diagnosed with CHD, which lure us to further investigate the molecular and clinical challenges behind syndromic CHD (sCHD). The aetiology of sCHD in a majority of cases remains enigmatic due to involvement of multiple factors, namely genetic, epigenetic and environmental modifiable risk factors for the development of the disease. Here, we aim to update the role of genetic contributors including chromosomal abnormalities, copy number variations (CNVs) and single gene mutations in cardiac specific genes, maternal lifestyle conditions, environmental exposures and epigenetic modifiers in causing CHD in different genetic syndromes.

Recent Findings

The exact aetiology of sCHD is still unknown. With the advancement of next-generation technologies including WGS, WES, transcriptome, proteome and methylome study, numerous novel genes and pathways have been identified. Moreover, our recent knowledge regarding epigenetic and environmental regulation during cardiogenesis is still evolving and may solve some of the mystery behind complex sCHD.

Summary

Here, we focus to understand how the complex combination of genetic, environmental and epigenetic factors interact to interfere with developmental pathways, culminating into cardiac and extracardiac defects in sCHD.
Literatur
1.
Zurück zum Zitat Van Der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, Roos-Hesselink JW. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58:2241–7.PubMedCrossRef Van Der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, Roos-Hesselink JW. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58:2241–7.PubMedCrossRef
2.
Zurück zum Zitat Thomford NE, Dzobo K, Yao NA, Chimusa E, Evans J, Okai E, Kruszka P, Muenke M, Awandare G, Wonkam A. Genomics and epigenomics of congenital heart defects: expert review and lessons learned in Africa. OMICS: A J Integr Biol. 2018;22:301–321. Thomford NE, Dzobo K, Yao NA, Chimusa E, Evans J, Okai E, Kruszka P, Muenke M, Awandare G, Wonkam A. Genomics and epigenomics of congenital heart defects: expert review and lessons learned in Africa. OMICS: A J Integr Biol. 2018;22:301–321.
3.
Zurück zum Zitat Ito S, Chapman KA, Kisling M, John AS. Genetic considerations for adults with congenital heart disease. In: American Journal of Medical Genetics Part C: Seminars in Medical Genetics. Wiley Online Library. 2020:149–153. Ito S, Chapman KA, Kisling M, John AS. Genetic considerations for adults with congenital heart disease. In: American Journal of Medical Genetics Part C: Seminars in Medical Genetics. Wiley Online Library. 2020:149–153.
7.
Zurück zum Zitat Huang AC, Olson SB, Maslen CL. A review of recent developments in Turner syndrome research. Journal of cardiovascular development and disease. 2021;8:138.PubMedPubMedCentralCrossRef Huang AC, Olson SB, Maslen CL. A review of recent developments in Turner syndrome research. Journal of cardiovascular development and disease. 2021;8:138.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat A Richards A, Garg V. Genetics of congenital heart disease. Curr Cardiol Rev. 2010;6:91-97. A Richards A, Garg V. Genetics of congenital heart disease. Curr Cardiol Rev. 2010;6:91-97.
10.
Zurück zum Zitat Formigari R, Michielon G, Digilio MC, Piacentini G, Carotti A, Giardini A, Di Donato RM, Marino B. Genetic syndromes and congenital heart defects: how is surgical management affected? Eur J Cardiothorac Surg. 2009;35:606–14.PubMedCrossRef Formigari R, Michielon G, Digilio MC, Piacentini G, Carotti A, Giardini A, Di Donato RM, Marino B. Genetic syndromes and congenital heart defects: how is surgical management affected? Eur J Cardiothorac Surg. 2009;35:606–14.PubMedCrossRef
12.
Zurück zum Zitat Goldmuntz E. The epidemiology and genetics of congenital heart disease. Clin Perinatol. 2001;28:1–10.PubMedCrossRef Goldmuntz E. The epidemiology and genetics of congenital heart disease. Clin Perinatol. 2001;28:1–10.PubMedCrossRef
13.
Zurück zum Zitat Russell MW, Chung WK, Kaltman JR, Miller TA. Advances in the understanding of the genetic determinants of congenital heart disease and their impact on clinical outcomes. J Am Heart Assoc. 2018;7: e006906.PubMedPubMedCentralCrossRef Russell MW, Chung WK, Kaltman JR, Miller TA. Advances in the understanding of the genetic determinants of congenital heart disease and their impact on clinical outcomes. J Am Heart Assoc. 2018;7: e006906.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Down JLH. Observations on an ethnic classification of idiots. London hospital reports. 1866;3:259–62. Down JLH. Observations on an ethnic classification of idiots. London hospital reports. 1866;3:259–62.
15.
Zurück zum Zitat Bergström S, Carr H, Petersson G, Stephansson O, Bonamy A-KE, Dahlström A, Halvorsen CP, Johansson S. Trends in congenital heart defects in infants with Down syndrome. Pediatrics 2016:138. Bergström S, Carr H, Petersson G, Stephansson O, Bonamy A-KE, Dahlström A, Halvorsen CP, Johansson S. Trends in congenital heart defects in infants with Down syndrome. Pediatrics 2016:138.
16.
Zurück zum Zitat Freeman SB, Bean LH, Allen EG, Tinker SW, Locke AE, Druschel C, Hobbs CA, Romitti PA, Royle MH, Torfs CP. Ethnicity, sex, and the incidence of congenital heart defects: a report from the National Down Syndrome Project. Genet Med. 2008;10:173–80.PubMedCrossRef Freeman SB, Bean LH, Allen EG, Tinker SW, Locke AE, Druschel C, Hobbs CA, Romitti PA, Royle MH, Torfs CP. Ethnicity, sex, and the incidence of congenital heart defects: a report from the National Down Syndrome Project. Genet Med. 2008;10:173–80.PubMedCrossRef
17.
Zurück zum Zitat Ackerman C, Locke AE, Feingold E, Reshey B, Espana K, Thusberg J, Mooney S, Bean LJ, Dooley KJ, Cua CL. An excess of deleterious variants in VEGF-A pathway genes in Down-syndrome-associated atrioventricular septal defects. Am J Hum Genet. 2012;91:646–59.PubMedPubMedCentralCrossRef Ackerman C, Locke AE, Feingold E, Reshey B, Espana K, Thusberg J, Mooney S, Bean LJ, Dooley KJ, Cua CL. An excess of deleterious variants in VEGF-A pathway genes in Down-syndrome-associated atrioventricular septal defects. Am J Hum Genet. 2012;91:646–59.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Moran R, Robin NH. Congenital heart defects. In: Emery and Rimoin’s Principles and practice of medical genetics and genomics. Elsevier. 2020:3–75. Moran R, Robin NH. Congenital heart defects. In: Emery and Rimoin’s Principles and practice of medical genetics and genomics. Elsevier. 2020:3–75.
19.
Zurück zum Zitat • Trevino CE, Holleman AM, Corbitt H, Maslen CL, Rosser TC, Cutler DJ, Johnston HR, Rambo-Martin BL, Oberoi J, Dooley KJ. Identifying genetic factors that contribute to the increased risk of congenital heart defects in infants with Down syndrome. Sci Rep. 2020;10:1–12. Finding from this study showed that Nitch4 as well as genes involved in the ciliome might play a role in causing AVSD in Down Syndrome.CrossRef • Trevino CE, Holleman AM, Corbitt H, Maslen CL, Rosser TC, Cutler DJ, Johnston HR, Rambo-Martin BL, Oberoi J, Dooley KJ. Identifying genetic factors that contribute to the increased risk of congenital heart defects in infants with Down syndrome. Sci Rep. 2020;10:1–12. Finding from this study showed that Nitch4 as well as genes involved in the ciliome might play a role in causing AVSD in Down Syndrome.CrossRef
20.
Zurück zum Zitat •• Alharbi KM, Al-Mazroea AH, Abdallah AM, Almohammadi Y, Carlus SJ, Basit S. Targeted next-generation sequencing of 406 genes identified genetic defects underlying congenital heart disease in Down syndrome patients. Pediatr Cardiol. 2018;39:1676–80. This study revealed the role of mutations in different cardiac specific genes such as GATA3, KCNH2, ENG, FLNA and GUSB as an underlying risk factor for CHD in DS cases.PubMedCrossRef •• Alharbi KM, Al-Mazroea AH, Abdallah AM, Almohammadi Y, Carlus SJ, Basit S. Targeted next-generation sequencing of 406 genes identified genetic defects underlying congenital heart disease in Down syndrome patients. Pediatr Cardiol. 2018;39:1676–80. This study revealed the role of mutations in different cardiac specific genes such as GATA3, KCNH2, ENG, FLNA and GUSB as an underlying risk factor for CHD in DS cases.PubMedCrossRef
21.
Zurück zum Zitat Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A. Genetic basis for congenital heart disease: revisited: a scientific statement from the American Heart Association. Circulation. 2018;138:e653–711.PubMedPubMedCentralCrossRef Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A. Genetic basis for congenital heart disease: revisited: a scientific statement from the American Heart Association. Circulation. 2018;138:e653–711.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Peterson JK, Kochilas LK, Catton KG, Moller JH, Setty SP. Long-term outcomes of children with trisomy 13 and 18 after congenital heart disease interventions. Ann Thorac Surg. 2017;103:1941–9.PubMedPubMedCentralCrossRef Peterson JK, Kochilas LK, Catton KG, Moller JH, Setty SP. Long-term outcomes of children with trisomy 13 and 18 after congenital heart disease interventions. Ann Thorac Surg. 2017;103:1941–9.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W. Global variation in copy number in the human genome. nature 2006;444:444–454. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W. Global variation in copy number in the human genome. nature 2006;444:444–454.
24.
Zurück zum Zitat Warejko JK, Schueler M, Vivante A, et al. Whole exome sequencing reveals a monogenic cause of disease in ≈43% of 35 families with midaortic syndrome. Hypertension. 2018;71:691–9.PubMedCrossRef Warejko JK, Schueler M, Vivante A, et al. Whole exome sequencing reveals a monogenic cause of disease in ≈43% of 35 families with midaortic syndrome. Hypertension. 2018;71:691–9.PubMedCrossRef
25.
Zurück zum Zitat Grossfeld PD, Mattina T, Lai Z, Favier R, Jones KL, Cotter F, Jones C, Consortium 11q. The 11q terminal deletion disorder: a prospective study of 110 cases. Am J Med Genet A. 2004;129:51–61. Grossfeld PD, Mattina T, Lai Z, Favier R, Jones KL, Cotter F, Jones C, Consortium 11q. The 11q terminal deletion disorder: a prospective study of 110 cases. Am J Med Genet A. 2004;129:51–61.
26.
Zurück zum Zitat Favier R, Akshoomoff N, Mattson S, Grossfeld P. Jacobsen syndrome: advances in our knowledge of phenotype and genotype. In: Am J Med Genet C Semin Med. Wiley Online Library. 2015:239–250. Favier R, Akshoomoff N, Mattson S, Grossfeld P. Jacobsen syndrome: advances in our knowledge of phenotype and genotype. In: Am J Med Genet C Semin Med. Wiley Online Library. 2015:239–250.
27.
Zurück zum Zitat Battaglia 1p36 deletion syndrome – retired chapter, for historical reference only, in GeneReviews(®), M.P. Adam, et al., (Eds). University of Washington, Seattle. 1993. Battaglia 1p36 deletion syndrome – retired chapter, for historical reference only, in GeneReviews(®), M.P. Adam, et al., (Eds). University of Washington, Seattle. 1993.
28.
Zurück zum Zitat Battaglia A. Del 1p36 syndrome: a newly emerging clinical entity. Brain Develop. 2005;27:358–61.CrossRef Battaglia A. Del 1p36 syndrome: a newly emerging clinical entity. Brain Develop. 2005;27:358–61.CrossRef
29.
Zurück zum Zitat Hills C, Moller JH, Finkelstein M, Lohr J, Schimmenti L. Cri du chat syndrome and congenital heart disease: a review of previously reported cases and presentation of an additional 21 cases from the Pediatric Cardiac Care Consortium. Pediatrics. 2006;117:e924–7.PubMedCrossRef Hills C, Moller JH, Finkelstein M, Lohr J, Schimmenti L. Cri du chat syndrome and congenital heart disease: a review of previously reported cases and presentation of an additional 21 cases from the Pediatric Cardiac Care Consortium. Pediatrics. 2006;117:e924–7.PubMedCrossRef
30.
Zurück zum Zitat Peng Y, Pang J, Hu J, Jia Z, Xi H, Ma N, Yang S, Liu J, Huang X, Tang C. Clinical and molecular characterization of 12 prenatal cases of Cri-du-chat syndrome. Mol Genet Genomic Med. 2020;8: e1312.PubMedPubMedCentralCrossRef Peng Y, Pang J, Hu J, Jia Z, Xi H, Ma N, Yang S, Liu J, Huang X, Tang C. Clinical and molecular characterization of 12 prenatal cases of Cri-du-chat syndrome. Mol Genet Genomic Med. 2020;8: e1312.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Yi Li Q, Newbury-Ecob RA, Terrett JA, Wilson DI, Curtis AR, Ho Yi C, Gebuhr T, Bullen PJ, Robson SC, Strachan T. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet. 1997;15:21–9.CrossRef Yi Li Q, Newbury-Ecob RA, Terrett JA, Wilson DI, Curtis AR, Ho Yi C, Gebuhr T, Bullen PJ, Robson SC, Strachan T. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet. 1997;15:21–9.CrossRef
32.
Zurück zum Zitat Li L, Krantz ID, Deng YU, Genin A, Banta AB, Collins CC, Qi M, Trask BJ, Kuo WL, Cochran J. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet. 1997;16:243–51.PubMedCrossRef Li L, Krantz ID, Deng YU, Genin A, Banta AB, Collins CC, Qi M, Trask BJ, Kuo WL, Cochran J. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet. 1997;16:243–51.PubMedCrossRef
33.
Zurück zum Zitat Emerick KM, Rand EB, Goldmuntz E, Krantz ID, Spinner NB, Piccoli DA. Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology. 1999;29:822–9.PubMedCrossRef Emerick KM, Rand EB, Goldmuntz E, Krantz ID, Spinner NB, Piccoli DA. Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology. 1999;29:822–9.PubMedCrossRef
34.
Zurück zum Zitat Roberts AE, Allanson JE, Tartaglia M, Gelb BD. Noonan syndrome. The Lancet. 2013;381:333–42.CrossRef Roberts AE, Allanson JE, Tartaglia M, Gelb BD. Noonan syndrome. The Lancet. 2013;381:333–42.CrossRef
35.
36.
Zurück zum Zitat Srivastava D. Genetic regulation of cardiogenesis and congenital heart disease. ANNUAL REVIEW OF PATHOLOG. 2006;1:199.CrossRef Srivastava D. Genetic regulation of cardiogenesis and congenital heart disease. ANNUAL REVIEW OF PATHOLOG. 2006;1:199.CrossRef
37.
Zurück zum Zitat Vissers LE, van Ravenswaaij C, Admiraal R, Hurst JA, de Vries B, Janssen IM, van der Vliet WA, Huys EH, de Jong PJ, Hamel BC. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet. 2004;36:955–7.PubMedCrossRef Vissers LE, van Ravenswaaij C, Admiraal R, Hurst JA, de Vries B, Janssen IM, van der Vliet WA, Huys EH, de Jong PJ, Hamel BC. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet. 2004;36:955–7.PubMedCrossRef
38.
Zurück zum Zitat Weismann CG, Gelb BD. The genetics of congenital heart disease: a review of recent developments. Curr Opin Cardiol. 2007;22:200–6.PubMedCrossRef Weismann CG, Gelb BD. The genetics of congenital heart disease: a review of recent developments. Curr Opin Cardiol. 2007;22:200–6.PubMedCrossRef
39.
Zurück zum Zitat Corona-Rivera JR, Nieto-García R, Gutiérrez-Chávez AS, Bobadilla-Morales L, Rios-Flores IM, Corona-Rivera A, Fabián-Morales GE, Zavala-Cortés I, Lugo-Iglesias C, Peña-Padilla C. Maternal risk factors for congenital heart defects in infants with Down syndrome from Western Mexico. Am J Med Genet A. 2019;179:1857–65.PubMedCrossRef Corona-Rivera JR, Nieto-García R, Gutiérrez-Chávez AS, Bobadilla-Morales L, Rios-Flores IM, Corona-Rivera A, Fabián-Morales GE, Zavala-Cortés I, Lugo-Iglesias C, Peña-Padilla C. Maternal risk factors for congenital heart defects in infants with Down syndrome from Western Mexico. Am J Med Genet A. 2019;179:1857–65.PubMedCrossRef
40.
Zurück zum Zitat Khoury MJ, Erickson JD. Can maternal risk factors influence the presence of major birth defects in infants with Down syndrome? Am J Med Genet. 1992;43:1016–22.PubMedCrossRef Khoury MJ, Erickson JD. Can maternal risk factors influence the presence of major birth defects in infants with Down syndrome? Am J Med Genet. 1992;43:1016–22.PubMedCrossRef
41.
Zurück zum Zitat Torfs CP, Christianson RE. Maternal risk factors and major associated defects in infants with Down syndrome. Epidemiology. 1999:264–270. Torfs CP, Christianson RE. Maternal risk factors and major associated defects in infants with Down syndrome. Epidemiology. 1999:264–270.
42.
Zurück zum Zitat Fixler DE, Threlkeld N. Prenatal exposures and congenital heart defects in Down syndrome infants. Teratology. 1998;58:6–12.PubMedCrossRef Fixler DE, Threlkeld N. Prenatal exposures and congenital heart defects in Down syndrome infants. Teratology. 1998;58:6–12.PubMedCrossRef
43.
Zurück zum Zitat H. Bean LJ, Allen EG, Tinker SW, Hollis ND, Locke AE, Druschel C, Hobbs CA, O’Leary L, Romitti PA, Royle MH. Lack of maternal folic acid supplementation is associated with heart defects in Down syndrome: A report from the National Down Syndrome Project Birth Defects Res A. 2011;91:885-893. H. Bean LJ, Allen EG, Tinker SW, Hollis ND, Locke AE, Druschel C, Hobbs CA, O’Leary L, Romitti PA, Royle MH.  Lack of maternal folic acid supplementation is associated with heart defects in Down syndrome: A report from the National Down Syndrome Project Birth Defects Res A. 2011;91:885-893.
44.
Zurück zum Zitat Dolk H, McCullough N, Callaghan S, Casey F, Craig B, Given J, Loane M, Lagan BM, Bunting B, Boyle B. Risk factors for congenital heart disease: the Baby Hearts Study, a population-based case-control study. PLoS ONE. 2020;15: e0227908.PubMedPubMedCentralCrossRef Dolk H, McCullough N, Callaghan S, Casey F, Craig B, Given J, Loane M, Lagan BM, Bunting B, Boyle B. Risk factors for congenital heart disease: the Baby Hearts Study, a population-based case-control study. PLoS ONE. 2020;15: e0227908.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Brandalize APC, Bandinelli E, dos Santos PA, Roisenberg I, Schüler-Faccini L. Evaluation of C677T and A1298C polymorphisms of the MTHFR gene as maternal risk factors for Down syndrome and congenital heart defects. Am J Med Genet A. 2009;149:2080–7.CrossRef Brandalize APC, Bandinelli E, dos Santos PA, Roisenberg I, Schüler-Faccini L. Evaluation of C677T and A1298C polymorphisms of the MTHFR gene as maternal risk factors for Down syndrome and congenital heart defects. Am J Med Genet A. 2009;149:2080–7.CrossRef
46.
Zurück zum Zitat Nakajima Y. Second lineage of heart forming region provides new understanding of conotruncal heart defects. Congenit Anom. 2010;50:8–14.CrossRef Nakajima Y. Second lineage of heart forming region provides new understanding of conotruncal heart defects. Congenit Anom. 2010;50:8–14.CrossRef
47.
Zurück zum Zitat Roberts C, Ivins SM, James CT, Scambler PJ. Retinoic acid down-regulates Tbx1 expression in vivo and in vitro. Developmental dynamics: an official publication of the American Association of Anatomists. 2005;232:928–38.PubMedCrossRef Roberts C, Ivins SM, James CT, Scambler PJ. Retinoic acid down-regulates Tbx1 expression in vivo and in vitro. Developmental dynamics: an official publication of the American Association of Anatomists. 2005;232:928–38.PubMedCrossRef
48.
Zurück zum Zitat Guris DL, Duester G, Papaioannou VE, Imamoto A. Dose-dependent interaction of Tbx1 and Crkl and locally aberrant RA signaling in a model of del22q11 syndrome. Dev Cell. 2006;10:81–92.PubMedCrossRef Guris DL, Duester G, Papaioannou VE, Imamoto A. Dose-dependent interaction of Tbx1 and Crkl and locally aberrant RA signaling in a model of del22q11 syndrome. Dev Cell. 2006;10:81–92.PubMedCrossRef
49.
Zurück zum Zitat Sailani MR. Genetic variability and epigenetic alterations in Down syndrome with congenital heart defects. PhD Thesis, éditeur non identifié. 2013. Sailani MR. Genetic variability and epigenetic alterations in Down syndrome with congenital heart defects. PhD Thesis, éditeur non identifié. 2013.
50.
Zurück zum Zitat • Mouat JS, Li S, Myint SS, Laufer BI, Lupo PJ, Schraw JM, Woodhouse JP, de Smith AJ, LaSalle JM. Epigenomic signature of major congenital heart defects in newborns with Down syndrome. medRxiv. 2023;2023–05. This study finds a sex-specific signature DNA methylatin in DS-CHD individuals compared to DS non-CHD. • Mouat JS, Li S, Myint SS, Laufer BI, Lupo PJ, Schraw JM, Woodhouse JP, de Smith AJ, LaSalle JM. Epigenomic signature of major congenital heart defects in newborns with Down syndrome. medRxiv. 2023;2023–05. This study finds a sex-specific signature DNA methylatin in DS-CHD individuals compared to DS non-CHD.
51.
Zurück zum Zitat Rachamadugu SI, Miller KA, Lee IH, Zou YS. Genetic detection of congenital heart disease. Gynecology and Obstetrics Clinical Medicine. 2022. Rachamadugu SI, Miller KA, Lee IH, Zou YS. Genetic detection of congenital heart disease. Gynecology and Obstetrics Clinical Medicine. 2022.
52.
Zurück zum Zitat Matsumoto N, Niikawa N. Kabuki make-up syndrome: a review. In: American Journal of Medical Genetics Part C: Seminars in Medical Genetics. Wiley Online Library. 2003:57–65. Matsumoto N, Niikawa N. Kabuki make-up syndrome: a review. In: American Journal of Medical Genetics Part C: Seminars in Medical Genetics. Wiley Online Library. 2003:57–65.
55.
Zurück zum Zitat Nguyen JM, Qualmann KJ, Okashah R, Reilly A, Alexeyev MF, Campbell DJ. 5p deletions: current knowledge and future directions. In: Am J Med Genet Part C: Seminars in Medical Genetics. Wiley Online Library. 2015:224–238. Nguyen JM, Qualmann KJ, Okashah R, Reilly A, Alexeyev MF, Campbell DJ. 5p deletions: current knowledge and future directions. In: Am J Med Genet Part C: Seminars in Medical Genetics. Wiley Online Library. 2015:224–238.
56.
Zurück zum Zitat Peyvandi F, Kunicki T, Lillicrap D. Genetic sequence analysis of inherited bleeding diseases. Blood, The Journal of the American Society of Hematology. 2013;122:3423–31. Peyvandi F, Kunicki T, Lillicrap D. Genetic sequence analysis of inherited bleeding diseases. Blood, The Journal of the American Society of Hematology. 2013;122:3423–31.
57.
Zurück zum Zitat Koolen DA, Sharp AJ, Hurst JA, Firth HV, Knight SJ, Goldenberg A, Saugier-Veber P, Pfundt R, Vissers LE, Destrée A. Clinical and molecular delineation of the 17q21. 31 microdeletion syndrome. J Med Genet. 2008;45:710–20.PubMedCrossRef Koolen DA, Sharp AJ, Hurst JA, Firth HV, Knight SJ, Goldenberg A, Saugier-Veber P, Pfundt R, Vissers LE, Destrée A. Clinical and molecular delineation of the 17q21. 31 microdeletion syndrome. J Med Genet. 2008;45:710–20.PubMedCrossRef
59.
Zurück zum Zitat Hassed S, Li S, Mulvihill J, Aston C, Palmer S. Adams-Oliver syndrome review of the literature: refining the diagnostic phenotype. Am J Med Genet A. 2017;173:790–800.PubMedCrossRef Hassed S, Li S, Mulvihill J, Aston C, Palmer S. Adams-Oliver syndrome review of the literature: refining the diagnostic phenotype. Am J Med Genet A. 2017;173:790–800.PubMedCrossRef
60.
Zurück zum Zitat Alankarage D, Szot JO, Pachter N, Slavotinek A, Selleri L, Shieh JT, Winlaw D, Giannoulatou E, Chapman G, Dunwoodie SL. Functional characterization of a novel PBX1 de novo missense variant identified in a patient with syndromic congenital heart disease. Hum Mol Genet. 2020;29:1068–82.PubMedCrossRef Alankarage D, Szot JO, Pachter N, Slavotinek A, Selleri L, Shieh JT, Winlaw D, Giannoulatou E, Chapman G, Dunwoodie SL. Functional characterization of a novel PBX1 de novo missense variant identified in a patient with syndromic congenital heart disease. Hum Mol Genet. 2020;29:1068–82.PubMedCrossRef
61.
Zurück zum Zitat Trider C-L, Arra-Robar A, van Ravenswaaij-Arts C, Blake K. Developing a CHARGE syndrome checklist: health supervision across the lifespan (from head to toe). Am J Med Genet A. 2017;173:684–91.PubMedCrossRef Trider C-L, Arra-Robar A, van Ravenswaaij-Arts C, Blake K. Developing a CHARGE syndrome checklist: health supervision across the lifespan (from head to toe). Am J Med Genet A. 2017;173:684–91.PubMedCrossRef
62.
Zurück zum Zitat O’Connor MJ, Tang X, Collins RT. Cardiac diagnoses, procedures, and healthcare utilisation in inpatients with Ellis–van Creveld syndrome. Cardiol Young. 2015;25:95–101.PubMedCrossRef O’Connor MJ, Tang X, Collins RT. Cardiac diagnoses, procedures, and healthcare utilisation in inpatients with Ellis–van Creveld syndrome. Cardiol Young. 2015;25:95–101.PubMedCrossRef
63.
Zurück zum Zitat Lin AE, Krikov S, Riehle-Colarusso T, Frías JL, Belmont J, Anderka M, Geva T, Getz KD, Botto LD, Study NBDP. Laterality defects in the national birth defects prevention study (1998–2007): birth prevalence and descriptive epidemiology. Am J Med Genet A. 2014;164:2581–91.CrossRef Lin AE, Krikov S, Riehle-Colarusso T, Frías JL, Belmont J, Anderka M, Geva T, Getz KD, Botto LD, Study NBDP. Laterality defects in the national birth defects prevention study (1998–2007): birth prevalence and descriptive epidemiology. Am J Med Genet A. 2014;164:2581–91.CrossRef
64.
Zurück zum Zitat Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, Zeng X, Qi H, Chang W, Sierant MC. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet. 2017;49:1593–601.PubMedPubMedCentralCrossRef Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, Zeng X, Qi H, Chang W, Sierant MC. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet. 2017;49:1593–601.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat McDermott DA, Fong JC, Basson CT. Holt-Oram syndrome. 2019. McDermott DA, Fong JC, Basson CT. Holt-Oram syndrome. 2019.
66.
Zurück zum Zitat Hannibal MC, Buckingham KJ, Ng SB, Ming JE, Beck AE, McMillin MJ, Gildersleeve HI, Bigham AW, Tabor HK, Mefford HC. Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome. Am J Med Genet A. 2011;155:1511–6.PubMedCentralCrossRef Hannibal MC, Buckingham KJ, Ng SB, Ming JE, Beck AE, McMillin MJ, Gildersleeve HI, Bigham AW, Tabor HK, Mefford HC. Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome. Am J Med Genet A. 2011;155:1511–6.PubMedCentralCrossRef
67.
Zurück zum Zitat MacCarrick G, Black JH, Bowdin S, El-Hamamsy I, Frischmeyer-Guerrerio PA, Guerrerio AL, Sponseller PD, Loeys B, Dietz HC. Loeys-Dietz syndrome: a primer for diagnosis and management. Genet Med. 2014;16:576–87.PubMedPubMedCentralCrossRef MacCarrick G, Black JH, Bowdin S, El-Hamamsy I, Frischmeyer-Guerrerio PA, Guerrerio AL, Sponseller PD, Loeys B, Dietz HC. Loeys-Dietz syndrome: a primer for diagnosis and management. Genet Med. 2014;16:576–87.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Loughborough WW, Minhas KS, Rodrigues JC, Lyen SM, Burt HE, Manghat NE, Brooks MJ, Stuart G, Hamilton MC. Cardiovascular manifestations and complications of Loeys-Dietz syndrome: CT and MR imaging findings. Radiographics. 2018;38:275–86.PubMedCrossRef Loughborough WW, Minhas KS, Rodrigues JC, Lyen SM, Burt HE, Manghat NE, Brooks MJ, Stuart G, Hamilton MC. Cardiovascular manifestations and complications of Loeys-Dietz syndrome: CT and MR imaging findings. Radiographics. 2018;38:275–86.PubMedCrossRef
69.
Zurück zum Zitat Evans C-A, Pinner J, Chan CY, Bowyer L, Mowat D, Buckley MF, Roscioli T. Fetal diagnosis of Mowat-Wilson syndrome by whole exome sequencing. Am J Med Genet A. 2019;179:2152–7.PubMedCrossRef Evans C-A, Pinner J, Chan CY, Bowyer L, Mowat D, Buckley MF, Roscioli T. Fetal diagnosis of Mowat-Wilson syndrome by whole exome sequencing. Am J Med Genet A. 2019;179:2152–7.PubMedCrossRef
71.
Zurück zum Zitat Lin AE, Michot C, Cormier-Daire V, L’Ecuyer TJ, Matherne GP, Barnes BH, Humberson JB, Edmondson AC, Zackai E, O’Connor MJ. Gain-of-function mutations in SMAD4 cause a distinctive repertoire of cardiovascular phenotypes in patients with Myhre syndrome. Am J Med Genet A. 2016;170:2617–31.PubMedCrossRef Lin AE, Michot C, Cormier-Daire V, L’Ecuyer TJ, Matherne GP, Barnes BH, Humberson JB, Edmondson AC, Zackai E, O’Connor MJ. Gain-of-function mutations in SMAD4 cause a distinctive repertoire of cardiovascular phenotypes in patients with Myhre syndrome. Am J Med Genet A. 2016;170:2617–31.PubMedCrossRef
72.
Zurück zum Zitat Jhang WK, Choi J-H, Lee BH, Kim G-H, Yoo H-W. Cardiac manifestations and associations with gene mutations in patients diagnosed with RASopathies. Pediatr Cardiol. 2016;37:1539–47.PubMedCrossRef Jhang WK, Choi J-H, Lee BH, Kim G-H, Yoo H-W. Cardiac manifestations and associations with gene mutations in patients diagnosed with RASopathies. Pediatr Cardiol. 2016;37:1539–47.PubMedCrossRef
73.
Zurück zum Zitat Meroni G. X-linked Opitz G/BBB syndrome synonyms: Opitz syndrome, X-linked; XLOS. 2018. Meroni G. X-linked Opitz G/BBB syndrome synonyms: Opitz syndrome, X-linked; XLOS. 2018.
74.
Zurück zum Zitat Konya MN, Elmas M, Erginoğlu SE, Yeşil M. A rare case of 3C disease: Ritscher-Schinzel syndrome presenting with recurrent talipes equinovarus. Int J Surg Case Rep. 2015;7:130–3.CrossRef Konya MN, Elmas M, Erginoğlu SE, Yeşil M. A rare case of 3C disease: Ritscher-Schinzel syndrome presenting with recurrent talipes equinovarus. Int J Surg Case Rep. 2015;7:130–3.CrossRef
75.
Zurück zum Zitat Leonardi ML, Pai GS, Wilkes B, Lebel RR. Ritscher-Schinzel cranio-cerebello-cardiac (3C) syndrome: report of four new cases and review. Am J Med Genet. 2001;102:237–42.PubMedCrossRef Leonardi ML, Pai GS, Wilkes B, Lebel RR. Ritscher-Schinzel cranio-cerebello-cardiac (3C) syndrome: report of four new cases and review. Am J Med Genet. 2001;102:237–42.PubMedCrossRef
76.
77.
Zurück zum Zitat Jira PE, Waterham HR, Wanders RJA, Smeitink JAM, Sengers RCA, Wevers RA. Smith-Lemli-Opitz syndrome and the DHCR7 gene. Ann Hum Genet. 2003;67:269–80.PubMedCrossRef Jira PE, Waterham HR, Wanders RJA, Smeitink JAM, Sengers RCA, Wevers RA. Smith-Lemli-Opitz syndrome and the DHCR7 gene. Ann Hum Genet. 2003;67:269–80.PubMedCrossRef
78.
Zurück zum Zitat Leventopoulos G, Kitsiou-Tzeli S, Kritikos K, Psoni S, Mavrou A, Kanavakis E, Fryssira H. A clinical study of Sotos syndrome patients with review of the literature. Pediatr Neurol. 2009;40:357–64.PubMedCrossRef Leventopoulos G, Kitsiou-Tzeli S, Kritikos K, Psoni S, Mavrou A, Kanavakis E, Fryssira H. A clinical study of Sotos syndrome patients with review of the literature. Pediatr Neurol. 2009;40:357–64.PubMedCrossRef
Metadaten
Titel
Understanding the Genetic and Non-Genetic Interconnections in the Aetiology of Syndromic Congenital Heart Disease: An Updated Review: Part 2
verfasst von
Jyoti Maddhesiya
Bhagyalaxmi Mohapatra
Publikationsdatum
15.02.2024
Verlag
Springer US
Erschienen in
Current Cardiology Reports / Ausgabe 3/2024
Print ISSN: 1523-3782
Elektronische ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-024-02020-x

Weitere Artikel der Ausgabe 3/2024

Current Cardiology Reports 3/2024 Zur Ausgabe

Myocardial Disease (A Abbate and M Merlo, Section Editors)

Fulminant Myocarditis Temporally Associated with COVID-19 Vaccination

Cardiometabolic Disease (DM and CV) (CJ Lavie, Section Editor)

Nutritional Aspects to Cardiovascular Diseases and Type 2 Diabetes Mellitus

Women and Cardiovascular Health (N Goldberg and S Lewis, Section Editors)

Spontaneous Coronary Artery Dissection (SCAD) from an Interventionalist Perspective

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.