Skip to main content
Erschienen in: European Radiology 2/2024

24.08.2023 | Chest

Use of artificial intelligence in triaging of chest radiographs to reduce radiologists’ workload

verfasst von: Sung Hyun Yoon, Sunyoung Park, Sowon Jang, Junghoon Kim, Kyung Won Lee, Woojoo Lee, Seungjae Lee, Gabin Yun, Kyung Hee Lee

Erschienen in: European Radiology | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To evaluate whether deep learning–based detection algorithms (DLD)–based triaging can reduce outpatient chest radiograph interpretation workload while maintaining noninferior sensitivity.

Methods

This retrospective study included patients who underwent initial chest radiography at the outpatient clinic between June 1 and June 30, 2017. Readers interpreted radiographs with/without a commercially available DLD that detects nine radiologic findings (atelectasis, calcification, cardiomegaly, consolidation, fibrosis, nodules, pneumothorax, pleural effusion, and pneumoperitoneum). The reading order was determined in a randomized, crossover manner. The radiographs were classified into negative and positive examinations. In a 50% worklist reduction scenario, radiographs were sorted in descending order of probability scores: the lower half was regarded as negative exams, while the remaining were read with DLD by radiologists. The primary analysis evaluated noninferiority in sensitivity between radiologists reading all radiographs and simulating a 50% worklist reduction, with the inferiority margin of 5%. The specificities were compared using McNemar’s test.

Results

The study included 1964 patients (median age [interquartile range], 55 years [40–67 years]). The sensitivity was 82.6% (195 of 236; 95% CI: 77.5%, 87.3%) when readers interpreted all chest radiographs without DLD and 83.5% (197 of 236; 95% CI: 78.8%, 88.1%) in the 50% worklist reduction scenario. The difference in sensitivity was 0.8% (95% CI: − 3.8%, 5.5%), establishing noninferiority of 50% worklist reduction (p = 0.01). The specificity increased from 86.7% (1498 of 1728) to 90.4% (1562 of 1728) (p < 0.001) with DLD-based triage.

Conclusion

Deep learning–based triaging may substantially reduce workload without lowering sensitivity while improving specificity.

Clinical relevance statement

Substantial workload reduction without lowering sensitivity was feasible using deep learning–based triaging of outpatient chest radiograph; however, the legal responsibility for incorrect diagnoses based on AI-standalone interpretation remains an issue that should be defined before clinical implementation.

Key Points

A 50% workload reduction simulation using deep learning–based detection algorithm maintained noninferior sensitivity while improving specificity.
The CT recommendation rate significantly decreased in the disease-negative patients, whereas it slightly increased in the disease-positive group without statistical significance.
In the exploratory analysis, the noninferiority of sensitivity was maintained until 70% of the workload was reduced; the difference in sensitivity was 0%.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat de Hoop B, Schaefer-Prokop C, Gietema HA et al (2010) Screening for lung cancer with digital chest radiography: sensitivity and number of secondary work-up CT examinations. Radiology 255:629–637CrossRefPubMed de Hoop B, Schaefer-Prokop C, Gietema HA et al (2010) Screening for lung cancer with digital chest radiography: sensitivity and number of secondary work-up CT examinations. Radiology 255:629–637CrossRefPubMed
2.
Zurück zum Zitat Mehrotra P, Bosemani V, Cox J (2009) Do radiologists still need to report chest x rays? Postgrad Med J 85:339–341CrossRefPubMed Mehrotra P, Bosemani V, Cox J (2009) Do radiologists still need to report chest x rays? Postgrad Med J 85:339–341CrossRefPubMed
3.
Zurück zum Zitat Wu JT, Wong KCL, Gur Y et al (2020) Comparison of chest radiograph interpretations by artificial intelligence algorithm vs radiology residents. JAMA Netw Open 3:e2022779CrossRefPubMedPubMedCentral Wu JT, Wong KCL, Gur Y et al (2020) Comparison of chest radiograph interpretations by artificial intelligence algorithm vs radiology residents. JAMA Netw Open 3:e2022779CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Seah JCY, Tang CHM, Buchlak QD et al (2021) Effect of a comprehensive deep-learning model on the accuracy of chest x-ray interpretation by radiologists: a retrospective, multireader multicase study. Lancet Digit Health 3:e496–e506CrossRefPubMed Seah JCY, Tang CHM, Buchlak QD et al (2021) Effect of a comprehensive deep-learning model on the accuracy of chest x-ray interpretation by radiologists: a retrospective, multireader multicase study. Lancet Digit Health 3:e496–e506CrossRefPubMed
5.
Zurück zum Zitat Rajpurkar P, Irvin J, Ball RL et al (2018) Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med 15:e1002686CrossRefPubMedPubMedCentral Rajpurkar P, Irvin J, Ball RL et al (2018) Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med 15:e1002686CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Nam JG, Kim M, Park J et al (2021) Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs. Eur Respir J 57(5):2003061 Nam JG, Kim M, Park J et al (2021) Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs. Eur Respir J 57(5):2003061
7.
Zurück zum Zitat Hwang EJ, Nam JG, Lim WH et al (2019) Deep learning for chest radiograph diagnosis in the emergency department. Radiology 293:573–580CrossRefPubMed Hwang EJ, Nam JG, Lim WH et al (2019) Deep learning for chest radiograph diagnosis in the emergency department. Radiology 293:573–580CrossRefPubMed
8.
Zurück zum Zitat Cicero M, Bilbily A, Colak E et al (2017) Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs. Invest Radiol 52:281–287CrossRefPubMed Cicero M, Bilbily A, Colak E et al (2017) Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs. Invest Radiol 52:281–287CrossRefPubMed
9.
Zurück zum Zitat Annarumma M, Withey SJ, Bakewell RJ, Pesce E, Goh V, Montana G (2019) Automated triaging of adult chest radiographs with deep artificial neural networks. Radiology 291:196–202CrossRefPubMed Annarumma M, Withey SJ, Bakewell RJ, Pesce E, Goh V, Montana G (2019) Automated triaging of adult chest radiographs with deep artificial neural networks. Radiology 291:196–202CrossRefPubMed
10.
Zurück zum Zitat Dunnmon JA, Yi D, Langlotz CP, Re C, Rubin DL, Lungren MP (2019) Assessment of convolutional neural networks for automated classification of chest radiographs. Radiology 290:537–544CrossRefPubMed Dunnmon JA, Yi D, Langlotz CP, Re C, Rubin DL, Lungren MP (2019) Assessment of convolutional neural networks for automated classification of chest radiographs. Radiology 290:537–544CrossRefPubMed
11.
Zurück zum Zitat Hwang EJ, Park S, Jin KN et al (2019) Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open 2:e191095CrossRefPubMedPubMedCentral Hwang EJ, Park S, Jin KN et al (2019) Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open 2:e191095CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Sung J, Park S, Lee SM et al (2021) Added value of deep learning-based detection system for multiple major findings on chest radiographs: a randomized crossover study. Radiology 299:450–459CrossRefPubMed Sung J, Park S, Lee SM et al (2021) Added value of deep learning-based detection system for multiple major findings on chest radiographs: a randomized crossover study. Radiology 299:450–459CrossRefPubMed
13.
Zurück zum Zitat Majkowska A, Mittal S, Steiner DF et al (2020) Chest radiograph interpretation with deep learning models: assessment with radiologist-adjudicated reference standards and population-adjusted evaluation. Radiology 294:421–431CrossRefPubMed Majkowska A, Mittal S, Steiner DF et al (2020) Chest radiograph interpretation with deep learning models: assessment with radiologist-adjudicated reference standards and population-adjusted evaluation. Radiology 294:421–431CrossRefPubMed
14.
Zurück zum Zitat Nam JM (1997) Establishing equivalence of two treatments and sample size requirements in matched-pairs design. Biometrics 53:1422–1430CrossRefPubMed Nam JM (1997) Establishing equivalence of two treatments and sample size requirements in matched-pairs design. Biometrics 53:1422–1430CrossRefPubMed
15.
Zurück zum Zitat Dorfman DD, Berbaum KS, Metz CE (1992) Receiver operating characteristic rating analysis. Generalization to the population of readers and patients with the jackknife method. Invest Radiol 27:723–731CrossRefPubMed Dorfman DD, Berbaum KS, Metz CE (1992) Receiver operating characteristic rating analysis. Generalization to the population of readers and patients with the jackknife method. Invest Radiol 27:723–731CrossRefPubMed
18.
Zurück zum Zitat Dyer T, Dillard L, Harrison M et al (2021) Diagnosis of normal chest radiographs using an autonomous deep-learning algorithm. Clin Radiol 76:473.e479-473.e415CrossRef Dyer T, Dillard L, Harrison M et al (2021) Diagnosis of normal chest radiographs using an autonomous deep-learning algorithm. Clin Radiol 76:473.e479-473.e415CrossRef
19.
Zurück zum Zitat Kim JH, Kim JY, Kim GH et al (2020) Clinical validation of a deep learning algorithm for detection of pneumonia on chest radiographs in emergency department patients with acute febrile respiratory illness. J Clin Med 9(6):1981 Kim JH, Kim JY, Kim GH et al (2020) Clinical validation of a deep learning algorithm for detection of pneumonia on chest radiographs in emergency department patients with acute febrile respiratory illness. J Clin Med 9(6):1981
20.
Zurück zum Zitat Jang S, Song H, Shin YJ et al (2020) Deep learning-based automatic detection algorithm for reducing overlooked lung cancers on chest radiographs. Radiology 296:652–661CrossRefPubMed Jang S, Song H, Shin YJ et al (2020) Deep learning-based automatic detection algorithm for reducing overlooked lung cancers on chest radiographs. Radiology 296:652–661CrossRefPubMed
Metadaten
Titel
Use of artificial intelligence in triaging of chest radiographs to reduce radiologists’ workload
verfasst von
Sung Hyun Yoon
Sunyoung Park
Sowon Jang
Junghoon Kim
Kyung Won Lee
Woojoo Lee
Seungjae Lee
Gabin Yun
Kyung Hee Lee
Publikationsdatum
24.08.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 2/2024
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-023-10124-1

Weitere Artikel der Ausgabe 2/2024

European Radiology 2/2024 Zur Ausgabe

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.