Skip to main content
Erschienen in: Neurological Sciences 9/2020

Open Access 24.04.2020 | Review Article

Using NMR spectroscopy to investigate the role played by copper in prion diseases

verfasst von: Rawiah A. Alsiary, Mawadda Alghrably, Abdelhamid Saoudi, Suliman Al-Ghamdi, Lukasz Jaremko, Mariusz Jaremko, Abdul-Hamid Emwas

Erschienen in: Neurological Sciences | Ausgabe 9/2020

Abstract

Prion diseases are a group of rare neurodegenerative disorders that develop as a result of the conformational conversion of normal prion protein (PrPC) to the disease-associated isoform (PrPSc). The mechanism that actually causes disease remains unclear. However, the mechanism underlying the conformational transformation of prion protein is partially understood—in particular, there is strong evidence that copper ions play a significant functional role in prion proteins and in their conformational conversion. Various models of the interaction of copper ions with prion proteins have been proposed for the Cu (II)-binding, cell-surface glycoprotein known as prion protein (PrP). Changes in the concentration of copper ions in the brain have been associated with prion diseases and there is strong evidence that copper plays a significant functional role in the conformational conversion of PrP. Nevertheless, because copper ions have been shown to have both a positive and negative effect on prion disease onset, the role played by Cu (II) ions in these diseases remains a topic of debate. Because of the unique properties of paramagnetic Cu (II) ions in the magnetic field, their interactions with PrP can be tracked even at single atom resolution using nuclear magnetic resonance (NMR) spectroscopy. Various NMR approaches have been utilized to study the kinetic, thermodynamic, and structural properties of Cu (II)-PrP interactions. Here, we highlight the different models of copper interactions with PrP with particular focus on studies that use NMR spectroscopy to investigate the role played by copper ions in prion diseases.
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s10072-020-04321-9) contains supplementary material, which is available to authorized users.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Background

Prion diseases are a family of rare and progressive neurodegenerative disorders that develop as a result of the conformational conversion of the normal form of the transmissible prion protein (PrPC) into the disease-associated form (PrPSc) [1]. These diseases usually take many years to develop; during the incubation period, the disease advances asymptomatically in the brain until initiation of nervous system degeneration and subsequent death [2]. Human (Hu) PrPC is a 209-residue glycoprotein that is attached by a C-terminal glycosylphosphatidylinositol (GPI) to the outer leaflet of the plasma membrane of a brain cell. Prion proteins are highly conserved among mammals [3, 4], where the general structure of globular domain protein, PrPC contains three α-helices and a two-strand antiparallel β-sheets, an NH2-terminal tail consisting of an octapeptide repeat-containing unfolded domain, and GPI attached to the short COOH-terminal tail [5]. Figure 1 shows the structures of various prion proteins.
Repeated published reports noted that copper may play a significant role in the conversion of PrPC to PrPSc [69] (Fig. 2). Moreover, several reports have shown that cellular prion protein (PrP) may play a crucial role in the redox control of the neuronal environment and in the regulation of copper metabolism in a manner that contributes to disease pathology [7, 1012]. The concentration of copper in humans varies in different organs. A high copper concentration is found in the liver, brain, kidney, and heart [13]. In these organs, copper is essential for the function of several enzymes, including cytochrome C oxidase, catalase, dopamine hydroxylase, uricase, tryptophan dioxygenase, lecithinse, and other monoamine and diamine oxidases as well as superoxide dismutase (SOD) [1418]. These enzymes are important in oxidation-reduction reactions, transport of oxygen and electrons, and protection of the cell from oxygen radicals [19, 20]. Changes in copper ion concentrations in the brain are associated with several neurological diseases including prion diseases [2124]. Gasperini et al. showed that PrPC and copper jointly inhibit N-methyl-d-aspartate receptors (NMDAR) and prevent cell death, thus suggesting a positive role for copper in disease treatment [12]. They also showed that PrPC and copper cooperatively protect neurons from insults and exert neuroprotective effects [12].
Advances in medical research and technology, such as nuclear magnetic resonance (NMR) spectroscopy and imaging, have contributed enormously to the detection and management of prion diseases [2536] as was successfully demonstrated in the detection and description of Creutzfeldt-Jakob disease (CJD) [30]. In particular, NMR spectroscopy provided the first three-dimensional (3D) structure of the folded mouse prion protein domain PrP [12, 37146]. Recently, structures of other PrP-associated diseases were resolved using NMR spectroscopy [147]. In addition, NMR enabled the investigation of the dynamic equilibria between monomeric and oligomeric misfolded states of mammalian PrP [148].

Prion disease

Prion diseases, such as human prion diseases, are a group of progressive neurodegenerative disorders caused by conformational conversion of the α-helix-rich isoform of the prion protein (PrPC), which is the normal form, into the β-sheet rich isoform (PrPSc), which is the disease-associated form [1, 149, 150]. Abnormal folding of the protein (PrPSc) leads to brain damage and causes high fatality rates in both humans and animals [151166]. However, the pathogenic mechanism that triggers this abnormal folding leading to prion diseases remains unknown. Prion diseases may take many years to develop with long incubation periods [2, 149]; during this time, the disease grows asymptomatically in the brain until the initiation of nervous-system degeneration and resulting death [2]. The infection causes brain atrophy, spongiform encephalopathy, and cerebellar degeneration. Although prion diseases are rare, they remain an important public health issue requiring attention to their management [167].
Prion diseases can be contracted through sporadic, genetic, and infectious routes [168171]. An individual who contracts a prion disease sporadically is exposed to unknown risk factors that vary from one region to another [169]. Some people and animals can inherit prion diseases from their parents, whereas others acquire it from contaminated animal products and feed. The most common types of animal prion diseases are scrapie, bovine spongiform encephalopathy (mad cow disease), and transmissible mink encephalopathy [172, 173]. Examples of human prion diseases are Creutzfeldt-Jakob disease (CJD), Kuru, fatal familial insomnia (FFI), and Gerstmann-Sträussler-Scheinker syndrome (GSS) [147, 174, 175]. Neurological clinical presentations and diagnosis vary among the different human prion diseases. Research has shown that Kuru disease has been eradicated, where it acquired through consumption of the brains of infected humans killed by the disease during the practice of funerary cannibalism [176]. FFI is an autosomal illness characterized by lesions in the thalamus of the brain. GSS is associated with the pathological Q212P mutation, and, like CJD, results in progressive dementia [147, 177]. CJD is associated with mutation in the gene encoding the prion protein [178] and the most common and fatal prion disease (Fig. 3), with about 90% of affected individuals dying within a year of diagnosis. Early symptoms include poor coordination, visual disturbance, and memory problems; later symptoms include blindness, weakness, involuntary movement, and finally coma. Additional file 1: Table S1 summarizes the similarities and differences among the various human prion diseases.

Copper ions in nervous system development and neurodegenerative disorders

Copper ions are found in all living organisms. It is an essential nutrient in humans, animals, and plants [168171], where it plays crucial roles in redox chemistry and the actions of enzymes and proteins, especially those related to energy metabolism [169, 179]. Moreover, it is fundamental for normal brain and nervous system development, as it is involved in the synthesis of neurotransmitters and in the production and maintenance of myelin [147, 174, 175].
Copper-containing compounds have also been used in medicine for centuries. Several studies proposed that copper chelators may play a potential therapeutic role in certain inherited diseases of copper homeostasis as well as in neurodegenerative diseases, such as Parkinson’s, Wilson’s, Menkes, Alzheimer’s [147, 177], and prion diseases [172, 173, 180, 181]. Various treatments for prion disease have been trialed. One was based on the use of the copper chelator D-penicillamine (D-PEN), which demonstrated a delay in the onset of prion disease in mice [182, 183]. In another trial, a significant delay in the onset of prion disease was observed when scrapie-infected hamsters were treated with copper. Copper ions inhibit in vitro conversion of prion protein into amyloid fibrils [20]. In cross-correlation analyses, it showed an antiaggregatory effect [184186]. Altered levels of copper and manganese ions have been observed in prion-infected brain tissues [182].
Copper can have one of several oxidation states, including Cu (IV), Cu (III), Cu (II), and Cu(I); the most common states are Cu(I) and Cu (II) [187189]. The coordination chemistry of Cu(I) is different from that of Cu (II), because Cu(I) complexes usually have a lower coordination number (CN) than C (II) complexes have. For example, Cu(I) complexes are usually tetrahedral or square planar with CN = 4, trigonal with CN = 5, or linear with CN = 2, whereas Cu (II) complexes usually have higher coordination numbers (primarily octahedral, with CN = 6). The large number of possible combinations of copper ions allows for a wide range of copper coordination complexes, ranging from monodentate to hexadentate [190192]. Importantly, Cu(I) has d10 configurations and forms colorless and diamagnetic compounds, whereas Cu (II) has d9 configurations and forms colored and paramagnetic compounds [10, 11, 193203]. There is an important difference in stability of Cu(I) and Cu (II) ions that strictly defines their biological role in the living organisms. The low stability of Cu(I) has led to the relative scarcity of studies on the biological roles of Cu(I) [39], whereas the higher stability of Cu (II) has led to extensive examination of its biological role in neurodegenerative disorders [204].
Studies have highlighted the role of Cu (II) ions in synaptic transmission, axonal targeting, neurite outgrowth as well as in the modulation of signaling cascades induced by neurotrophic factors. Copper not only modulates neurotransmitter receptors at synapses but it can also affect the trafficking of synaptic vesicles and modulate the interaction between proteins involved in secretory vesicle pathways [205]. Copper is clearly important in the normal development of the brain and nervous system [206211]. It follows that copper deficiency can lead to nervous system degeneration. A decrease in copper from its normal levels can lead to several neurodegenerative and other diseases where aggregation of proteins plays a crucial role [187, 212]. On the other hand, an excessive amount of copper (applicable especially to Cu (II) ions) can lead to cytotoxicity, owing to the ability of Cu (II) to initiate redox cycling and to produce reactive oxygen species (ROS) [213, 214].
The biological function of copper ions in many copper-binding proteins and enzymes involves changing copper’s oxidation state through various redox reactions (e.g., Fenton and Haber Weiss reactions).
$$ {\mathrm{Cu}}^{2+}+{\mathrm{O}}^{2-}\to {\mathrm{Cu}}^{+}+{\mathrm{H}}_2{\mathrm{O}}_2 $$
(1)
$$ {\displaystyle \begin{array}{l}{\mathrm{Cu}}^{+}+{{\mathrm{O}}_2}^{-}{\mathrm{Cu}}^{2+}\left({{\mathrm{O}}^{2-}}_2\right)\to {}^{2\mathrm{H}+}{\mathrm{Cu}}^{2+}+{\mathrm{H}}_2{\mathrm{O}}_2\\ {}\mathrm{C}{\mathrm{u}}^{2+}+{\mathrm{O}}^{2-}\to {\mathrm{Cu}}^{+}\ {\mathrm{H}}_2{\mathrm{O}}_2\end{array}} $$
(2)
The enzyme superoxide dismutase 1 (SOD1) is present in almost all eukaryotic cells and a few prokaryotic cells that contain both copper and zinc [4042, 215]. SOD1 catalyzes the dismutation of the superoxide radical to hydrogen peroxide and oxygen [4349]. This catalytic cycle is, however, beyond the scope of this review.
Interestingly, amyloid precursor protein (APP), which is found in Alzheimer’s disease patients, can reduce Cu (II) to Cu(I) in a cell-free system [11]; moreover, Cu (II) can be reduced to Cu(I) and remains bound to APP [10, 22, 41, 42, 50, 51]. This suggests that PrP is a target of copper-catalyzed oxidation and that this reaction leads to profound structural changes in the protein. Oxidation therefore must be taken into account as a potential side reaction when considering the role of copper in prion disease [52, 53, 202, 203].
In summary, copper is known to play an important role in neurological development. It can lead to neurodegenerative disorders when present in excess or deficient levels. This suggests that prion diseases may also be affected by the availability or lack of availability of copper in the brain.

The biological roles of copper ions in neurodegenerative disorders

Mis-folded protein aggregates have been associated in several neurodegenerative disorders including Parkinson’s, Alzheimer’s, and prion disease [54]. Proteins’ aggregation rate depends on protein concentration and the ratio of the presence of metal ions like Cu2+, Zn2+, Co2+, Cr3+, and Ni2+ [5557]. Tau protein (TP) and α-Synuclein are examples of biomolecules whose aggregation rates are dependent on their concentration and the metal ion coordination properties [5860]. TP aggregation found in the neuronal cells of Alzheimer’s disease patients [59, 60] while α-Synuclein aggregation is associated with Parkinson’s disease progression [58].
TP found in the neuronal cells of the central nervous system and its aggregation is associated with Alzheimer’s disease [61]. TP is a neuronal microtubule-associated protein and plays a key role in microtubule stabilization in neuronal cells [62]. In general, TP aggregation initiated when the protein gets into the hyperphosphorylated form, which could result in microtubule (MT) assembly decomposition [54, 63]. TP aggregation is promoted in the presence of high Cu2+ concentration in the brain [61, 64]. A number of binding sites of Cu2+ with TP have been reported [6567]. This binding leads to activation of GSK3β kinase [68] or activation of CDK5 [64] supporting the progress of Alzheimer’s disease [69].
α-Synuclein protein abundant in the brain, mainly in the presynaptic terminals and is involved the release of neurotransmitters, regulates glucose and dopamine level [70, 71]. Misfolded α-synuclein aggregation is the major component of Lewy neurites (LNs) and Lewy bodies (LBs), which are pathological hallmarks of Parkinson’s disease and other neurodegenerative synucleinopathies [7274]. The aggregation rates of α-synuclein affected by many factors for instance α-synuclein concentration, pH, post-translational modifications (PTM), and metal ions as Cu2+, Zn2+, Al3+, Fe3+, Ca2+, and Mg2+ [75, 76]. High Cu2+ concentrations have been reported in the cerebrospinal fluid of Parkinson’s disease patients [77], which accelerates the aggregation rate by promoting the nucleation [69, 78]. α-Synuclein–Cu (II) complexes formed through a high-affinity copper-binding site or low-affinity copper-binding sites. The high-affinity of copper-binding sites is located at the N-terminus with residues Met1, Asp2, and Met5. The low-affinity copper-binding sites are located at the N-terminus residue His50 or at the C-terminal part with residues Asp119, Asp121, Asn122, and Glu123 [7880].
In summary, association between Cu2+ and its effect on protein aggregation had been repeatedly reported [64, 67, 78]. Misfolding protein aggregations are common in many neurodegenerative diseases. This suggests that Parkinson and Alzheimer’s diseases may also be affected by the availability or lack of availability of copper in the brain.

Roles of copper ions in prion diseases

PrP is known to bind copper ions, and this binding interaction may affect PrPC function and its conformational transformation to the PrPSc form. However, there is contradictory evidence concerning whether copper ions are beneficial or deleterious to the development of prion diseases [8185].
Both in vitro and in vivo evidence has been reported for PrP binding to copper ions. Hornshaw et al. showed the first link between copper and prion proteins in 1995 [86] in an investigation of the binding between different transition metals and synthetic peptides. They hypothesized that copper ions bind to the N-terminal octapeptide tandem repeat sequence that corresponds to three or four copies of human PrP (PHGGGWGQ) [8789]. Although Hornshaw et al. conducted in vitro experiments, their results suggested that PrP might be a copper-binding protein in vivo and that PrP preferentially binds copper over other metals [90, 91, 180]. Another study showed that copper ions bind to His96 and His111 of wild-type PrP at pH 5.5, whereas it interacts with His111 at pH 7.5 [202]. Pathological point mutations alter copper coordination under acidic conditions and metal is then anchored to His111 [202]. Additional studies have since confirmed that PrP specifically and preferentially binds copper compared with other transition metals [92, 93]. Some reports have claimed that interaction with Mn causes conversion of PrPc to PrPres, as detected by in vitro studies. Near-infrared spectroscopy coupled with multivariate analysis suggested that (i) PrP binds both Mn and Cu differently, (ii) PrP-Cu, and not PrP-Mn, protects the metal from the water, increasing protein stability, and (iii) PrP-Cu remains stable in solution, whereas PrP-Mn undergoes changes leading to fibril formation [94].
Later studies have shown that the binding of copper to PrP can affect its conformational transition to the infectious form. Takeuchi et al. (1996) showed that PrP requires copper to remain “normal” and non-infective. They suggested that a lack of copper might contribute to prion diseases [95, 96]. A similar study showed that the interaction of Cu (II) ions with PrP promotes a shift from a predominant α-helical structure of PrPC to the β-sheet structure of the infectious isoform, PrPSc, thus suggesting a negative role for copper ions in disease onset [97]. The results do not support Takeuchi’s proposal that the interaction of copper with prion proteins may lead to conformational changes (formation of an α-helical structure on the C-terminal side) that prevent aggregation. Zheng et al. studied the impact of the G127V mutation on the structural and dynamical properties of PrP using NMR and molecular dynamic methods [189]. They concluded that replacement of G127 by V destabilizes the β-sheet and affects the geometric stacking of the α-helices inside the prion molecule.
Studies performed in cell culture models and animal models have provided evidence both for and against the role of copper in promoting the development of prion diseases. For example, several studies have shown that copper functions as an antioxidant agent in copper-containing PrP, which enhances neuronal survival [98]. In contrast, Hijazi et al. found that copper plays a protective role in prion diseases, as they observed a significant delay in prion disease onset in scrapie-infected hamsters treated with copper ions, whereas administration of copper ions to normal hamsters promoted cerebellar PrPC accumulation [12, 39, 99112, 202]. Moreover, the accumulation of the disease-related conformation (PrPSc) is significantly decreased in scrapie-affected neuroblastoma cells cultured in the presence of copper. On the other hand, normal neuroblastoma cells cultured in the presence of copper exhibited inhibition of the internalization of PrPSc [113]. In agreement with this result, Toni et al. reported that copper modifies PrPC expression and pathways in cultured neurons and that PrP mRNA expression in GN11 neurons is significantly decreased by the addition of copper ions at physiological concentrations [114]. These results suggest that extracellular copper can be used to control the amount of cellular PrP and may be an effective strategy to decrease the expression of PrPC, consequently decreasing the possibility of its conversion to the pathological isoform PrPSc [115].
The contradictory results from the studies described above indicate that the role played by copper in the development of prion diseases is unclear. Further research is needed to resolve these contradictions. Structural biology approaches, in general, and NMR spectroscopy, in particular, have the potential to be very useful in the study of copper ion coordination with PrP to help elucidate the role played by copper ions in prion diseases [116].

NMR spectroscopy

NMR spectroscopy is a powerful analytical tool. It is able to differentiate the unique magnetic environment of a nucleus in a single molecule’s various positions at the atomic level [117, 118]. Moreover, NMR can be used in structural elucidation as well as for kinetics and thermodynamics studies [99, 119, 120]. Most importantly, NMR provides information on the environment of specific atom sites and their neighboring attached atoms using in two dimensions [108, 121]. Thus, NMR spectroscopy is extensively used in a wide range of applications, including organic chemistry [108], biochemistry, polymer chemistry [122], inorganic chemistry [122], structural biology [52], physics [61, 123127], biology, and drug discovery [52, 128, 129]. Through NMR experiments, researchers can study samples in the solid state [130132], gel phase [133136], tissue state [137139], gas phase, and solution state [140143]; these approaches have been used to investigate molecular structures, concentration levels, and molecular dynamics [144146]. Moreover, the continuous development of NMR experimental methods and NMR machinery, such as dynamic nuclear polarization (DNP) and high-field NMR spectrometers, has continuously enhanced research on the physical and chemical properties of samples [216218].
The main disadvantage of NMR spectroscopy is its low sensitivity, making milligrams of a sample necessary for useful NMR measurements. The low natural abundance of both 15N and 13C also has to be overcome in the application of NMR spectroscopy to biological samples, such as in the study of proteins. Proteins isotopically labeled with 13C and/or 15N are therefore often used in protein NMR experiments. NMR spectroscopy uses many multidimensional approaches to resolve protein structures, their dynamics and to enhance the resolution of complicated NMR spectrum [219223].
There are also several limitations to the use of NMR spectroscopy as an analytical tool to study the interaction between copper ions and prion proteins. Generally, paramagnetic ions such as Cu (II) cause a significant broadening in the NMR resonance even at a very low concentration, and this broadening hinders NMR studies at a stoichiometric ratio. Consequently, NMR studies of PrP are typically performed at low copper-ion-to-PrP ratios. Diamagnetic Cu(I) ions that facilitate the use of NMR studies at higher copper-to-PrP ratios are unstable compared with Cu (II) ions and can be easily oxidized to Cu (II) under physiological conditions. However, this problem can be overcome by adding reducing reagents to the NMR tube under inert conditions and then sealing the NMR tube to prevent oxidation.

Two-dimensional NMR spectroscopy

NMR experiments are not only limited to the one-dimensional (1D) space. They can be extended to different types of multidimensional approaches. Two-dimensional (2D) NMR spectroscopy can be used for many applications including molecule identification and structural elucidation, as has been done for PrP and their biologically important complexes with transition metals and other proteins [224]. In general, 2D NMR can be used to overcome the problem of overlapping resonances by dispersing the overlapping chemical shift in a second dimension. The additional resolution offers a practical solution to detecting and identifying specific sites within macromolecule, as in the case of Cu (II) ions [223]. Such identification is not possible with the 1D approach. For example, various homo-nuclear 2D 1H-1H-NMR experiments, including total correlation spectroscopy (TOCSY) [225234], correlation spectroscopy (COSY) [219, 234241], and heteronuclear experiments such as 1H,13C-single quantum coherence (1H-13C-HSQC) and heteronuclear multiple bond correlation (HMBC) have been routinely used in to assign protein signals and to study protein interactions with ligands in drugs and small molecules [242]. Here, we present heteronuclear single-quantum coherence spectroscopy (HSQC) as an example of the most powerful approaches used to assign signals and to probe ligand protein interactions [243]. HSQC is a type of through-bond correlation spectroscopy that utilizes heteronuclear correlations and enhancement of the signal coming from the nucleus of lower sensitivity, such as 13C or 15N by transferring the nuclear spin polarization from the more sensitive nucleus (usually 1H) via J-coupling. The general output of HSQC is 2D spectra of the chemical shift of one nucleus, such as 1H, which is usually detected in the directly measured dimension, and the chemical shift of the other nucleus, such as 13C, which is recorded in the indirect dimension. The 1H,13C-HSQC spectrum coordinates the chemical shift of protons and nitrogen or carbon atoms that are directly covalently bonded, providing only one cross peak for each H-N or H-C coupled pair. Thus, HSQC is useful for the assignment of the protein backbone and side-chain NH signals are assigned by 1H,15N-HSQC. Moreover, utilizing the sensitivity of the 1H atom is an effective approach to reducing the experimental time for nuclei with low natural abundances and/or sensitivities, such as 15N and 13C. The experimental time necessary for HSQC experiments is usually shorter than for 1D, 13C, and 15N NMR experiments. Indeed, HSQC was used to study the interaction of copper with PrP [52, 123, 219, 244246].

NMR studies of Cu(I) and Cu (II) ions-prion interactions

NMR is the method of choice for studying protein structures and dynamics and for investigating protein-metal ion interactions [247]. The protein binding sites for paramagnetic species such as Cu (II) ions can be examined by monitoring the line broadening of NMR resonance signals; the signals of the protein binding sites are more affected than are other signals. Indeed, NMR spectroscopy was used frequently to study the interaction of copper with PrP [248]. For example, Wells et al. used NMR to investigate how Cu (II) ions interact with the full length of PrP under acidic conditions at pH 5.5. The results showed that the protein binds with two copper ions while all six histidine residues in the unfolded N-terminal act as ligands (Fig. 4) [41, 246, 247, 250252]. The interaction between a diamagnetic ion such as Cu(I) and other molecules such as proteins can be observed by monitoring the ordinary chemical shift change (change of the location of the cross-peak on the spectrum) and the interaction causing a change in the chemical shift value of nuclei within residues of the binding site. Indeed, detecting the interaction between Cu(I) and proteins has become a common approach [41, 247, 252], and the interaction between Cu(I) ions and PrP has been successfully studied using NMR spectroscopy techniques [253255]. Taking into account the fact that Cu(I) is diamagnetic, NMR studies of its complexes with prions could be easier and more accurate because Cu(I) ions do not cause signal broadening [116].
Various NMR spectroscopy approaches have been utilized to study the interaction of copper with PrP. Recently, 1H-15N HSQC NMR spectroscopy was employed to study the interaction between the PrP’s copper-bound octarepeat domain [249, 256259]. The results suggest a molecular foundation for the role of copper in mediating the cis interaction in prion proteins and suggest that the global domain can regulate the N-terminus, whereas the disruption of the cis-interaction occurs by mutation or by direct competition with globular domain ligands, contributing to protein dysregulation and prion disease [52, 260267]. 1H NMR has been used to study the interactions of copper with different peptides corresponding to PrP, including 2-, 3-, and 4-octarepeat sequences [265]. The resulting NMR spectra show a clear broadening of the histidine 1H residues in each octarepeat coordinated with the Cu (II) ion, with the four octarepeat peptides cooperatively binding to four Cu (II) ions. Two-dimensional 1H-1H TOCSY NMR spectroscopy has been used to study the interaction between copper and the residue 91–127 fragment of the human prion protein (hPrP) [268273]. In agreement with previous results, NMR spectra from that study show that copper ions selectively bind His-96 and His-111 (Fig. 5) [274, 275]. Interestingly, the results confirm that the protein undergoes a conformational change after binding Cu (II) ions in the presence of sodium dodecyl sulfate (SDS) micelles; the binding strongly stabilizes the α-helical conformation of the peptide backbone [202]. Some researchers hypothesize that copper binding to the prion protein can be protective against the conversion of the protein to its infectious form [260].
NMR spectroscopy has also been used to analyze the interactions between copper and PrP at different pH values. The interaction of Cu (II) ions with full-length PrP has been investigated under mildly acidic conditions. The results show that two Cu (II) ions bind all six histidine residues of the unfolded N-terminal domain and the N-terminal amine coordinate as ligands [260]. Different copper-protein coordination models have been reported under different pH conditions [202, 276279]. For instance, at pH 7.4, PrP may interact with a fifth or even sixth coordination site in the flexible region between the octarepeats and the PrP globular C-terminal domain involving His96 and His111 [280]. Similar studies have shown that PrP binds between five and six equivalent units of Cu (II) at pH 7.4, indicating that the interaction of copper with PrP is highly dependent on pH [280]. These reports have proposed that PrP functions may be associated with its ability to bind copper in a pH-dependent fashion [280].
Although the coordination geometry of the different copper-PrP interaction models [281] has been the focus of many studies, surprisingly few investigations have focused on the structural changes induced by the binding of Cu(I) to PrP [265]. Badrick et al. investigated the interaction between Cu(I) ions and the hPrP by using both 1D and 2D 1H NMR experiments. The results show that Cu(I) interacts with PrP in a manner different from that of Cu (II), with the Cu(I) interaction representing a tetrahedral model in which copper coordinates with two imidazoles attached to His96 and His111 and two sulfurs (Met109 and Met112) [282, 283]. The interaction between the copper ions and Met residues has sparked a strong debate in the literature concerning possible direct binding with sulfur atoms [284]. Several reports have ruled out the possibility of copper interacting with Met109 or Met112 [285287]. However, Shearer et al. demonstrated that copper interacts with both Met residues in PrP under mildly basic conditions [265, 284]. These contradictory results may be explained by considering the factors that might lead to different copper-PrP coordination models. Different factors should be considered in explaining that different copper-prion interactions, such as the pH, copper oxidation state, and copper/protein ratio, may lead to different copper-PrP coordination models. For example, the copper oxidation state is a very important factor that determines copper complexation because Cu(I) normally adopts a tetrahedral coordination geometry, whereas Cu (II) prefers an octahedral or square planar coordination geometry [288, 289]. Cu(I) ions can be oxidized simply to Cu (II), and Cu (II) can be reduced to Cu(I), thus enabling copper to be involved in electron transfer reactions and copper-protein interactions and potentially leading to conformational changes associated with changes in the oxidation state [290]. To elucidate the role of copper in prion diseases, further investigations should be conducted to study the relationship between electron transfer reactions and the conformational transformation associated with copper-protein interactions.

Conclusion

Prion diseases are a group of fatal neurodegenerative disorders that occur when prion proteins change their conformation from the normal PrPC form to the disease-specific PrPSc structure. These diseases affect both humans and animals. Animals acquire prion diseases from contaminated feed or other animals, whereas humans can contract prion diseases genetically, sporadically, or via acquisition from infected animals and humans. Although the disease pathology is not completely understood, there is general agreement that the abnormal disease-associated protein conformation (PrPSc) causes prion diseases through the degeneration of the nervous system and leads to death at an advanced stage. It has been repeatedly reported that copper ion may play a major role in structural conversion from a healthy (native) α-helix rich PrP isoform to the predominantly β-sheet conformation (PrPSc). The conversion could be developed by the exposure of the protein to high concentrations of Cu (II) ions.
It is well established that an excessive amount of copper (especially Cu (II) ions) can lead to cytotoxicity, owing to the ability of Cu (II) to initiate redox cycling and produce reactive oxygen species (ROS). However, despite the wide range of studies on copper interaction with prion proteins, the mechanisms by which Cu (II) ions induced protein misfolding and aggregation remains unknown.
The proper application of the NMR spectroscopy techniques could lead to better insight if the studies include both protein function and structure. A gradual titration of prion proteins with different concentration levels of Cu (II) ions could lead to the most optimal concentration as we believe like other bioactive molecules with low or high concentrations could lead to abnormal conditions. To evaluate the copper redox effects, it is also important to study the interaction of PrP with different copper oxidation states, particularly ion (I\II) interactions. The NMR spectroscopy offers atomic-level insights into the interactions of copper ions (I\II) with PrP under physiological conditions (like pH ~ 7.4), enabling researchers to study the role played by copper and other ions in the progress of the prion disease.

Acknowledgments

We thank King Abdullah University of Science and Technology (KAUST) and King Abdullah International Medical Research Center (KAIMRC) for technical support.

Compliance with ethical standards

Conflict of interest

Authors declare no relevant competing interests.

Availability of data and materials

All of the supporting data reported are included in this review.
Not applicable.
Not applicable.

Competing interest

The authors declare that they have no competing interest.

Availability of supporting data

Not applicable
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Anhänge

Electronic supplementary material

Literatur
1.
Zurück zum Zitat Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D et al (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90(23):10962–10966PubMedPubMedCentral Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D et al (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90(23):10962–10966PubMedPubMedCentral
2.
Zurück zum Zitat Shinkai-Ouchi F, Yamakawa Y, Hara H, Tobiume M, Nishijima M, Hanada K et al (2010) Identification and structural analysis of C-terminally truncated collapsin response mediator protein-2 in a murine model of prion diseases. Proteome Sci 8 Shinkai-Ouchi F, Yamakawa Y, Hara H, Tobiume M, Nishijima M, Hanada K et al (2010) Identification and structural analysis of C-terminally truncated collapsin response mediator protein-2 in a murine model of prion diseases. Proteome Sci 8
3.
Zurück zum Zitat Kurt TD, Jiang L, Fernández-Borges N, Bett C, Liu J, Yang T et al (2015) Human prion protein sequence elements impede cross-species chronic wasting disease transmission. J Clin Invest 125(4):1485–1496PubMedPubMedCentral Kurt TD, Jiang L, Fernández-Borges N, Bett C, Liu J, Yang T et al (2015) Human prion protein sequence elements impede cross-species chronic wasting disease transmission. J Clin Invest 125(4):1485–1496PubMedPubMedCentral
4.
Zurück zum Zitat Oliveira-Martins JB, Yusa S-i, Calella AM, Bridel C, Baumann F, Dametto P et al (2010) Unexpected tolerance of α-cleavage of the prion protein to sequence variations. PLoS One 5(2):e9107PubMedPubMedCentral Oliveira-Martins JB, Yusa S-i, Calella AM, Bridel C, Baumann F, Dametto P et al (2010) Unexpected tolerance of α-cleavage of the prion protein to sequence variations. PLoS One 5(2):e9107PubMedPubMedCentral
5.
Zurück zum Zitat Schätzl HM, Da Costa M, Taylor L, Cohen FE, Prusiner SB (1995) Prion protein gene variation among primates. J Mol Biol 245(4):362–374PubMed Schätzl HM, Da Costa M, Taylor L, Cohen FE, Prusiner SB (1995) Prion protein gene variation among primates. J Mol Biol 245(4):362–374PubMed
6.
Zurück zum Zitat Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–550PubMed Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–550PubMed
7.
Zurück zum Zitat Morot-Gaudry-Talarmain Y, Rezaei H, Guermonprez L, Treguer E, Grosclaude J (2003) Selective prion protein binding to synaptic components is modulated by oxidative and nitrosative changes induced by copper (II) and peroxynitrite in cholinergic synaptosomes, unveiling a role for calcineurin B and thioredoxin. J Neurochem 87(6):1456–1470PubMed Morot-Gaudry-Talarmain Y, Rezaei H, Guermonprez L, Treguer E, Grosclaude J (2003) Selective prion protein binding to synaptic components is modulated by oxidative and nitrosative changes induced by copper (II) and peroxynitrite in cholinergic synaptosomes, unveiling a role for calcineurin B and thioredoxin. J Neurochem 87(6):1456–1470PubMed
8.
Zurück zum Zitat Suhre MH, Hess S, Golser AV, Scheibel T (2009) Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM. J Inorg Biochem 103(12):1711–1720PubMed Suhre MH, Hess S, Golser AV, Scheibel T (2009) Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM. J Inorg Biochem 103(12):1711–1720PubMed
9.
Zurück zum Zitat Huang S, Chen L, Bladen C, Stys PK, Zamponi GW (2018) Differential modulation of NMDA and AMPA receptors by cellular prion protein and copper ions. Mol Brain 11(1):62PubMedPubMedCentral Huang S, Chen L, Bladen C, Stys PK, Zamponi GW (2018) Differential modulation of NMDA and AMPA receptors by cellular prion protein and copper ions. Mol Brain 11(1):62PubMedPubMedCentral
10.
Zurück zum Zitat Bellingham SA, Guo B, Hill AF (2015) The secret life of extracellular vesicles in metal homeostasis and neurodegeneration. Biol Cell 107(11):389–418PubMed Bellingham SA, Guo B, Hill AF (2015) The secret life of extracellular vesicles in metal homeostasis and neurodegeneration. Biol Cell 107(11):389–418PubMed
11.
Zurück zum Zitat D'Ambrosi N, Rossi L (2015) Copper at synapse: release, binding and modulation of neurotransmission. Neurochem Int 90:36–45PubMed D'Ambrosi N, Rossi L (2015) Copper at synapse: release, binding and modulation of neurotransmission. Neurochem Int 90:36–45PubMed
12.
Zurück zum Zitat Gasperini L, Meneghetti E, Pastore B, Benetti F, Legname G (2015) Prion protein and copper cooperatively protect neurons by modulating NMDA receptor through S-nitrosylation. Antioxid Redox Signal 22(9):772–784PubMedPubMedCentral Gasperini L, Meneghetti E, Pastore B, Benetti F, Legname G (2015) Prion protein and copper cooperatively protect neurons by modulating NMDA receptor through S-nitrosylation. Antioxid Redox Signal 22(9):772–784PubMedPubMedCentral
13.
Zurück zum Zitat Manto M (2014) Abnormal copper homeostasis: mechanisms and roles in neurodegeneration. Toxics. 2(2):327–345 Manto M (2014) Abnormal copper homeostasis: mechanisms and roles in neurodegeneration. Toxics. 2(2):327–345
14.
Zurück zum Zitat Hodgson EK, Fridovich I (1975) Interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide. Inactivation of the enzyme. Biochemistry 14(24):5294–5299PubMed Hodgson EK, Fridovich I (1975) Interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide. Inactivation of the enzyme. Biochemistry 14(24):5294–5299PubMed
15.
Zurück zum Zitat Sinet P-M, Garber P (1981) Inactivation of the human CuZn superoxide dismutase during exposure to O2− and H2O2. Arch Biochem Biophys 212(2):411–416PubMed Sinet P-M, Garber P (1981) Inactivation of the human CuZn superoxide dismutase during exposure to O2− and H2O2. Arch Biochem Biophys 212(2):411–416PubMed
16.
Zurück zum Zitat Blech DM, Borders CL (1983) Hydroperoxide anion, HO2−, is an affinity reagent for the inactivation of yeast Cu,Zn superoxide dismutase: modification of one histidine per subunit. Arch Biochem Biophys 224(2):579–586PubMed Blech DM, Borders CL (1983) Hydroperoxide anion, HO2−, is an affinity reagent for the inactivation of yeast Cu,Zn superoxide dismutase: modification of one histidine per subunit. Arch Biochem Biophys 224(2):579–586PubMed
17.
Zurück zum Zitat Borders CL, Fridovich I (1985) A comparison of the effects of cyanide, hydrogen peroxide, and phenylglyoxal on eucaryotic and procaryotic Cu,Zn superoxide dismutases. Arch Biochem Biophys 241(2):472–476PubMed Borders CL, Fridovich I (1985) A comparison of the effects of cyanide, hydrogen peroxide, and phenylglyoxal on eucaryotic and procaryotic Cu,Zn superoxide dismutases. Arch Biochem Biophys 241(2):472–476PubMed
18.
Zurück zum Zitat Yim MB, Chock PB, Stadtman ER (1993) Enzyme function of copper, zinc superoxide dismutase as a free radical generator. J Biol Chem 268(6):4099–4105PubMed Yim MB, Chock PB, Stadtman ER (1993) Enzyme function of copper, zinc superoxide dismutase as a free radical generator. J Biol Chem 268(6):4099–4105PubMed
19.
Zurück zum Zitat Harris ED (1983) Chapter 3 - Copper in human and animal health**. In: Rose J (ed) Acknowledgement: Funding for this review was provided by USPHS Grant AM-26604 from the National Institutes of Health Bethesda, Maryland. Trace Elements in Health, Butterworth-Heinemann, pp 44–73 Harris ED (1983) Chapter 3 - Copper in human and animal health**. In: Rose J (ed) Acknowledgement: Funding for this review was provided by USPHS Grant AM-26604 from the National Institutes of Health Bethesda, Maryland. Trace Elements in Health, Butterworth-Heinemann, pp 44–73
20.
Zurück zum Zitat Tisato F, Marzano C, Porchia M, Pellei M, Santini C (2010) Copper in diseases and treatments, and copper-based anticancer strategies. Med Res Rev 30(4):708–749PubMed Tisato F, Marzano C, Porchia M, Pellei M, Santini C (2010) Copper in diseases and treatments, and copper-based anticancer strategies. Med Res Rev 30(4):708–749PubMed
21.
Zurück zum Zitat Basun H, Forssell LG, Wetterberg L, Winblad B (1991) Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer's disease. J Neural Transm Park Dis Dement Sect 3(4):231–258PubMed Basun H, Forssell LG, Wetterberg L, Winblad B (1991) Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer's disease. J Neural Transm Park Dis Dement Sect 3(4):231–258PubMed
22.
Zurück zum Zitat Lutsenko S, Bhattacharjee A, Hubbard AL (2010) Copper handling machinery of the brain. Metallomics. 2(9):596–608PubMed Lutsenko S, Bhattacharjee A, Hubbard AL (2010) Copper handling machinery of the brain. Metallomics. 2(9):596–608PubMed
23.
Zurück zum Zitat Hershey CO, Hershey LA, Varnes A, Vibhakar SD, Lavin P, Strain WH (1983) Cerebrospinal fluid trace element content in dementia: clinical, radiologic, and pathologic correlations. Neurology. 33(10):1350–1353PubMed Hershey CO, Hershey LA, Varnes A, Vibhakar SD, Lavin P, Strain WH (1983) Cerebrospinal fluid trace element content in dementia: clinical, radiologic, and pathologic correlations. Neurology. 33(10):1350–1353PubMed
24.
Zurück zum Zitat Nischwitz V, Berthele A, Michalke B (2008) Speciation analysis of selected metals and determination of their total contents in paired serum and cerebrospinal fluid samples: an approach to investigate the permeability of the human blood-cerebrospinal fluid-barrier. Anal Chim Acta 627(2):258–269PubMed Nischwitz V, Berthele A, Michalke B (2008) Speciation analysis of selected metals and determination of their total contents in paired serum and cerebrospinal fluid samples: an approach to investigate the permeability of the human blood-cerebrospinal fluid-barrier. Anal Chim Acta 627(2):258–269PubMed
25.
Zurück zum Zitat Aguzzi A, Haass C (2003) Games played by rogue proteins in prion disorders and Alzheimer's disease. Science. 302(5646):814–818PubMed Aguzzi A, Haass C (2003) Games played by rogue proteins in prion disorders and Alzheimer's disease. Science. 302(5646):814–818PubMed
26.
Zurück zum Zitat Kneipp J, Miller LM, Joncic M, Kittel M, Lasch P, Beekes M et al (2003) In situ identification of protein structural changes in prion-infected tissue. Biochim Biophys Acta 1639(3):152–158PubMed Kneipp J, Miller LM, Joncic M, Kittel M, Lasch P, Beekes M et al (2003) In situ identification of protein structural changes in prion-infected tissue. Biochim Biophys Acta 1639(3):152–158PubMed
27.
Zurück zum Zitat Oppenheim C, Zuber M, Galanaud D, Detilleux M, Bolgert F, Mas JL et al (2004) Spectroscopy and serial diffusion MR findings in hGH-Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 75(7):1066–1069PubMedPubMedCentral Oppenheim C, Zuber M, Galanaud D, Detilleux M, Bolgert F, Mas JL et al (2004) Spectroscopy and serial diffusion MR findings in hGH-Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 75(7):1066–1069PubMedPubMedCentral
28.
Zurück zum Zitat Cordery RJ, MacManus D, Godbolt A, Rossor MN, Waldman AD (2006) Short TE quantitative proton magnetic resonance spectroscopy in variant Creutzfeldt-Jakob disease. Eur Radiol 16(8):1692–1698PubMed Cordery RJ, MacManus D, Godbolt A, Rossor MN, Waldman AD (2006) Short TE quantitative proton magnetic resonance spectroscopy in variant Creutzfeldt-Jakob disease. Eur Radiol 16(8):1692–1698PubMed
29.
Zurück zum Zitat Vidal C, Meric P, Provost F, Herzog C, Lasmezas C, Gillet B et al (2006) Preclinical metabolic changes in mouse prion diseases detected by 1H-nuclear magnetic resonance spectroscopy. Neuroreport. 17(1):89–93PubMed Vidal C, Meric P, Provost F, Herzog C, Lasmezas C, Gillet B et al (2006) Preclinical metabolic changes in mouse prion diseases detected by 1H-nuclear magnetic resonance spectroscopy. Neuroreport. 17(1):89–93PubMed
30.
Zurück zum Zitat Macfarlane RG, Wroe SJ, Collinge J, Yousry TA, Jager HR (2007) Neuroimaging findings in human prion disease. J Neurol Neurosurg Psychiatry 78(7):664–670PubMed Macfarlane RG, Wroe SJ, Collinge J, Yousry TA, Jager HR (2007) Neuroimaging findings in human prion disease. J Neurol Neurosurg Psychiatry 78(7):664–670PubMed
31.
Zurück zum Zitat Galanaud D, Haik S, Linguraru MG, Ranjeva JP, Faucheux B, Kaphan E et al (2010) Combined diffusion imaging and MR spectroscopy in the diagnosis of human prion diseases. AJNR Am J Neuroradiol 31(7):1311–1318PubMed Galanaud D, Haik S, Linguraru MG, Ranjeva JP, Faucheux B, Kaphan E et al (2010) Combined diffusion imaging and MR spectroscopy in the diagnosis of human prion diseases. AJNR Am J Neuroradiol 31(7):1311–1318PubMed
32.
Zurück zum Zitat Krasnoslobodtsev AV, Portillo AM, Deckert-Gaudig T, Deckert V, Lyubchenko YL (2010) Nanoimaging for prion related diseases. Prion. 4(4):265–274PubMedPubMedCentral Krasnoslobodtsev AV, Portillo AM, Deckert-Gaudig T, Deckert V, Lyubchenko YL (2010) Nanoimaging for prion related diseases. Prion. 4(4):265–274PubMedPubMedCentral
33.
Zurück zum Zitat Lyubchenko YL, Kim BH, Krasnoslobodtsev AV, Yu J (2010) Nanoimaging for protein misfolding diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5):526–543PubMed Lyubchenko YL, Kim BH, Krasnoslobodtsev AV, Yu J (2010) Nanoimaging for protein misfolding diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5):526–543PubMed
34.
Zurück zum Zitat Letourneau-Guillon L, Wada R, Kucharczyk W (2012) Imaging of prion diseases. J Magn Reson Imaging 35(5):998–1012PubMed Letourneau-Guillon L, Wada R, Kucharczyk W (2012) Imaging of prion diseases. J Magn Reson Imaging 35(5):998–1012PubMed
35.
Zurück zum Zitat McDade EM, Boeve BF, Fields JA, Kumar N, Rademakers R, Baker MC et al (2013) MRS in early and presymptomatic carriers of a novel octapeptide repeat insertion in the prion protein gene. J Neuroimaging 23(3):409–413PubMed McDade EM, Boeve BF, Fields JA, Kumar N, Rademakers R, Baker MC et al (2013) MRS in early and presymptomatic carriers of a novel octapeptide repeat insertion in the prion protein gene. J Neuroimaging 23(3):409–413PubMed
36.
Zurück zum Zitat Ortega-Cubero S, Luquin MR, Dominguez I, Arbizu J, Pagola I, Carmona-Abellan MM et al (2013) Structural and functional neuroimaging in human prion diseases. Neurologia. 28(5):299–308PubMed Ortega-Cubero S, Luquin MR, Dominguez I, Arbizu J, Pagola I, Carmona-Abellan MM et al (2013) Structural and functional neuroimaging in human prion diseases. Neurologia. 28(5):299–308PubMed
37.
Zurück zum Zitat Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K (1996) NMR structure of the mouse prion protein domain PrP(121-231). Nature. 382(6587):180–182PubMed Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K (1996) NMR structure of the mouse prion protein domain PrP(121-231). Nature. 382(6587):180–182PubMed
38.
Zurück zum Zitat Zahn R, Liu A, Luhrs T, Riek R, von Schroetter C, Lopez Garcia F et al (2000) NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A 97(1):145–150PubMedPubMedCentral Zahn R, Liu A, Luhrs T, Riek R, von Schroetter C, Lopez Garcia F et al (2000) NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A 97(1):145–150PubMedPubMedCentral
39.
Zurück zum Zitat Sigurdsson EM, Brown DR, Alim MA, Scholtzova H, Carp R, Meeker HC et al (2003) Copper chelation delays the onset of prion disease. J Biol Chem 278(47):46199–46202PubMed Sigurdsson EM, Brown DR, Alim MA, Scholtzova H, Carp R, Meeker HC et al (2003) Copper chelation delays the onset of prion disease. J Biol Chem 278(47):46199–46202PubMed
40.
Zurück zum Zitat Meloni G, Faller P, Vašák M (2007) Redox silencing of copper in metal-linked neurodegenerative disorders reaction of Zn7metallothionein-3 with Cu2+ ions. J Biol Chem 282(22):16068–16078PubMed Meloni G, Faller P, Vašák M (2007) Redox silencing of copper in metal-linked neurodegenerative disorders reaction of Zn7metallothionein-3 with Cu2+ ions. J Biol Chem 282(22):16068–16078PubMed
41.
Zurück zum Zitat Alghrably M, Czaban I, Jaremko Ł, Jaremko M (2019) Interaction of amylin species with transition metals and membranes. J Inorg Biochem 191:69–76PubMed Alghrably M, Czaban I, Jaremko Ł, Jaremko M (2019) Interaction of amylin species with transition metals and membranes. J Inorg Biochem 191:69–76PubMed
42.
Zurück zum Zitat Dong X, Svantesson T, Sholts SB, Wallin C, Jarvet J, Gräslund A et al (2019) Copper ions induce dityrosine-linked dimers in human but not in murine islet amyloid polypeptide (IAPP/amylin). Biochem Biophys Res Commun 510(4):520–524 Dong X, Svantesson T, Sholts SB, Wallin C, Jarvet J, Gräslund A et al (2019) Copper ions induce dityrosine-linked dimers in human but not in murine islet amyloid polypeptide (IAPP/amylin). Biochem Biophys Res Commun 510(4):520–524
43.
Zurück zum Zitat Nishida Y (2011) The chemical process of oxidative stress by copper (II) and iron (III) ions in several neurodegenerative disorders. Monatshefte für Chemie-Chemical Monthly 142(4):375–384 Nishida Y (2011) The chemical process of oxidative stress by copper (II) and iron (III) ions in several neurodegenerative disorders. Monatshefte für Chemie-Chemical Monthly 142(4):375–384
44.
Zurück zum Zitat Dudzik CG, Walter ED, Millhauser GL (2011) Coordination features and affinity of the Cu2+ site in the α-synuclein protein of Parkinson’s disease. Biochemistry. 50(11):1771–1777PubMedPubMedCentral Dudzik CG, Walter ED, Millhauser GL (2011) Coordination features and affinity of the Cu2+ site in the α-synuclein protein of Parkinson’s disease. Biochemistry. 50(11):1771–1777PubMedPubMedCentral
45.
Zurück zum Zitat Spencer WA, Jeyabalan J, Kichambre S, Gupta RC (2011) Oxidatively generated DNA damage after Cu (II) catalysis of dopamine and related catecholamine neurotransmitters and neurotoxins: role of reactive oxygen species. Free Radic Biol Med 50(1):139–147PubMed Spencer WA, Jeyabalan J, Kichambre S, Gupta RC (2011) Oxidatively generated DNA damage after Cu (II) catalysis of dopamine and related catecholamine neurotransmitters and neurotoxins: role of reactive oxygen species. Free Radic Biol Med 50(1):139–147PubMed
46.
Zurück zum Zitat Chan T, Chow AM, Tang DW, Li Q, Wang X, Brown IR et al (2010) Interaction of baicalein and copper with α-synuclein: electrochemical approach to Parkinson’s disease. J Electroanal Chem 648(2):151–155 Chan T, Chow AM, Tang DW, Li Q, Wang X, Brown IR et al (2010) Interaction of baicalein and copper with α-synuclein: electrochemical approach to Parkinson’s disease. J Electroanal Chem 648(2):151–155
47.
Zurück zum Zitat Lin C-J, Huang H-C, Jiang Z-F (2010) Cu (II) interaction with amyloid-β peptide: a review of neuroactive mechanisms in AD brains. Brain Res Bull 82(5–6):235–242PubMed Lin C-J, Huang H-C, Jiang Z-F (2010) Cu (II) interaction with amyloid-β peptide: a review of neuroactive mechanisms in AD brains. Brain Res Bull 82(5–6):235–242PubMed
48.
Zurück zum Zitat Multhaup G (1997) Amyloid precursor protein, copper and Alzheimer's disease. Biomed Pharmacother 51(3):105–111PubMed Multhaup G (1997) Amyloid precursor protein, copper and Alzheimer's disease. Biomed Pharmacother 51(3):105–111PubMed
49.
Zurück zum Zitat Qin K, Yang D-S, Yang Y, Chishti MA, Meng L-J, Kretzschmar HA et al (2000) Copper (II)-induced conformational changes and protease resistance in recombinant and cellular PrP effect of protein age and deamidation. J Biol Chem 275(25):19121–19131PubMed Qin K, Yang D-S, Yang Y, Chishti MA, Meng L-J, Kretzschmar HA et al (2000) Copper (II)-induced conformational changes and protease resistance in recombinant and cellular PrP effect of protein age and deamidation. J Biol Chem 275(25):19121–19131PubMed
50.
Zurück zum Zitat Lech T, Sadlik J (2007) Copper concentration in body tissues and fluids in normal subjects of southern Poland. Biol Trace Elem Res 118(1):10–15PubMed Lech T, Sadlik J (2007) Copper concentration in body tissues and fluids in normal subjects of southern Poland. Biol Trace Elem Res 118(1):10–15PubMed
51.
Zurück zum Zitat Gybina AA, Tkac I, Prohaska JR (2009) Copper deficiency alters the neurochemical profile of developing rat brain. Nutr Neurosci 12(3):114–122PubMedPubMedCentral Gybina AA, Tkac I, Prohaska JR (2009) Copper deficiency alters the neurochemical profile of developing rat brain. Nutr Neurosci 12(3):114–122PubMedPubMedCentral
52.
Zurück zum Zitat Emwas AHM, Al-Talla ZA, Guo X, Al-Ghamdi S, Al-Masri HT (2013) Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases. Magn Reson Chem 51(5):255–268PubMed Emwas AHM, Al-Talla ZA, Guo X, Al-Ghamdi S, Al-Masri HT (2013) Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases. Magn Reson Chem 51(5):255–268PubMed
53.
Zurück zum Zitat Uriu-Adams JY, Scherr RE, Lanoue L, Keen CL (2010) Influence of copper on early development: prenatal and postnatal considerations. Biofactors. 36(2):136–152PubMed Uriu-Adams JY, Scherr RE, Lanoue L, Keen CL (2010) Influence of copper on early development: prenatal and postnatal considerations. Biofactors. 36(2):136–152PubMed
54.
Zurück zum Zitat Sorrentino G, Bonavita V (2007) Neurodegeneration and Alzheimer's disease: the lesson from tauopathies. Neurol Sci 28(2):63–71PubMed Sorrentino G, Bonavita V (2007) Neurodegeneration and Alzheimer's disease: the lesson from tauopathies. Neurol Sci 28(2):63–71PubMed
55.
Zurück zum Zitat Kodaka M (2004) Interpretation of concentration-dependence in aggregation kinetics. Biophys Chem 109(2):325–332PubMed Kodaka M (2004) Interpretation of concentration-dependence in aggregation kinetics. Biophys Chem 109(2):325–332PubMed
56.
Zurück zum Zitat Hedberg YS, Dobryden I, Chaudhary H, Wei Z, Claesson PM, Lendel C (2019) Synergistic effects of metal-induced aggregation of human serum albumin. Colloids Surf B: Biointerfaces 173:751–758PubMed Hedberg YS, Dobryden I, Chaudhary H, Wei Z, Claesson PM, Lendel C (2019) Synergistic effects of metal-induced aggregation of human serum albumin. Colloids Surf B: Biointerfaces 173:751–758PubMed
57.
Zurück zum Zitat Yuan Y, Niu F, Liu Y, Lu N (2014) Zinc and its effects on oxidative stress in Alzheimer's disease. Neurol Sci 35(6):923–928PubMed Yuan Y, Niu F, Liu Y, Lu N (2014) Zinc and its effects on oxidative stress in Alzheimer's disease. Neurol Sci 35(6):923–928PubMed
58.
Zurück zum Zitat Tsukita K, Sakamaki-Tsukita H, Tanaka K, Suenaga T, Takahashi R (2019) Value of in vivo alpha-synuclein deposits in Parkinson's disease: a systematic review and meta-analysis. Mov Disord 34(10):1452–1463PubMed Tsukita K, Sakamaki-Tsukita H, Tanaka K, Suenaga T, Takahashi R (2019) Value of in vivo alpha-synuclein deposits in Parkinson's disease: a systematic review and meta-analysis. Mov Disord 34(10):1452–1463PubMed
59.
Zurück zum Zitat Bernabeu-Zornoza A, Coronel R, Palmer C, Monteagudo M, Zambrano A, Liste I (2019) Physiological and pathological effects of amyloid-beta species in neural stem cell biology. Neural Regen Res 14(12):2035–2042PubMedPubMedCentral Bernabeu-Zornoza A, Coronel R, Palmer C, Monteagudo M, Zambrano A, Liste I (2019) Physiological and pathological effects of amyloid-beta species in neural stem cell biology. Neural Regen Res 14(12):2035–2042PubMedPubMedCentral
60.
Zurück zum Zitat Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S et al (2016) Alzheimer's disease. Lancet. 388(10043):505–517PubMed Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S et al (2016) Alzheimer's disease. Lancet. 388(10043):505–517PubMed
61.
Zurück zum Zitat Lippens G, Sillen A, Landrieu I, Amniai L, Sibille N, Barbier P et al (2007) Tau aggregation in Alzheimer's disease: what role for phosphorylation? Prion. 1(1):21–25PubMedPubMedCentral Lippens G, Sillen A, Landrieu I, Amniai L, Sibille N, Barbier P et al (2007) Tau aggregation in Alzheimer's disease: what role for phosphorylation? Prion. 1(1):21–25PubMedPubMedCentral
62.
Zurück zum Zitat Alonso AD, Cohen LS, Corbo C, Morozova V, ElIdrissi A, Phillips G et al (2018) Hyperphosphorylation of tau associates with changes in its function beyond microtubule stability. Front Cell Neurosci 12(338) Alonso AD, Cohen LS, Corbo C, Morozova V, ElIdrissi A, Phillips G et al (2018) Hyperphosphorylation of tau associates with changes in its function beyond microtubule stability. Front Cell Neurosci 12(338)
63.
Zurück zum Zitat Zhu Y, Wang J (2015) Wogonin increases β-amyloid clearance and inhibits tau phosphorylation via inhibition of mammalian target of rapamycin: potential drug to treat Alzheimer’s disease. Neurol Sci 36(7):1181–1188PubMed Zhu Y, Wang J (2015) Wogonin increases β-amyloid clearance and inhibits tau phosphorylation via inhibition of mammalian target of rapamycin: potential drug to treat Alzheimer’s disease. Neurol Sci 36(7):1181–1188PubMed
64.
Zurück zum Zitat Crouch PJ, Hung LW, Adlard PA, Cortes M, Lal V, Filiz G et al (2009) Increasing cu bioavailability inhibits Abeta oligomers and tau phosphorylation. Proc Natl Acad Sci U S A 106(2):381–386PubMedPubMedCentral Crouch PJ, Hung LW, Adlard PA, Cortes M, Lal V, Filiz G et al (2009) Increasing cu bioavailability inhibits Abeta oligomers and tau phosphorylation. Proc Natl Acad Sci U S A 106(2):381–386PubMedPubMedCentral
65.
Zurück zum Zitat Zhou LX, Du JT, Zeng ZY, Wu WH, Zhao YF, Kanazawa K et al (2007) Copper (II) modulates in vitro aggregation of a tau peptide. Peptides. 28(11):2229–2234PubMed Zhou LX, Du JT, Zeng ZY, Wu WH, Zhao YF, Kanazawa K et al (2007) Copper (II) modulates in vitro aggregation of a tau peptide. Peptides. 28(11):2229–2234PubMed
66.
Zurück zum Zitat Ma Q, Li Y, Du J, Liu H, Kanazawa K, Nemoto T et al (2006) Copper binding properties of a tau peptide associated with Alzheimer's disease studied by CD, NMR, and MALDI-TOF MS. Peptides. 27(4):841–849PubMed Ma Q, Li Y, Du J, Liu H, Kanazawa K, Nemoto T et al (2006) Copper binding properties of a tau peptide associated with Alzheimer's disease studied by CD, NMR, and MALDI-TOF MS. Peptides. 27(4):841–849PubMed
67.
Zurück zum Zitat Soragni A, Zambelli B, Mukrasch MD, Biernat J, Jeganathan S, Griesinger C et al (2008) Structural characterization of binding of Cu (II) to tau protein. Biochemistry. 47(41):10841–10851PubMed Soragni A, Zambelli B, Mukrasch MD, Biernat J, Jeganathan S, Griesinger C et al (2008) Structural characterization of binding of Cu (II) to tau protein. Biochemistry. 47(41):10841–10851PubMed
68.
Zurück zum Zitat Voss K, Harris C, Ralle M, Duffy M, Murchison C, Quinn JF (2014) Modulation of tau phosphorylation by environmental copper. Transl Neurodegener 3(1):24PubMedPubMedCentral Voss K, Harris C, Ralle M, Duffy M, Murchison C, Quinn JF (2014) Modulation of tau phosphorylation by environmental copper. Transl Neurodegener 3(1):24PubMedPubMedCentral
69.
Zurück zum Zitat Poulson BG, Szczepski K, Lachowicz JI, Jaremko L, Emwas A-H, Jaremko M (2020) Aggregation of biologically important peptides and proteins: inhibition or acceleration depending on protein and metal ion concentrations. RSC Adv 10(1):215–227 Poulson BG, Szczepski K, Lachowicz JI, Jaremko L, Emwas A-H, Jaremko M (2020) Aggregation of biologically important peptides and proteins: inhibition or acceleration depending on protein and metal ion concentrations. RSC Adv 10(1):215–227
70.
Zurück zum Zitat Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M et al (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A 90(23):11282–11286PubMedPubMedCentral Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M et al (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A 90(23):11282–11286PubMedPubMedCentral
72.
Zurück zum Zitat Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature. 388(6645):839–840PubMed Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature. 388(6645):839–840PubMed
73.
Zurück zum Zitat Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. Proc Natl Acad Sci U S A 95(11):6469–6473PubMedPubMedCentral Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. Proc Natl Acad Sci U S A 95(11):6469–6473PubMedPubMedCentral
74.
Zurück zum Zitat Bougea A, Stefanis L, Paraskevas GP, Emmanouilidou E, Vekrelis K, Kapaki E (2019) Plasma alpha-synuclein levels in patients with Parkinson's disease: a systematic review and meta-analysis. Neurol Sci 40(5):929–938PubMed Bougea A, Stefanis L, Paraskevas GP, Emmanouilidou E, Vekrelis K, Kapaki E (2019) Plasma alpha-synuclein levels in patients with Parkinson's disease: a systematic review and meta-analysis. Neurol Sci 40(5):929–938PubMed
75.
Zurück zum Zitat Ghosh D, Mehra S, Sahay S, Singh PK, Maji SK (2017) Alpha-synuclein aggregation and its modulation. Int J Biol Macromol 100:37–54PubMed Ghosh D, Mehra S, Sahay S, Singh PK, Maji SK (2017) Alpha-synuclein aggregation and its modulation. Int J Biol Macromol 100:37–54PubMed
76.
Zurück zum Zitat Breydo L, Wu JW, Uversky VN (2012) Alpha-synuclein misfolding and Parkinson's disease. Biochim Biophys Acta 1822(2):261–285PubMed Breydo L, Wu JW, Uversky VN (2012) Alpha-synuclein misfolding and Parkinson's disease. Biochim Biophys Acta 1822(2):261–285PubMed
77.
Zurück zum Zitat Pall HS, Williams AC, Blake DR, Lunec J, Gutteridge JM, Hall M et al (1987) Raised cerebrospinal-fluid copper concentration in Parkinson's disease. Lancet. 2(8553):238–241PubMed Pall HS, Williams AC, Blake DR, Lunec J, Gutteridge JM, Hall M et al (1987) Raised cerebrospinal-fluid copper concentration in Parkinson's disease. Lancet. 2(8553):238–241PubMed
78.
Zurück zum Zitat Rasia RM, Bertoncini CW, Marsh D, Hoyer W, Cherny D, Zweckstetter M et al (2005) Structural characterization of copper (II) binding to alpha-synuclein: insights into the bioinorganic chemistry of Parkinson's disease. Proc Natl Acad Sci U S A 102(12):4294–4299PubMedPubMedCentral Rasia RM, Bertoncini CW, Marsh D, Hoyer W, Cherny D, Zweckstetter M et al (2005) Structural characterization of copper (II) binding to alpha-synuclein: insights into the bioinorganic chemistry of Parkinson's disease. Proc Natl Acad Sci U S A 102(12):4294–4299PubMedPubMedCentral
79.
Zurück zum Zitat Valensin D, Dell'Acqua S, Kozlowski H, Casella L (2016) Coordination and redox properties of copper interaction with alpha-synuclein. J Inorg Biochem 163:292–300PubMed Valensin D, Dell'Acqua S, Kozlowski H, Casella L (2016) Coordination and redox properties of copper interaction with alpha-synuclein. J Inorg Biochem 163:292–300PubMed
80.
Zurück zum Zitat Bloch DN, Kolkowska P, Tessari I, Baratto MC, Sinicropi A, Bubacco L et al (2019) Fibrils of alpha-Synuclein abolish the affinity of Cu(2+)-binding site to His50 and induce hopping of Cu(2+) ions in the termini. Inorg Chem 58(16):10920–10927PubMed Bloch DN, Kolkowska P, Tessari I, Baratto MC, Sinicropi A, Bubacco L et al (2019) Fibrils of alpha-Synuclein abolish the affinity of Cu(2+)-binding site to His50 and induce hopping of Cu(2+) ions in the termini. Inorg Chem 58(16):10920–10927PubMed
81.
Zurück zum Zitat Koppenol WH (2001) The Haber-Weiss cycle–70 years later. Redox Rep 6(4):229–234PubMed Koppenol WH (2001) The Haber-Weiss cycle–70 years later. Redox Rep 6(4):229–234PubMed
82.
Zurück zum Zitat Barb W, Baxendale J, George P, Hargrave K (1951) Reactions of ferrous and ferric ions with hydrogen peroxide. Part I.—the ferrous ion reaction. Trans Faraday Soc 47:462–500 Barb W, Baxendale J, George P, Hargrave K (1951) Reactions of ferrous and ferric ions with hydrogen peroxide. Part I.—the ferrous ion reaction. Trans Faraday Soc 47:462–500
83.
Zurück zum Zitat Baruch-Suchodolsky R, Fischer B (2009) Aβ40, either soluble or aggregated, is a remarkably potent antioxidant in cell-free oxidative systems. Biochemistry. 48(20):4354–4370PubMed Baruch-Suchodolsky R, Fischer B (2009) Aβ40, either soluble or aggregated, is a remarkably potent antioxidant in cell-free oxidative systems. Biochemistry. 48(20):4354–4370PubMed
84.
Zurück zum Zitat Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186: Elsevier; p. 1–85 Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186: Elsevier; p. 1–85
85.
Zurück zum Zitat Sanchez-Lopez C, Rossetti G, Quintanar L, Carloni P (2018) Structural determinants of the prion protein N-terminus and its adducts with copper ions. Int J Mol Sci 20(1) Sanchez-Lopez C, Rossetti G, Quintanar L, Carloni P (2018) Structural determinants of the prion protein N-terminus and its adducts with copper ions. Int J Mol Sci 20(1)
86.
Zurück zum Zitat Bertini I, Mangani S, Viezzoli M, Sykes A (1998) Advanced inorganic chemistry. Academic, San Diego, pp 127–250 Bertini I, Mangani S, Viezzoli M, Sykes A (1998) Advanced inorganic chemistry. Academic, San Diego, pp 127–250
87.
Zurück zum Zitat Quintanar L, Rivillas-Acevedo L, Grande-Aztatzi R, Gómez-Castro CZ, Arcos-López T, Vela A (2013) Copper coordination to the prion protein: insights from theoretical studies. Coord Chem Rev 257(2):429–444 Quintanar L, Rivillas-Acevedo L, Grande-Aztatzi R, Gómez-Castro CZ, Arcos-López T, Vela A (2013) Copper coordination to the prion protein: insights from theoretical studies. Coord Chem Rev 257(2):429–444
88.
Zurück zum Zitat Ling Y, Khade RL, Zhang Y (2011) Structural, EPR superhyperfine, and NMR hyperfine properties of the u−octarepeat binding site in the prion protein. J Phys Chem B 115(11):2663–2670PubMed Ling Y, Khade RL, Zhang Y (2011) Structural, EPR superhyperfine, and NMR hyperfine properties of the u−octarepeat binding site in the prion protein. J Phys Chem B 115(11):2663–2670PubMed
89.
Zurück zum Zitat dos Santos NV, Silva AF, Oliveira VX Jr, Homem-de-Mello P, Cerchiaro G (2012) Copper (II) complexation to 1-octarepeat peptide from a prion protein: insights from theoretical and experimental UV-visible studies. J Inorg Biochem 114:1–7PubMed dos Santos NV, Silva AF, Oliveira VX Jr, Homem-de-Mello P, Cerchiaro G (2012) Copper (II) complexation to 1-octarepeat peptide from a prion protein: insights from theoretical and experimental UV-visible studies. J Inorg Biochem 114:1–7PubMed
90.
Zurück zum Zitat Viles JH (2012) Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer's, Parkinson's and prion diseases. Coord Chem Rev 256(19–20):2271–2284 Viles JH (2012) Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer's, Parkinson's and prion diseases. Coord Chem Rev 256(19–20):2271–2284
91.
Zurück zum Zitat Sánchez-López C, Rossetti G, Quintanar L, Carloni P (2019) Structural determinants of the prion protein N-terminus and its adducts with copper ions. Int J Mol Sci 20(1):18 Sánchez-López C, Rossetti G, Quintanar L, Carloni P (2019) Structural determinants of the prion protein N-terminus and its adducts with copper ions. Int J Mol Sci 20(1):18
92.
Zurück zum Zitat McCord JM, Fridovich I (1969) Superoxide dismutase. J Biol Chem 244(22):6049–6055PubMed McCord JM, Fridovich I (1969) Superoxide dismutase. J Biol Chem 244(22):6049–6055PubMed
93.
Zurück zum Zitat Fee JA, Gaber BP (1972) Anion binding to bovine erythrocyte superoxide dismutase. J Biol Chem 247(1):60–65PubMed Fee JA, Gaber BP (1972) Anion binding to bovine erythrocyte superoxide dismutase. J Biol Chem 247(1):60–65PubMed
94.
Zurück zum Zitat White AR, Multhaup G, Maher F, Bellingham S, Camakaris J, Zheng H et al (1999) The Alzheimer's disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal cultures. J Neurosci 19(21):9170–9179PubMedPubMedCentral White AR, Multhaup G, Maher F, Bellingham S, Camakaris J, Zheng H et al (1999) The Alzheimer's disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal cultures. J Neurosci 19(21):9170–9179PubMedPubMedCentral
95.
Zurück zum Zitat Bush AI, Pettingell W, De Paradis M, Tanzi RE, Wasco W (1994) The amyloid beta-protein precursor and its mammalian homologues. Evidence for a zinc-modulated heparin-binding superfamily. J Biol Chem 269(43):26618–26621PubMed Bush AI, Pettingell W, De Paradis M, Tanzi RE, Wasco W (1994) The amyloid beta-protein precursor and its mammalian homologues. Evidence for a zinc-modulated heparin-binding superfamily. J Biol Chem 269(43):26618–26621PubMed
96.
Zurück zum Zitat Simons A, Ruppert T, Schmidt C, Schlicksupp A, Pipkorn R, Reed J et al (2002) Evidence for a copper-binding superfamily of the amyloid precursor protein. Biochemistry. 41(30):9310–9320PubMed Simons A, Ruppert T, Schmidt C, Schlicksupp A, Pipkorn R, Reed J et al (2002) Evidence for a copper-binding superfamily of the amyloid precursor protein. Biochemistry. 41(30):9310–9320PubMed
97.
Zurück zum Zitat Requena JR, Groth D, Legname G, Stadtman ER, Prusiner SB, Levine RL (2001) Copper-catalyzed oxidation of the recombinant SHa (29–231) prion protein. Proc Natl Acad Sci 98(13):7170–7175PubMed Requena JR, Groth D, Legname G, Stadtman ER, Prusiner SB, Levine RL (2001) Copper-catalyzed oxidation of the recombinant SHa (29–231) prion protein. Proc Natl Acad Sci 98(13):7170–7175PubMed
98.
Zurück zum Zitat Hornshaw M, McDermott J, Candy J, Lakey J (1995) Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem Biophys Res Commun 214(3):993–999PubMed Hornshaw M, McDermott J, Candy J, Lakey J (1995) Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem Biophys Res Commun 214(3):993–999PubMed
99.
Zurück zum Zitat Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R et al (1997) The cellular prion protein binds copper in vivo. Nature. 390(6661):684PubMed Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R et al (1997) The cellular prion protein binds copper in vivo. Nature. 390(6661):684PubMed
100.
Zurück zum Zitat Hornshaw M, McDermott J, Candy J (1995) Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem Biophys Res Commun 207(2):621–629PubMed Hornshaw M, McDermott J, Candy J (1995) Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem Biophys Res Commun 207(2):621–629PubMed
101.
Zurück zum Zitat Serra A, Manno D, Filippo E, Buccolieri A, Urso E, Rizzello A et al (2011) SERS based optical sensor to detect prion protein in neurodegenerate living cells. Sensors Actuators B Chem 156(1):479–485 Serra A, Manno D, Filippo E, Buccolieri A, Urso E, Rizzello A et al (2011) SERS based optical sensor to detect prion protein in neurodegenerate living cells. Sensors Actuators B Chem 156(1):479–485
102.
Zurück zum Zitat Kállay C, Turi I, Timári S, Nagy Z, Sanna D, Pappalardo G et al (2011) The effect of point mutations on copper (II) complexes with peptide fragments encompassing the 106–114 region of human prion protein. Monatshefte für Chemie-Chemical Monthly 142(4):411–419 Kállay C, Turi I, Timári S, Nagy Z, Sanna D, Pappalardo G et al (2011) The effect of point mutations on copper (II) complexes with peptide fragments encompassing the 106–114 region of human prion protein. Monatshefte für Chemie-Chemical Monthly 142(4):411–419
103.
Zurück zum Zitat Hong L, Simon JD (2011) Insights into the thermodynamics of copper association with amyloid-β, α-synuclein and prion proteins. Metallomics. 3(3):262–266PubMed Hong L, Simon JD (2011) Insights into the thermodynamics of copper association with amyloid-β, α-synuclein and prion proteins. Metallomics. 3(3):262–266PubMed
104.
Zurück zum Zitat Chaves JA, Sanchez-López C, Gomes MP, Sisnande T, Macedo B, de Oliveira VE et al (2014) Biophysical and morphological studies on the dual interaction of non-octarepeat prion protein peptides with copper and nucleic acids. JBIC J Biol Inorg Chem 19(6):839–851PubMed Chaves JA, Sanchez-López C, Gomes MP, Sisnande T, Macedo B, de Oliveira VE et al (2014) Biophysical and morphological studies on the dual interaction of non-octarepeat prion protein peptides with copper and nucleic acids. JBIC J Biol Inorg Chem 19(6):839–851PubMed
105.
Zurück zum Zitat Evans EGB (2015) Copper and zinc drive inter-domain structure in the cellular prion protein: UC Santa Cruz Evans EGB (2015) Copper and zinc drive inter-domain structure in the cellular prion protein: UC Santa Cruz
106.
Zurück zum Zitat Cereghetti GM, Negro A, Vinck E, Massimino ML, Sorgato MC, Van Doorslaer S (2004) Copper (II) binding to the human Doppel protein may mark its functional diversity from the prion protein. J Biol Chem 279(35):36497–36503PubMed Cereghetti GM, Negro A, Vinck E, Massimino ML, Sorgato MC, Van Doorslaer S (2004) Copper (II) binding to the human Doppel protein may mark its functional diversity from the prion protein. J Biol Chem 279(35):36497–36503PubMed
107.
Zurück zum Zitat Giese A, Buchholz M, Herms J, Kretzschmar HA (2005) Mouse brain synaptosomes accumulate copper-67 efficiently by two distinct processes independent of cellular prion protein. J Mol Neurosci 27(3):347–354PubMed Giese A, Buchholz M, Herms J, Kretzschmar HA (2005) Mouse brain synaptosomes accumulate copper-67 efficiently by two distinct processes independent of cellular prion protein. J Mol Neurosci 27(3):347–354PubMed
108.
Zurück zum Zitat Hijazi N, Shaked Y, Rosenmann H, Ben-Hur T, Gabizon R (2003) Copper binding to PrPC may inhibit prion disease propagation. Brain Res 993(1–2):192–200PubMed Hijazi N, Shaked Y, Rosenmann H, Ben-Hur T, Gabizon R (2003) Copper binding to PrPC may inhibit prion disease propagation. Brain Res 993(1–2):192–200PubMed
109.
Zurück zum Zitat Kourie J, Kenna B, Tew D, Jobling MF, Curtain C, Masters C et al (2003) Copper modulation of ion channels of PrP [106–126] mutant prion peptide fragments. J Membr Biol 193(1):35–45PubMed Kourie J, Kenna B, Tew D, Jobling MF, Curtain C, Masters C et al (2003) Copper modulation of ion channels of PrP [106–126] mutant prion peptide fragments. J Membr Biol 193(1):35–45PubMed
110.
Zurück zum Zitat Li A, Dong J, Harris DA (2004) Cell surface expression of the prion protein in yeast does not alter copper utilization phenotypes. J Biol Chem 279(28):29469–29477PubMed Li A, Dong J, Harris DA (2004) Cell surface expression of the prion protein in yeast does not alter copper utilization phenotypes. J Biol Chem 279(28):29469–29477PubMed
112.
Zurück zum Zitat Rachidi W, Mangé A, Senator A, Guiraud P, Riondel J, Benboubetra M et al (2003) Prion infection impairs copper binding of cultured cells. J Biol Chem 278(17):14595–14598PubMed Rachidi W, Mangé A, Senator A, Guiraud P, Riondel J, Benboubetra M et al (2003) Prion infection impairs copper binding of cultured cells. J Biol Chem 278(17):14595–14598PubMed
113.
Zurück zum Zitat Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A et al (1997) Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276(5321):2045–2047PubMed Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A et al (1997) Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276(5321):2045–2047PubMed
114.
Zurück zum Zitat Miura T, Hori-i A, Takeuchi H (1996) Metal-dependent [alpha]-helix formation promoted by the glycine-rich octapeptide region of prion protein. FEBS Lett 396(2–3):248–252PubMed Miura T, Hori-i A, Takeuchi H (1996) Metal-dependent [alpha]-helix formation promoted by the glycine-rich octapeptide region of prion protein. FEBS Lett 396(2–3):248–252PubMed
115.
Zurück zum Zitat Stöckel J, Safar J, Wallace AC, Cohen FE, Prusiner SB (1998) Prion protein selectively binds copper (II) ions. Biochemistry. 37(20):7185–7193PubMed Stöckel J, Safar J, Wallace AC, Cohen FE, Prusiner SB (1998) Prion protein selectively binds copper (II) ions. Biochemistry. 37(20):7185–7193PubMed
116.
Zurück zum Zitat Zheng Z, Zhang M, Wang Y, Ma R, Guo C, Feng L et al (2018) Structural basis for the complete resistance of the human prion protein mutant G127V to prion disease. Sci Rep 8(1):13211PubMedPubMedCentral Zheng Z, Zhang M, Wang Y, Ma R, Guo C, Feng L et al (2018) Structural basis for the complete resistance of the human prion protein mutant G127V to prion disease. Sci Rep 8(1):13211PubMedPubMedCentral
117.
Zurück zum Zitat Alahmari F, Dey S, Emwas A-H, Davaasuren B, Rothenberger A (2019) Layered copper thioaluminate K2Cu3AlS4: synthesis, crystal structure, characterization and solid-state 27Al and 39K NMR studies. J Alloys Compd 776:1041–1047 Alahmari F, Dey S, Emwas A-H, Davaasuren B, Rothenberger A (2019) Layered copper thioaluminate K2Cu3AlS4: synthesis, crystal structure, characterization and solid-state 27Al and 39K NMR studies. J Alloys Compd 776:1041–1047
118.
Zurück zum Zitat Alahmari F, Davaasuren B, Emwas A-H, Costa PMFJ, Rothenberger A (2019) Tris (ethylenediamine) nickel (II) thio-hydroxogermanate monohydrate: synthesis, crystal structure, 1H NMR, EPR, optical and magnetic properties. Inorg Chim Acta 488:145–151 Alahmari F, Davaasuren B, Emwas A-H, Costa PMFJ, Rothenberger A (2019) Tris (ethylenediamine) nickel (II) thio-hydroxogermanate monohydrate: synthesis, crystal structure, 1H NMR, EPR, optical and magnetic properties. Inorg Chim Acta 488:145–151
119.
Zurück zum Zitat Brown DR (2001) Copper and prion disease. Brain Res Bull 55(2):165–173PubMed Brown DR (2001) Copper and prion disease. Brain Res Bull 55(2):165–173PubMed
120.
Zurück zum Zitat Davaasuren B, Emwas A-H, Rothenberger A (2017) MAu2GeS4-Chalcogel (M = Co, Ni): heterogeneous intra- and intermolecular hydroamination catalysts. Inorg Chem 56(16):9609–9616PubMed Davaasuren B, Emwas A-H, Rothenberger A (2017) MAu2GeS4-Chalcogel (M = Co, Ni): heterogeneous intra- and intermolecular hydroamination catalysts. Inorg Chem 56(16):9609–9616PubMed
121.
Zurück zum Zitat Emwas A-H, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN et al (2019) NMR spectroscopy for metabolomics research. Metabolites. 9(7):123PubMedCentral Emwas A-H, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN et al (2019) NMR spectroscopy for metabolomics research. Metabolites. 9(7):123PubMedCentral
122.
Zurück zum Zitat Toni M, Massimino ML, Griffoni C, Salvato B, Tomasi V, Spisni E (2005) Extracellular copper ions regulate cellular prion protein (PrPC) expression and metabolism in neuronal cells. FEBS Lett 579(3):741–744PubMed Toni M, Massimino ML, Griffoni C, Salvato B, Tomasi V, Spisni E (2005) Extracellular copper ions regulate cellular prion protein (PrPC) expression and metabolism in neuronal cells. FEBS Lett 579(3):741–744PubMed
123.
Zurück zum Zitat Mattar SM, Emwas AH, Calhoun LA (2004) Spectroscopic studies of the intermediates in the conversion of 1, 4, 11, 12-tetrahydro-9, 10-anthraquinone to 9, 10-anthraquinone by reaction with oxygen under basic conditions. J Phys Chem A 108(52):11545–11553 Mattar SM, Emwas AH, Calhoun LA (2004) Spectroscopic studies of the intermediates in the conversion of 1, 4, 11, 12-tetrahydro-9, 10-anthraquinone to 9, 10-anthraquinone by reaction with oxygen under basic conditions. J Phys Chem A 108(52):11545–11553
124.
Zurück zum Zitat Ellegood J, McKay RT, Hanstock CC, Beaulieu C (2007) Anisotropic diffusion of metabolites in peripheral nerve using diffusion weighted magnetic resonance spectroscopy at ultra-high field. J Magn Reson 184(1):20–28PubMed Ellegood J, McKay RT, Hanstock CC, Beaulieu C (2007) Anisotropic diffusion of metabolites in peripheral nerve using diffusion weighted magnetic resonance spectroscopy at ultra-high field. J Magn Reson 184(1):20–28PubMed
125.
Zurück zum Zitat McKay RT, Saltibus LF, Li MX, Sykes BD (2000) Energetics of the induced structural change in a Ca2+ regulatory protein: Ca2+ and troponin I peptide binding to the E41A mutant of the N-domain of skeletal troponin C. Biochemistry. 39(41):12731–12738PubMed McKay RT, Saltibus LF, Li MX, Sykes BD (2000) Energetics of the induced structural change in a Ca2+ regulatory protein: Ca2+ and troponin I peptide binding to the E41A mutant of the N-domain of skeletal troponin C. Biochemistry. 39(41):12731–12738PubMed
126.
Zurück zum Zitat Amniai L, Barbier P, Sillen A, Wieruszeski J-M, Peyrot V, Lippens G et al (2009) Alzheimer disease specific phosphoepitopes of tau interfere with assembly of tubulin but not binding to microtubules. FASEB J 23(4):1146–1152PubMed Amniai L, Barbier P, Sillen A, Wieruszeski J-M, Peyrot V, Lippens G et al (2009) Alzheimer disease specific phosphoepitopes of tau interfere with assembly of tubulin but not binding to microtubules. FASEB J 23(4):1146–1152PubMed
127.
Zurück zum Zitat Giustiniani J, Guillemeau K, Dounane O, Sardin E, Huvent I, Schmitt A et al (2015) The FK506-binding protein FKBP52 in vitro induces aggregation of truncated tau forms with prion-like behavior. FASEB J 29(8):3171–3181PubMed Giustiniani J, Guillemeau K, Dounane O, Sardin E, Huvent I, Schmitt A et al (2015) The FK506-binding protein FKBP52 in vitro induces aggregation of truncated tau forms with prion-like behavior. FASEB J 29(8):3171–3181PubMed
128.
Zurück zum Zitat Abdul Jameel AG, Van Oudenhoven V, Emwas A-H, Sarathy SM (2018) Predicting octane number using nuclear magnetic resonance spectroscopy and artificial neural networks. Energy Fuel 32(5):6309–6329 Abdul Jameel AG, Van Oudenhoven V, Emwas A-H, Sarathy SM (2018) Predicting octane number using nuclear magnetic resonance spectroscopy and artificial neural networks. Energy Fuel 32(5):6309–6329
129.
Zurück zum Zitat Alahmari F, Davaasuren B, Emwas A-H, Rothenberger A (2018) Thioaluminogermanate M (AlS2)(GeS2) 4 (M= Na, Ag, Cu): synthesis, crystal structures, characterization, ion-exchange and solid-state 27Al and 23Na NMR spectroscopy. Inorg Chem 57(7):3713–3719PubMed Alahmari F, Davaasuren B, Emwas A-H, Rothenberger A (2018) Thioaluminogermanate M (AlS2)(GeS2) 4 (M= Na, Ag, Cu): synthesis, crystal structures, characterization, ion-exchange and solid-state 27Al and 23Na NMR spectroscopy. Inorg Chem 57(7):3713–3719PubMed
130.
Zurück zum Zitat Batool F, Parveen S, Emwas A-H, Sioud S, Gao X, Munawar MA et al (2015) Synthesis of fluoroalkoxy substituted arylboronic esters by iridium-catalyzed aromatic C-H borylation. Org Lett 17(17):4256–4259PubMed Batool F, Parveen S, Emwas A-H, Sioud S, Gao X, Munawar MA et al (2015) Synthesis of fluoroalkoxy substituted arylboronic esters by iridium-catalyzed aromatic C-H borylation. Org Lett 17(17):4256–4259PubMed
131.
Zurück zum Zitat Alahmari F, Dey S, Emwas A-H, Davaasuren B, Rothenberger A (2019) Ultra-low thermal conductivity in Na/Sb chalcobismuthates: synthesis, crystal structures, optical properties and 23Na NMR spectroscopy. New J Chem 43(27):10814–10820 Alahmari F, Dey S, Emwas A-H, Davaasuren B, Rothenberger A (2019) Ultra-low thermal conductivity in Na/Sb chalcobismuthates: synthesis, crystal structures, optical properties and 23Na NMR spectroscopy. New J Chem 43(27):10814–10820
132.
Zurück zum Zitat Medina SC, Farinha ASF, Emwas A-H, Tabatabai A, Leiknes T (2020) A fundamental study of adsorption kinetics of surfactants onto metal oxides using quartz crystal microbalance with dissipation (QCM-D). Colloids Surf A Physicochem Eng Asp 586:124237 Medina SC, Farinha ASF, Emwas A-H, Tabatabai A, Leiknes T (2020) A fundamental study of adsorption kinetics of surfactants onto metal oxides using quartz crystal microbalance with dissipation (QCM-D). Colloids Surf A Physicochem Eng Asp 586:124237
133.
Zurück zum Zitat Alkordi MH, Haikal RR, Hassan YS, Emwas A-H, Belmabkhout Y (2015) Poly-functional porous-organic polymers to access functionality–CO 2 sorption energetic relationships. J Mater Chem A 3(45):22584–22590 Alkordi MH, Haikal RR, Hassan YS, Emwas A-H, Belmabkhout Y (2015) Poly-functional porous-organic polymers to access functionality–CO 2 sorption energetic relationships. J Mater Chem A 3(45):22584–22590
134.
Zurück zum Zitat Atiqullah M, Al-Harthi MA, Anantawaraskul S, Emwas A-HM (2015) Ethylene homo-and copolymerization chain-transfers: a perspective from supported (nBuCp) 2ZrCl2 catalyst active Centre distribution. J Chem Sci 127(4):717–728 Atiqullah M, Al-Harthi MA, Anantawaraskul S, Emwas A-HM (2015) Ethylene homo-and copolymerization chain-transfers: a perspective from supported (nBuCp) 2ZrCl2 catalyst active Centre distribution. J Chem Sci 127(4):717–728
135.
Zurück zum Zitat Chisca S, Duong P, Emwas A-H, Sougrat R, Nunes SP (2015) Crosslinked copolyazoles with a zwitterionic structure for organic solvent resistant membranes. Polym Chem 6(4):543–554 Chisca S, Duong P, Emwas A-H, Sougrat R, Nunes SP (2015) Crosslinked copolyazoles with a zwitterionic structure for organic solvent resistant membranes. Polym Chem 6(4):543–554
136.
Zurück zum Zitat Bahuleyan BK, De Kumar S, Sarath PU, Furquan SA, Masihullah JK, Emwas AH et al (2012) Effect of aluminium nitride on the properties of polyethylene obtained by in situ polymerization using Ni (II) diimine complex. Macromol Res 20(7):772–775 Bahuleyan BK, De Kumar S, Sarath PU, Furquan SA, Masihullah JK, Emwas AH et al (2012) Effect of aluminium nitride on the properties of polyethylene obtained by in situ polymerization using Ni (II) diimine complex. Macromol Res 20(7):772–775
137.
Zurück zum Zitat Liu Z, Dong X, Zhu Y, Emwas A-H, Zhang D, Tian Q et al (2015) Investigating the influence of mesoporosity in zeolite beta on its catalytic performance for the conversion of methanol to hydrocarbons. ACS Catal 5(10):5837–5845 Liu Z, Dong X, Zhu Y, Emwas A-H, Zhang D, Tian Q et al (2015) Investigating the influence of mesoporosity in zeolite beta on its catalytic performance for the conversion of methanol to hydrocarbons. ACS Catal 5(10):5837–5845
138.
Zurück zum Zitat Alezi D, Belmabkhout Y, Suyetin M, Bhatt PM, Weseliński ŁJ, Solovyeva V et al (2015) MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J Am Chem Soc 137(41):13308–13318PubMedPubMedCentral Alezi D, Belmabkhout Y, Suyetin M, Bhatt PM, Weseliński ŁJ, Solovyeva V et al (2015) MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J Am Chem Soc 137(41):13308–13318PubMedPubMedCentral
139.
Zurück zum Zitat Al-Bloushi M, Davaasuren B, Emwas AH, Rothenberger A (2015) Synthesis and characterization of the quaternary thioaluminogermanates A (AlS2)(GeS2)(A= Na, K). Z Anorg Allg Chem 641(7):1352–1356 Al-Bloushi M, Davaasuren B, Emwas AH, Rothenberger A (2015) Synthesis and characterization of the quaternary thioaluminogermanates A (AlS2)(GeS2)(A= Na, K). Z Anorg Allg Chem 641(7):1352–1356
140.
Zurück zum Zitat Caro JA, Wand AJ (2018) Practical aspects of high-pressure NMR spectroscopy and its applications in protein biophysics and structural biology. Methods. 148:67–80PubMedPubMedCentral Caro JA, Wand AJ (2018) Practical aspects of high-pressure NMR spectroscopy and its applications in protein biophysics and structural biology. Methods. 148:67–80PubMedPubMedCentral
141.
Zurück zum Zitat Matlahov I, van der Wel PCA (2018) Hidden motions and motion-induced invisibility: dynamics-based spectral editing in solid-state NMR. Methods 148:123–135 Matlahov I, van der Wel PCA (2018) Hidden motions and motion-induced invisibility: dynamics-based spectral editing in solid-state NMR. Methods 148:123–135
142.
Zurück zum Zitat Quinn CM, Polenova T (2017) Structural biology of supramolecular assemblies by magic-angle spinning NMR spectroscopy. Q Rev Biophys 50 Quinn CM, Polenova T (2017) Structural biology of supramolecular assemblies by magic-angle spinning NMR spectroscopy. Q Rev Biophys 50
143.
Zurück zum Zitat Yadav DK, Lukavsky PJ (2016) NMR solution structure determination of large RNA-protein complexes. Prog Nucl Magn Reson Spectrosc 97:57–81PubMed Yadav DK, Lukavsky PJ (2016) NMR solution structure determination of large RNA-protein complexes. Prog Nucl Magn Reson Spectrosc 97:57–81PubMed
144.
Zurück zum Zitat Bechmann M, Mueller N (2017) Nonlinear effects in NMR. Annual Reports on NMR Spectroscopy. 92: Elsevier; p. 199–226 Bechmann M, Mueller N (2017) Nonlinear effects in NMR. Annual Reports on NMR Spectroscopy. 92: Elsevier; p. 199–226
145.
Zurück zum Zitat Bian J, Jiang M, Cui J, Liu X, Chen B, Ji Y et al (2017) Universal quantum control in zero-field nuclear magnetic resonance. Phys Rev A 95(5):052342 Bian J, Jiang M, Cui J, Liu X, Chen B, Ji Y et al (2017) Universal quantum control in zero-field nuclear magnetic resonance. Phys Rev A 95(5):052342
146.
Zurück zum Zitat Fundo JF, Galvis-Sanchez A, Madureira AR, Carvalho A, Feio G, Silva CL et al (2016) NMR water transverse relaxation time approach to understand storage stability of fresh-cut ‘Rocha’pear. LWT. 74:280–285 Fundo JF, Galvis-Sanchez A, Madureira AR, Carvalho A, Feio G, Silva CL et al (2016) NMR water transverse relaxation time approach to understand storage stability of fresh-cut ‘Rocha’pear. LWT. 74:280–285
147.
Zurück zum Zitat Ilc G, Giachin G, Jaremko M, Jaremko L, Benetti F, Plavec J et al (2010) NMR structure of the human prion protein with the pathological Q212P mutation reveals unique structural features. PLoS One 5(7):e11715PubMedPubMedCentral Ilc G, Giachin G, Jaremko M, Jaremko L, Benetti F, Plavec J et al (2010) NMR structure of the human prion protein with the pathological Q212P mutation reveals unique structural features. PLoS One 5(7):e11715PubMedPubMedCentral
148.
Zurück zum Zitat Larda ST, Simonetti K, Al-Abdul-Wahid MS, Sharpe S, Prosser RS (2013) Dynamic equilibria between monomeric and oligomeric misfolded states of the mammalian prion protein measured by 19F NMR. J Am Chem Soc 135(28):10533–10541PubMed Larda ST, Simonetti K, Al-Abdul-Wahid MS, Sharpe S, Prosser RS (2013) Dynamic equilibria between monomeric and oligomeric misfolded states of the mammalian prion protein measured by 19F NMR. J Am Chem Soc 135(28):10533–10541PubMed
149.
Zurück zum Zitat Mead S (2019) Prion diseases and possible treatments. J Neurol Sci 405:70 Mead S (2019) Prion diseases and possible treatments. J Neurol Sci 405:70
150.
Zurück zum Zitat Fremuntova Z, Mosko T, Soukup J, Kucerova J, Kostelanska M, Hanusova ZB et al (2020) Changes in cellular prion protein expression, processing and localisation during differentiation of the neuronal cell line CAD 5. Biol Cell 112(1):1–21PubMed Fremuntova Z, Mosko T, Soukup J, Kucerova J, Kostelanska M, Hanusova ZB et al (2020) Changes in cellular prion protein expression, processing and localisation during differentiation of the neuronal cell line CAD 5. Biol Cell 112(1):1–21PubMed
151.
Zurück zum Zitat Geissen M, Krasemann S, Matschke J, Glatzel M (2007) Understanding the natural variability of prion diseases. Vaccine. 25(30):5631–5636PubMed Geissen M, Krasemann S, Matschke J, Glatzel M (2007) Understanding the natural variability of prion diseases. Vaccine. 25(30):5631–5636PubMed
152.
Zurück zum Zitat Fernandez-Borges N, Erana H, Venegas V, Elezgarai SR, Harrathi C, Castilla J (2015) Animal models for prion-like diseases. Virus Res 207:5–24PubMed Fernandez-Borges N, Erana H, Venegas V, Elezgarai SR, Harrathi C, Castilla J (2015) Animal models for prion-like diseases. Virus Res 207:5–24PubMed
153.
Zurück zum Zitat Geschwind MD (2015) Prion diseases. Continuum (Minneapolis, Minn) 21(6 Neuroinfectious Disease):1612–1638 Geschwind MD (2015) Prion diseases. Continuum (Minneapolis, Minn) 21(6 Neuroinfectious Disease):1612–1638
154.
Zurück zum Zitat Huang WJ, Chen WW, Zhang X (2015) Prions mediated neurodegenerative disorders. Eur Rev Med Pharmacol Sci 19(21):4028–4034PubMed Huang WJ, Chen WW, Zhang X (2015) Prions mediated neurodegenerative disorders. Eur Rev Med Pharmacol Sci 19(21):4028–4034PubMed
155.
Zurück zum Zitat Lukic A, Uphill J, Brown CA, Beck J, Poulter M, Campbell T et al (2015) Rare structural genetic variation in human prion diseases. Neurobiol Aging 36(5):2004.e1–2004.e8 Lukic A, Uphill J, Brown CA, Beck J, Poulter M, Campbell T et al (2015) Rare structural genetic variation in human prion diseases. Neurobiol Aging 36(5):2004.e1–2004.e8
156.
Zurück zum Zitat Nhat Tran Thanh L, Narkiewicz J, Aulic S, Salzano G, Hoa Thanh T, Scaini D et al (2015) Synthetic prions and other human neurodegenerative proteinopathies. Virus Res 207:25–37 Nhat Tran Thanh L, Narkiewicz J, Aulic S, Salzano G, Hoa Thanh T, Scaini D et al (2015) Synthetic prions and other human neurodegenerative proteinopathies. Virus Res 207:25–37
157.
Zurück zum Zitat Marandi Y, Farahi N, Sadeghi A, Sadeghi-Hashjin G (2012) Prion diseases - current theories and potential therapies: a brief review. Folia Neuropathol 50(1):46–49PubMed Marandi Y, Farahi N, Sadeghi A, Sadeghi-Hashjin G (2012) Prion diseases - current theories and potential therapies: a brief review. Folia Neuropathol 50(1):46–49PubMed
158.
Zurück zum Zitat Norrby E (2011) Prions and protein-folding diseases. J Intern Med 270(1):1–14PubMed Norrby E (2011) Prions and protein-folding diseases. J Intern Med 270(1):1–14PubMed
159.
Zurück zum Zitat Sikorska B, Liberski PP (2012) Human prion diseases: from Kuru to variant Creutzfeldt-Jakob disease. Subcell Biochem 65:457–496PubMed Sikorska B, Liberski PP (2012) Human prion diseases: from Kuru to variant Creutzfeldt-Jakob disease. Subcell Biochem 65:457–496PubMed
160.
Zurück zum Zitat Solomon IH, Biasini E, Harris DA (2012) Ion channels induced by the prion protein mediators of neurotoxicity. Prion. 6(1):40–45PubMedPubMedCentral Solomon IH, Biasini E, Harris DA (2012) Ion channels induced by the prion protein mediators of neurotoxicity. Prion. 6(1):40–45PubMedPubMedCentral
161.
Zurück zum Zitat Syed M, Nourizadeh-Lillabadi R, Press CM, Alestrom P (2011) Prion protein function and the disturbance of early embryonic development in zebrafish. Prion. 5(2):88–92PubMedPubMedCentral Syed M, Nourizadeh-Lillabadi R, Press CM, Alestrom P (2011) Prion protein function and the disturbance of early embryonic development in zebrafish. Prion. 5(2):88–92PubMedPubMedCentral
162.
Zurück zum Zitat Akhvlediani T, Gochitashvili N, Tsertsvadze T (2007) Prion diseases--mysterious persistent infections. Georgian Med News 146:38–42 Akhvlediani T, Gochitashvili N, Tsertsvadze T (2007) Prion diseases--mysterious persistent infections. Georgian Med News 146:38–42
163.
Zurück zum Zitat Fornai F, Ferrucci M, Gesi M, di Poggio AB, Giorgi FS, Biagioni F et al (2006) A hypothesis on prion disorders: are infectious, inherited, and sporadic causes so distinct? Brain Res Bull 69(2):95–100PubMed Fornai F, Ferrucci M, Gesi M, di Poggio AB, Giorgi FS, Biagioni F et al (2006) A hypothesis on prion disorders: are infectious, inherited, and sporadic causes so distinct? Brain Res Bull 69(2):95–100PubMed
164.
Zurück zum Zitat Ironside JW. Human prion diseases: biology and transmission by blood. In: Mayr WR, editor. Isbt Science Series, Vol 1, No 1: State of the Art Presentations. ISBT Science Series. 12006. p. 15–20 Ironside JW. Human prion diseases: biology and transmission by blood. In: Mayr WR, editor. Isbt Science Series, Vol 1, No 1: State of the Art Presentations. ISBT Science Series. 12006. p. 15–20
165.
Zurück zum Zitat Ironside JW, Ritchie DL, Head MW (2005) Phenotypic variability in human prion diseases. Neuropathol Appl Neurobiol 31(6):565–579PubMed Ironside JW, Ritchie DL, Head MW (2005) Phenotypic variability in human prion diseases. Neuropathol Appl Neurobiol 31(6):565–579PubMed
166.
Zurück zum Zitat Rachidi W, Riondel J, McMahon HM, Favier A (2005) Prion protein and copper: a mysterious relationship. Pathol Biol 53(4):244–250PubMed Rachidi W, Riondel J, McMahon HM, Favier A (2005) Prion protein and copper: a mysterious relationship. Pathol Biol 53(4):244–250PubMed
167.
Zurück zum Zitat Sakudo A, Onodera T (2011) Tissue- and cell type-specific modification of prion protein (PrP)-like protein Doppel, which affects PrP endoproteolysis. Biochem Biophys Res Commun 404(1):523–527PubMed Sakudo A, Onodera T (2011) Tissue- and cell type-specific modification of prion protein (PrP)-like protein Doppel, which affects PrP endoproteolysis. Biochem Biophys Res Commun 404(1):523–527PubMed
168.
Zurück zum Zitat Figini M, Alexander DC, Redaelli V, Fasano F, Grisoli M, Baselli G et al (2015) Mathematical models for the diffusion magnetic resonance signal abnormality in patients with prion diseases. NeuroImage Clinical 7:142–154PubMed Figini M, Alexander DC, Redaelli V, Fasano F, Grisoli M, Baselli G et al (2015) Mathematical models for the diffusion magnetic resonance signal abnormality in patients with prion diseases. NeuroImage Clinical 7:142–154PubMed
169.
Zurück zum Zitat Krakauer DC, Zanotto PMD, Pagel M (1998) Prion's progress: patterns and rates of molecular evolution in relation to spongiform disease. J Mol Evol 47(2):133–145PubMed Krakauer DC, Zanotto PMD, Pagel M (1998) Prion's progress: patterns and rates of molecular evolution in relation to spongiform disease. J Mol Evol 47(2):133–145PubMed
170.
Zurück zum Zitat Lodi R, Parchi P, Tonon C, Manners D, Capellari S, Strammiello R et al (2009) Magnetic resonance diagnostic markers in clinically sporadic prion disease: a combined brain magnetic resonance imaging and spectroscopy study. Brain. 132:2669–2679PubMedPubMedCentral Lodi R, Parchi P, Tonon C, Manners D, Capellari S, Strammiello R et al (2009) Magnetic resonance diagnostic markers in clinically sporadic prion disease: a combined brain magnetic resonance imaging and spectroscopy study. Brain. 132:2669–2679PubMedPubMedCentral
171.
Zurück zum Zitat Tranchant C, Geranton L, Guiraud-Chaumeil C, Mohr M, Warter JM (1999) Basis of phenotypic variability in sporadic Creutzfeldt-Jakob disease. Neurology. 52(6):1244–1249PubMed Tranchant C, Geranton L, Guiraud-Chaumeil C, Mohr M, Warter JM (1999) Basis of phenotypic variability in sporadic Creutzfeldt-Jakob disease. Neurology. 52(6):1244–1249PubMed
172.
Zurück zum Zitat Collins SJ, Lawson VA, Masters CL (2004) Transmissible spongiform encephalopathies. Lancet. 363(9402):51–61PubMed Collins SJ, Lawson VA, Masters CL (2004) Transmissible spongiform encephalopathies. Lancet. 363(9402):51–61PubMed
173.
Zurück zum Zitat Edskes HK, Wickner RB (2004) Transmissible spongiform encephalopathies - prion proof in progress. Nature. 430(7003):977–979PubMed Edskes HK, Wickner RB (2004) Transmissible spongiform encephalopathies - prion proof in progress. Nature. 430(7003):977–979PubMed
174.
Zurück zum Zitat Basset-Leobon C, Uro-Coste E, Peoc'h K, Haik S, Sazdovitch V, Rigal M et al (2006) Familial Creutzfeldt-Jakob disease with an R208H-129V haplotype and Kuru plaques. Arch Neurol 63(3):449–452PubMed Basset-Leobon C, Uro-Coste E, Peoc'h K, Haik S, Sazdovitch V, Rigal M et al (2006) Familial Creutzfeldt-Jakob disease with an R208H-129V haplotype and Kuru plaques. Arch Neurol 63(3):449–452PubMed
175.
Zurück zum Zitat Giles K, Olson SH, Prusiner SB (2017) Developing therapeutics for PrP prion diseases. Cold Spring Harbor perspectives in medicine 7(4):a023747PubMedPubMedCentral Giles K, Olson SH, Prusiner SB (2017) Developing therapeutics for PrP prion diseases. Cold Spring Harbor perspectives in medicine 7(4):a023747PubMedPubMedCentral
176.
Zurück zum Zitat Mead S, Whitfield J, Poulter M, Shah P, Uphill J, Campbell T et al (2009) A novel protective prion protein variant that colocalizes with Kuru exposure. N Engl J Med 361(21):2056–2065PubMed Mead S, Whitfield J, Poulter M, Shah P, Uphill J, Campbell T et al (2009) A novel protective prion protein variant that colocalizes with Kuru exposure. N Engl J Med 361(21):2056–2065PubMed
177.
Zurück zum Zitat Stewart LA, Rydzewska LH, Keogh GF, Knight RS (2008) Systematic review of therapeutic interventions in human prion disease. Neurology. 70(15):1272–1281PubMed Stewart LA, Rydzewska LH, Keogh GF, Knight RS (2008) Systematic review of therapeutic interventions in human prion disease. Neurology. 70(15):1272–1281PubMed
178.
Zurück zum Zitat Mancuso M, Siciliano G, Capellari S, Orsucci D, Moretti P, Di Fede G et al (2009) Creutzfeldt-Jakob disease with E200K PRNP mutation: a case report and revision of the literature. Neurol Sci 30(5):417–420PubMed Mancuso M, Siciliano G, Capellari S, Orsucci D, Moretti P, Di Fede G et al (2009) Creutzfeldt-Jakob disease with E200K PRNP mutation: a case report and revision of the literature. Neurol Sci 30(5):417–420PubMed
179.
Zurück zum Zitat Bilandžić N, Đokić M, Sedak M, Varenina I, Kolanović BS, Oraić D et al (2012) Determination of copper in food of animal origin and fish in Croatia. Food Control 27(2):284–288 Bilandžić N, Đokić M, Sedak M, Varenina I, Kolanović BS, Oraić D et al (2012) Determination of copper in food of animal origin and fish in Croatia. Food Control 27(2):284–288
180.
Zurück zum Zitat Bandmann O, Weiss KH, Kaler SG (2015) Wilson's disease and other neurological copper disorders. Lancet Neurol 14(1):103–113PubMedPubMedCentral Bandmann O, Weiss KH, Kaler SG (2015) Wilson's disease and other neurological copper disorders. Lancet Neurol 14(1):103–113PubMedPubMedCentral
181.
Zurück zum Zitat Zheng W, Monnot AD (2012) Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther 133(2):177–188PubMed Zheng W, Monnot AD (2012) Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther 133(2):177–188PubMed
182.
Zurück zum Zitat Hart E, Steenbock H, Waddell J, Elvehjem C, Van Donk E, Riising BM (2001) Iron in nutrition: VII. Copper as a supplement to iron for hemoglobin building in the rat (Reprinted from Journal of Biological Chemistry, vol 77, pg 797-812, 1928). J Trace Elem Exp Med 14(2):195–206 Hart E, Steenbock H, Waddell J, Elvehjem C, Van Donk E, Riising BM (2001) Iron in nutrition: VII. Copper as a supplement to iron for hemoglobin building in the rat (Reprinted from Journal of Biological Chemistry, vol 77, pg 797-812, 1928). J Trace Elem Exp Med 14(2):195–206
183.
Zurück zum Zitat Kozlowski H, Luczkowski M, Remelli M, Valensin D (2012) Copper, zinc and iron in neurodegenerative diseases (Alzheimer's, Parkinson's and prion diseases). Coord Chem Rev 256(19–20):2129–2141 Kozlowski H, Luczkowski M, Remelli M, Valensin D (2012) Copper, zinc and iron in neurodegenerative diseases (Alzheimer's, Parkinson's and prion diseases). Coord Chem Rev 256(19–20):2129–2141
184.
Zurück zum Zitat Prohaska JR, Bailey WR (1994) Regional specificity in alterations of rat brain copper and catecholamines following perinatal copper deficiency. J Neurochem 63(4):1551–1557PubMed Prohaska JR, Bailey WR (1994) Regional specificity in alterations of rat brain copper and catecholamines following perinatal copper deficiency. J Neurochem 63(4):1551–1557PubMed
185.
Zurück zum Zitat Singh N, Das D, Singh A, Mohan ML (2010) Prion protein and metal interaction: physiological and pathological implications. Curr Issues Mol Biol 12(2):99PubMed Singh N, Das D, Singh A, Mohan ML (2010) Prion protein and metal interaction: physiological and pathological implications. Curr Issues Mol Biol 12(2):99PubMed
186.
Zurück zum Zitat Yen C-F, Harischandra DS, Kanthasamy A, Sivasankar S (2016) Copper-induced structural conversion templates prion protein oligomerization and neurotoxicity. Sci Adv 2(7):e1600014PubMedPubMedCentral Yen C-F, Harischandra DS, Kanthasamy A, Sivasankar S (2016) Copper-induced structural conversion templates prion protein oligomerization and neurotoxicity. Sci Adv 2(7):e1600014PubMedPubMedCentral
187.
Zurück zum Zitat Scheiber IF, Mercer JF, Dringen R (2014) Metabolism and functions of copper in brain. Prog Neurobiol 116:33–57PubMed Scheiber IF, Mercer JF, Dringen R (2014) Metabolism and functions of copper in brain. Prog Neurobiol 116:33–57PubMed
188.
Zurück zum Zitat Brazier MW, Volitakis I, Kvasnicka M, White AR, Underwood JR, Green JE et al (2010) Manganese chelation therapy extends survival in a mouse model of M1000 prion disease. J Neurochem 114(2):440–451PubMed Brazier MW, Volitakis I, Kvasnicka M, White AR, Underwood JR, Green JE et al (2010) Manganese chelation therapy extends survival in a mouse model of M1000 prion disease. J Neurochem 114(2):440–451PubMed
189.
Zurück zum Zitat De Gregorio G, Biasotto F, Hecel A, Luczkowski M, Kozlowski H, Valensin D (2019) Structural analysis of copper (I) interaction with amyloid β peptide. J Inorg Biochem De Gregorio G, Biasotto F, Hecel A, Luczkowski M, Kozlowski H, Valensin D (2019) Structural analysis of copper (I) interaction with amyloid β peptide. J Inorg Biochem
190.
Zurück zum Zitat Strausak D, Mercer JF, Dieter HH, Stremmel W, Multhaup G (2001) Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Res Bull 55(2):175–185PubMed Strausak D, Mercer JF, Dieter HH, Stremmel W, Multhaup G (2001) Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Res Bull 55(2):175–185PubMed
191.
Zurück zum Zitat Rivera-Mancía S, Pérez-Neri I, Ríos C, Tristán-López L, Rivera-Espinosa L, Montes S (2010) The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 186(2):184–199PubMed Rivera-Mancía S, Pérez-Neri I, Ríos C, Tristán-López L, Rivera-Espinosa L, Montes S (2010) The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 186(2):184–199PubMed
192.
Zurück zum Zitat Bolognin S, Drago D, Messori L, Zatta P (2009) Chelation therapy for neurodegenerative diseases. Med Res Rev 29(4):547–570PubMed Bolognin S, Drago D, Messori L, Zatta P (2009) Chelation therapy for neurodegenerative diseases. Med Res Rev 29(4):547–570PubMed
193.
Zurück zum Zitat Slivarichová D, Mitrová E, Ursínyová M, Uhnáková I, Koscová S, Wsólová L (2011) Geographic accumulation of Creutzfeldt-Jakob disease in Slovakia-environmental metal imbalance as a possible cofactor. Cent Eur J Public Health 19(3):158PubMed Slivarichová D, Mitrová E, Ursínyová M, Uhnáková I, Koscová S, Wsólová L (2011) Geographic accumulation of Creutzfeldt-Jakob disease in Slovakia-environmental metal imbalance as a possible cofactor. Cent Eur J Public Health 19(3):158PubMed
194.
Zurück zum Zitat Mitteregger G, Korte S, Shakarami M, Herms J, Kretzschmar HA (2009) Role of copper and manganese in prion disease progression. Brain Res 1292:155–164PubMed Mitteregger G, Korte S, Shakarami M, Herms J, Kretzschmar HA (2009) Role of copper and manganese in prion disease progression. Brain Res 1292:155–164PubMed
195.
Zurück zum Zitat Hodak M, Chisnell R, Lu W, Bernholc J (2009) Functional implications of multistage copper binding to the prion protein. Proc Natl Acad Sci 106(28):11576–11581PubMed Hodak M, Chisnell R, Lu W, Bernholc J (2009) Functional implications of multistage copper binding to the prion protein. Proc Natl Acad Sci 106(28):11576–11581PubMed
196.
Zurück zum Zitat Desai V, Kaler SG (2008) Role of copper in human neurological disorders. Am J Clin Nutr 88(3):855S–858SPubMed Desai V, Kaler SG (2008) Role of copper in human neurological disorders. Am J Clin Nutr 88(3):855S–858SPubMed
197.
Zurück zum Zitat Viles JH, Klewpatinond M, Nadal RC (2008) Copper and the structural biology of the prion protein. Portland Press Limited Viles JH, Klewpatinond M, Nadal RC (2008) Copper and the structural biology of the prion protein. Portland Press Limited
198.
Zurück zum Zitat Varela-Nallar L, González A, Inestrosa NC (2006) Role of copper in prion diseases: deleterious or beneficial? Curr Pharm Des 12(20):2587–2595PubMed Varela-Nallar L, González A, Inestrosa NC (2006) Role of copper in prion diseases: deleterious or beneficial? Curr Pharm Des 12(20):2587–2595PubMed
199.
Zurück zum Zitat Quaglio E, Chiesa R, Harris DA (2001) Copper converts the cellular prion protein into a protease-resistant species that is distinct from the scrapie isoform. J Biol Chem 276(14):11432–11438PubMed Quaglio E, Chiesa R, Harris DA (2001) Copper converts the cellular prion protein into a protease-resistant species that is distinct from the scrapie isoform. J Biol Chem 276(14):11432–11438PubMed
200.
Zurück zum Zitat Prince RC, Gunson DE (1998) Prions are copper-binding proteins. Trends Biochem Sci 23(6):197–198PubMed Prince RC, Gunson DE (1998) Prions are copper-binding proteins. Trends Biochem Sci 23(6):197–198PubMed
201.
Zurück zum Zitat Yamamoto N, Kuwata K (2009) Difference in redox behaviors between copper-binding octarepeat and nonoctarepeat sites in prion protein. JBIC J Biol Inorg Chem 14(8):1209–1218PubMed Yamamoto N, Kuwata K (2009) Difference in redox behaviors between copper-binding octarepeat and nonoctarepeat sites in prion protein. JBIC J Biol Inorg Chem 14(8):1209–1218PubMed
202.
Zurück zum Zitat Giachin G, Mai PT, Tran TH, Salzano G, Benetti F, Migliorati V et al (2015) The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion. Sci Rep 5:15253PubMedPubMedCentral Giachin G, Mai PT, Tran TH, Salzano G, Benetti F, Migliorati V et al (2015) The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion. Sci Rep 5:15253PubMedPubMedCentral
203.
Zurück zum Zitat O'Sullivan J, Comerford E, Rachidi W, Scott M, Hooper NM, McMahon HE (2015) The effects of the cellular and infectious prion protein on the neuronal adaptor protein X11α. Biochim Biophys Acta Gen Subj 1850(11):2213–2221 O'Sullivan J, Comerford E, Rachidi W, Scott M, Hooper NM, McMahon HE (2015) The effects of the cellular and infectious prion protein on the neuronal adaptor protein X11α. Biochim Biophys Acta Gen Subj 1850(11):2213–2221
204.
Zurück zum Zitat Bocharova OV, Breydo L, Salnikov VV, Baskakov IV (2005) Copper (II) inhibits in vitro conversion of prion protein into amyloid fibrils. Biochemistry. 44(18):6776–6787PubMed Bocharova OV, Breydo L, Salnikov VV, Baskakov IV (2005) Copper (II) inhibits in vitro conversion of prion protein into amyloid fibrils. Biochemistry. 44(18):6776–6787PubMed
205.
Zurück zum Zitat Giese A, Levin J, Bertsch U, Kretzschmar H (2004) Effect of metal ions on de novo aggregation of full-length prion protein. Biochem Biophys Res Commun 320(4):1240–1246PubMed Giese A, Levin J, Bertsch U, Kretzschmar H (2004) Effect of metal ions on de novo aggregation of full-length prion protein. Biochem Biophys Res Commun 320(4):1240–1246PubMed
206.
Zurück zum Zitat Kjaergaard CH, Jones SM, Gounel SB, Mano N, Solomon EI (2015) Two-electron reduction versus one-electron oxidation of the type 3 pair in the multicopper oxidases. J Am Chem Soc 137(27):8783–8794PubMedPubMedCentral Kjaergaard CH, Jones SM, Gounel SB, Mano N, Solomon EI (2015) Two-electron reduction versus one-electron oxidation of the type 3 pair in the multicopper oxidases. J Am Chem Soc 137(27):8783–8794PubMedPubMedCentral
207.
Zurück zum Zitat Serrano-Plana J, Garcia-Bosch I, Company A, Costas M (2015) Structural and reactivity models for copper oxygenases: cooperative effects and novel reactivities. Acc Chem Res 48(8):2397–2406PubMed Serrano-Plana J, Garcia-Bosch I, Company A, Costas M (2015) Structural and reactivity models for copper oxygenases: cooperative effects and novel reactivities. Acc Chem Res 48(8):2397–2406PubMed
208.
Zurück zum Zitat Arnesano F, Banci L, Bertini I, Mangani S, Thompsett AR (2003) A redox switch in CopC: an intriguing copper trafficking protein that binds copper (I) and copper (II) at different sites. Proc Natl Acad Sci 100(7):3814–3819PubMed Arnesano F, Banci L, Bertini I, Mangani S, Thompsett AR (2003) A redox switch in CopC: an intriguing copper trafficking protein that binds copper (I) and copper (II) at different sites. Proc Natl Acad Sci 100(7):3814–3819PubMed
209.
Zurück zum Zitat Artés JM, López-Martínez M, Díez-Pérez I, Sanz F, Gorostiza P (2014) Conductance switching in single wired redox proteins. Small. 10(13):2537–2541PubMed Artés JM, López-Martínez M, Díez-Pérez I, Sanz F, Gorostiza P (2014) Conductance switching in single wired redox proteins. Small. 10(13):2537–2541PubMed
210.
Zurück zum Zitat Hepel M, Stobiecka M, Peachey J, Miller J (2012) Intervention of glutathione in pre-mutagenic catechol-mediated DNA damage in the presence of copper (II) ions. Mutat Res Fundam Mol Mech Mutagen 735(1–2):1–11 Hepel M, Stobiecka M, Peachey J, Miller J (2012) Intervention of glutathione in pre-mutagenic catechol-mediated DNA damage in the presence of copper (II) ions. Mutat Res Fundam Mol Mech Mutagen 735(1–2):1–11
211.
Zurück zum Zitat Gutiérrez AGP, Zeitouny J, Gomila A, Douziech B, Cosquer N, Conan F et al (2014) Insights into water coordination associated with the Cu II/Cu I electron transfer at a biomimetic Cu centre. Dalton Trans 43(17):6436–6445 Gutiérrez AGP, Zeitouny J, Gomila A, Douziech B, Cosquer N, Conan F et al (2014) Insights into water coordination associated with the Cu II/Cu I electron transfer at a biomimetic Cu centre. Dalton Trans 43(17):6436–6445
212.
Zurück zum Zitat K-i S, Maeshima H, Yoshida H, Satsuma A, Hattori T (2000) Spectroscopic characterisation of Cu–Al 2 O 3 catalysts for selective catalytic reduction of NO with propene. Phys Chem Chem Phys 2(10):2435–2439 K-i S, Maeshima H, Yoshida H, Satsuma A, Hattori T (2000) Spectroscopic characterisation of Cu–Al 2 O 3 catalysts for selective catalytic reduction of NO with propene. Phys Chem Chem Phys 2(10):2435–2439
213.
Zurück zum Zitat Collery P, Maymard I, Theophanides T, Khassanova L, Collery T, Collery P, et al. Metal ions in biology and medicine, Vol 10. Metal Ions in Biology and Medicine, Vol 10. Metal Ions in Biology and Medicine. 102008 Collery P, Maymard I, Theophanides T, Khassanova L, Collery T, Collery P, et al. Metal ions in biology and medicine, Vol 10. Metal Ions in Biology and Medicine, Vol 10. Metal Ions in Biology and Medicine. 102008
214.
Zurück zum Zitat Roat-Malone RM, Roat-Malone RM. Bioinorganic chemistry: a short course2002. i-xvii, 1–348 p Roat-Malone RM, Roat-Malone RM. Bioinorganic chemistry: a short course2002. i-xvii, 1–348 p
215.
Zurück zum Zitat Brewer GJ (2009) Risks of copper and iron toxicity during aging in humans. Chem Res Toxicol 23(2):319–326 Brewer GJ (2009) Risks of copper and iron toxicity during aging in humans. Chem Res Toxicol 23(2):319–326
216.
Zurück zum Zitat Abuhijleh AL, Ali HA, Emwas A-H (2009) Synthesis, spectral and structural characterization of dinuclear rhodium (II) complexes of the anticonvulsant drug valproate with theophylline and caffeine. J Organomet Chem 694(22):3590–3596 Abuhijleh AL, Ali HA, Emwas A-H (2009) Synthesis, spectral and structural characterization of dinuclear rhodium (II) complexes of the anticonvulsant drug valproate with theophylline and caffeine. J Organomet Chem 694(22):3590–3596
217.
Zurück zum Zitat Nageeb A, Al-Tawashi A, Mohammad Emwas A-H, Abdel-Halim Al-Talla Z, Al-Rifai N (2013) Comparison of artemisia annua bioactivities between traditional medicine and chemical extracts. Curr Bioact Compd 9(4):324–332PubMedPubMedCentral Nageeb A, Al-Tawashi A, Mohammad Emwas A-H, Abdel-Halim Al-Talla Z, Al-Rifai N (2013) Comparison of artemisia annua bioactivities between traditional medicine and chemical extracts. Curr Bioact Compd 9(4):324–332PubMedPubMedCentral
218.
Zurück zum Zitat Al-Talla Z, Akrawi SH, Emwas A (2011) Solid state NMR and bioequivalence comparison of the pharmacokinetic parameters of two formulations of clindamycin. Int J Clin Pharmacol Ther 49(7):469–476PubMed Al-Talla Z, Akrawi SH, Emwas A (2011) Solid state NMR and bioequivalence comparison of the pharmacokinetic parameters of two formulations of clindamycin. Int J Clin Pharmacol Ther 49(7):469–476PubMed
219.
Zurück zum Zitat Chu S, Maltsev S, Emwas A-H, Lorigan GA (2010) Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers. J Magn Reson 207(1):89–94PubMedPubMedCentral Chu S, Maltsev S, Emwas A-H, Lorigan GA (2010) Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers. J Magn Reson 207(1):89–94PubMedPubMedCentral
220.
Zurück zum Zitat Jackson MD, Chae SR, Mulcahy SR, Meral C, Taylor R, Li P et al (2013) Unlocking the secrets of Al-tobermorite in Roman seawater concrete. Am Mineral 98(10):1669–1687 Jackson MD, Chae SR, Mulcahy SR, Meral C, Taylor R, Li P et al (2013) Unlocking the secrets of Al-tobermorite in Roman seawater concrete. Am Mineral 98(10):1669–1687
221.
Zurück zum Zitat Jackson MD, Moon J, Gotti E, Taylor R, Chae SR, Kunz M et al (2013) Material and elastic properties of Al-tobermorite in ancient Roman seawater concrete. J Am Ceram Soc 96(8):2598–2606 Jackson MD, Moon J, Gotti E, Taylor R, Chae SR, Kunz M et al (2013) Material and elastic properties of Al-tobermorite in ancient Roman seawater concrete. J Am Ceram Soc 96(8):2598–2606
222.
Zurück zum Zitat Mroue KH, Emwas A-HM, Power WP (2010) Solid-state 27Al nuclear magnetic resonance investigation of three aluminum-centered dyes. Can J Chem 88(2):111–123 Mroue KH, Emwas A-HM, Power WP (2010) Solid-state 27Al nuclear magnetic resonance investigation of three aluminum-centered dyes. Can J Chem 88(2):111–123
223.
Zurück zum Zitat Bouhrara M, Ranga C, Fihri A, Shaikh RR, Sarawade P, Emwas A-H et al (2013) Nitridated fibrous silica (KCC-1) as a sustainable solid base nanocatalyst. ACS Sustain Chem Eng 1(9):1192–1199 Bouhrara M, Ranga C, Fihri A, Shaikh RR, Sarawade P, Emwas A-H et al (2013) Nitridated fibrous silica (KCC-1) as a sustainable solid base nanocatalyst. ACS Sustain Chem Eng 1(9):1192–1199
224.
Zurück zum Zitat Sahloul N, Emwas A, Power W, Penlidis A (2005) Ethyl acrylate-hydroxyethyl acrylate and hydroxyethyl acrylate-methacrylic acid: reactivity ratio estimation from cross-linked polymer using high resolution magic angle spinning spectroscopy. J Macromol Sci Pure Appl Chem A42(10):1369–1385 Sahloul N, Emwas A, Power W, Penlidis A (2005) Ethyl acrylate-hydroxyethyl acrylate and hydroxyethyl acrylate-methacrylic acid: reactivity ratio estimation from cross-linked polymer using high resolution magic angle spinning spectroscopy. J Macromol Sci Pure Appl Chem A42(10):1369–1385
225.
Zurück zum Zitat Atiqullah M, Winston M, Bercaw J, Hussain I, Fazal A, Al-Harthi M et al (2012) Effects of a vanadium post-metallocene catalyst-induced polymer backbone inhomogeneity on UV oxidative degradation of the resulting polyethylene film. Polym Degrad Stab 97(7):1164–1177 Atiqullah M, Winston M, Bercaw J, Hussain I, Fazal A, Al-Harthi M et al (2012) Effects of a vanadium post-metallocene catalyst-induced polymer backbone inhomogeneity on UV oxidative degradation of the resulting polyethylene film. Polym Degrad Stab 97(7):1164–1177
226.
Zurück zum Zitat Karbach FF, Macko T, Duchateau R (2016) Preparation of ethylene/1-hexene copolymers from ethylene using a fully silica-supported tandem catalyst system. Macromolecules. 49(4):1229–1241 Karbach FF, Macko T, Duchateau R (2016) Preparation of ethylene/1-hexene copolymers from ethylene using a fully silica-supported tandem catalyst system. Macromolecules. 49(4):1229–1241
227.
Zurück zum Zitat Kirchheim A, Dal Molin D, Fischer P, Emwas A-H, Provis JL, Monteiro PJM (2011) Real-time high-resolution X-ray imaging and nuclear magnetic resonance study of the hydration of pure and Na-doped C3A in the presence of sulfates. Inorg Chem 50(4):1203–1212PubMed Kirchheim A, Dal Molin D, Fischer P, Emwas A-H, Provis JL, Monteiro PJM (2011) Real-time high-resolution X-ray imaging and nuclear magnetic resonance study of the hydration of pure and Na-doped C3A in the presence of sulfates. Inorg Chem 50(4):1203–1212PubMed
228.
Zurück zum Zitat Emwas A-H, Luchinat C, Turano P, Tenori L, Roy R, Salek RM et al (2015) Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics. 11(4):872–894PubMed Emwas A-H, Luchinat C, Turano P, Tenori L, Roy R, Salek RM et al (2015) Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics. 11(4):872–894PubMed
229.
Zurück zum Zitat Asghar S, Shahzadi T, Alazmi M, Gao X, Emwas A-H, Saleem RS et al (2018) Iridium-catalyzed regioselective borylation of substituted biaryls. Synthesis. 50(11):2211–2220 Asghar S, Shahzadi T, Alazmi M, Gao X, Emwas A-H, Saleem RS et al (2018) Iridium-catalyzed regioselective borylation of substituted biaryls. Synthesis. 50(11):2211–2220
230.
Zurück zum Zitat Jameel AGA, Naser N, Issayev G, Touitou J, Ghosh MK, Emwas A-H et al (2018) A minimalist functional group (MFG) approach for surrogate fuel formulation. Combust Flame 192:250–271 Jameel AGA, Naser N, Issayev G, Touitou J, Ghosh MK, Emwas A-H et al (2018) A minimalist functional group (MFG) approach for surrogate fuel formulation. Combust Flame 192:250–271
231.
Zurück zum Zitat Fine M, Cinar M, Voolstra CR, Safa A, Rinkevich B, Laffoley D et al (2019) Coral reefs of the Red Sea—challenges and potential solutions. Reg Stud Mar Sci 25:100498 Fine M, Cinar M, Voolstra CR, Safa A, Rinkevich B, Laffoley D et al (2019) Coral reefs of the Red Sea—challenges and potential solutions. Reg Stud Mar Sci 25:100498
232.
Zurück zum Zitat Omar H, Moosa B, Alamoudi K, Anjum DH, Emwas A-H, El Tall O et al (2018) Impact of pore–walls ligand assembly on the biodegradation of mesoporous Organosilica nanoparticles for controlled drug delivery. ACS Omega 3(5):5195–5201PubMedPubMedCentral Omar H, Moosa B, Alamoudi K, Anjum DH, Emwas A-H, El Tall O et al (2018) Impact of pore–walls ligand assembly on the biodegradation of mesoporous Organosilica nanoparticles for controlled drug delivery. ACS Omega 3(5):5195–5201PubMedPubMedCentral
233.
Zurück zum Zitat Yang P, Alsufyani M, Emwas AH, Chen C, Khashab NM (2018) Lewis acid guests in a {P8W48} archetypal polyoxotungstate host: enhanced proton conductivity via metal-oxo cluster within cluster assemblies. Angew Chem Int Ed 57(40):13046–13051 Yang P, Alsufyani M, Emwas AH, Chen C, Khashab NM (2018) Lewis acid guests in a {P8W48} archetypal polyoxotungstate host: enhanced proton conductivity via metal-oxo cluster within cluster assemblies. Angew Chem Int Ed 57(40):13046–13051
234.
Zurück zum Zitat Li S, Winters H, Jeong S, Emwas A-H, Vigneswaran S, Amy GL (2016) Marine bacterial transparent exopolymer particles (TEP) and TEP precursors: characterization and RO fouling potential. Desalination. 379:68–74 Li S, Winters H, Jeong S, Emwas A-H, Vigneswaran S, Amy GL (2016) Marine bacterial transparent exopolymer particles (TEP) and TEP precursors: characterization and RO fouling potential. Desalination. 379:68–74
235.
Zurück zum Zitat Li S, Winters H, Villacorte L, Ekowati Y, Emwas A-H, Kennedy M et al (2015) Compositional similarities and differences between transparent exopolymer particles (TEPs) from two marine bacteria and two marine algae: significance to surface biofouling. Mar Chem 174:131–140 Li S, Winters H, Villacorte L, Ekowati Y, Emwas A-H, Kennedy M et al (2015) Compositional similarities and differences between transparent exopolymer particles (TEPs) from two marine bacteria and two marine algae: significance to surface biofouling. Mar Chem 174:131–140
236.
Zurück zum Zitat Linenberger KJ, Emwas A-H, Peat I, Lorigan GA, Bretz SL, editors. Using NMR to determine the structure of a peptide: an inquiry approach for an upper level undergraduate laboratory. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY; 2009: AMER CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036 USA Linenberger KJ, Emwas A-H, Peat I, Lorigan GA, Bretz SL, editors. Using NMR to determine the structure of a peptide: an inquiry approach for an upper level undergraduate laboratory. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY; 2009: AMER CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
237.
Zurück zum Zitat Das SK, Xu S, Emwas A-H, Lu YY, Srivastava S, Archer LA (2012) High energy lithium–oxygen batteries–transport barriers and thermodynamics. Energy Environ Sci 5(10):8927–8931 Das SK, Xu S, Emwas A-H, Lu YY, Srivastava S, Archer LA (2012) High energy lithium–oxygen batteries–transport barriers and thermodynamics. Energy Environ Sci 5(10):8927–8931
238.
Zurück zum Zitat Decken A, Mattar S, Emwas A (2005) 1, 4, 11, 12-Tetrahydro-9, 10-anthraquinone. Acta Crystallogr Sect E: Struct Rep Online 61(3):o641–o6o2 Decken A, Mattar S, Emwas A (2005) 1, 4, 11, 12-Tetrahydro-9, 10-anthraquinone. Acta Crystallogr Sect E: Struct Rep Online 61(3):o641–o6o2
239.
Zurück zum Zitat Elbaz AM, Gani A, Hourani N, Emwas A-H, Sarathy SM, Roberts W (2015) TG/DTG, FT-ICR mass spectrometry, and NMR spectroscopy study of heavy fuel oil. Energy Fuel 29(12):7825–7835 Elbaz AM, Gani A, Hourani N, Emwas A-H, Sarathy SM, Roberts W (2015) TG/DTG, FT-ICR mass spectrometry, and NMR spectroscopy study of heavy fuel oil. Energy Fuel 29(12):7825–7835
240.
Zurück zum Zitat Emwas A-HM, Merzaban JS, Serrai H (2015) Theory and applications of NMR-based metabolomics in human disease diagnosis. Applications of NMR Spectroscopy: Elsevier, pp 93–130 Emwas A-HM, Merzaban JS, Serrai H (2015) Theory and applications of NMR-based metabolomics in human disease diagnosis. Applications of NMR Spectroscopy: Elsevier, pp 93–130
241.
Zurück zum Zitat Emwas A-HM, Antakly T, Saoudi A-H, Al-Ghamdi S, Serrai H (2015) Magnetic resonance spectroscopy and imaging in breast cancer prognosis and diagnosis. applications of NMR spectroscopy: Volume 3: Elsevier; p. 4–35 Emwas A-HM, Antakly T, Saoudi A-H, Al-Ghamdi S, Serrai H (2015) Magnetic resonance spectroscopy and imaging in breast cancer prognosis and diagnosis. applications of NMR spectroscopy: Volume 3: Elsevier; p. 4–35
242.
Zurück zum Zitat Emwas A-H, Saunders M, Ludwig C, Günther U (2008) Determinants for optimal enhancement in ex situ DNP experiments. Appl Magn Reson 34(3–4):483–494 Emwas A-H, Saunders M, Ludwig C, Günther U (2008) Determinants for optimal enhancement in ex situ DNP experiments. Appl Magn Reson 34(3–4):483–494
243.
Zurück zum Zitat Chiliveri SC, Deshmukh MV (2016) Recent excitements in protein NMR: large proteins and biologically relevant dynamics. J Biosci 41(4):787–803PubMed Chiliveri SC, Deshmukh MV (2016) Recent excitements in protein NMR: large proteins and biologically relevant dynamics. J Biosci 41(4):787–803PubMed
244.
Zurück zum Zitat Wang Y, Xu J, Wang L, Zhang B, Du W (2010) Interaction of the human prion protein PrP106–126 with metal complexes: potential therapeutic agents against prion disease. Chem Eur J 16(45):13339–13342PubMed Wang Y, Xu J, Wang L, Zhang B, Du W (2010) Interaction of the human prion protein PrP106–126 with metal complexes: potential therapeutic agents against prion disease. Chem Eur J 16(45):13339–13342PubMed
245.
Zurück zum Zitat Frederick KK, Michaelis VK, Corzilius B, Ong T-C, Jacavone AC, Griffin RG et al (2015) Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus. Cell. 163(3):620–628PubMedPubMedCentral Frederick KK, Michaelis VK, Corzilius B, Ong T-C, Jacavone AC, Griffin RG et al (2015) Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus. Cell. 163(3):620–628PubMedPubMedCentral
246.
Zurück zum Zitat Wang X, He L, Zhao C, Du W, Lin J (2013) Gold complexes inhibit the aggregation of prion neuropeptides. JBIC J Biol Inorg Chem. 18(7):767–778PubMed Wang X, He L, Zhao C, Du W, Lin J (2013) Gold complexes inhibit the aggregation of prion neuropeptides. JBIC J Biol Inorg Chem. 18(7):767–778PubMed
247.
Zurück zum Zitat Hecel A, Valensin D, Kozłowski H (2019) How copper ions and membrane environment influence the structure of the human and chicken tandem repeats domain? J Inorg Biochem 191:143–153PubMed Hecel A, Valensin D, Kozłowski H (2019) How copper ions and membrane environment influence the structure of the human and chicken tandem repeats domain? J Inorg Biochem 191:143–153PubMed
248.
Zurück zum Zitat Sandusky P, Raftery D (2005) Use of selective TOCSY NMR experiments for quantifying minor components in complex mixtures: application to the metabonomics of amino acids in honey. Anal Chem 77(8):2455–2463PubMed Sandusky P, Raftery D (2005) Use of selective TOCSY NMR experiments for quantifying minor components in complex mixtures: application to the metabonomics of amino acids in honey. Anal Chem 77(8):2455–2463PubMed
249.
Zurück zum Zitat Banci L, Bertini I, Cantini F, Felli IC, Gonnelli L, Hadjiliadis N et al (2006) The Atx1-Ccc2 complex is a metal-mediated protein-protein interaction. Nat Chem Biol 2(7):367PubMed Banci L, Bertini I, Cantini F, Felli IC, Gonnelli L, Hadjiliadis N et al (2006) The Atx1-Ccc2 complex is a metal-mediated protein-protein interaction. Nat Chem Biol 2(7):367PubMed
250.
Zurück zum Zitat Féraud B, Govaerts B, Verleysen M, De Tullio P (2015) Statistical treatment of 2D NMR COSY spectra in metabolomics: data preparation, clustering-based evaluation of the metabolomic informative content and comparison with 1 H-NMR. Metabolomics. 11(6):1756–1768 Féraud B, Govaerts B, Verleysen M, De Tullio P (2015) Statistical treatment of 2D NMR COSY spectra in metabolomics: data preparation, clustering-based evaluation of the metabolomic informative content and comparison with 1 H-NMR. Metabolomics. 11(6):1756–1768
251.
Zurück zum Zitat Guennec AL, Giraudeau P, Caldarelli S (2014) Evaluation of fast 2D NMR for metabolomics. Anal Chem 86(12):5946–5954PubMed Guennec AL, Giraudeau P, Caldarelli S (2014) Evaluation of fast 2D NMR for metabolomics. Anal Chem 86(12):5946–5954PubMed
252.
Zurück zum Zitat Tompa P, Fuxreiter M (2008) Fuzzy complexes: polymorphism and structural disorder in protein–protein interactions. Trends Biochem Sci 33(1):2–8PubMed Tompa P, Fuxreiter M (2008) Fuzzy complexes: polymorphism and structural disorder in protein–protein interactions. Trends Biochem Sci 33(1):2–8PubMed
253.
Zurück zum Zitat Becker W, Bhattiprolu KC, Gubensäk N, Zangger K (2018) Investigating protein–ligand interactions by solution nuclear magnetic resonance spectroscopy. ChemPhysChem. 19(8):895–906PubMedPubMedCentral Becker W, Bhattiprolu KC, Gubensäk N, Zangger K (2018) Investigating protein–ligand interactions by solution nuclear magnetic resonance spectroscopy. ChemPhysChem. 19(8):895–906PubMedPubMedCentral
254.
Zurück zum Zitat Skinner AL, Laurence JS (2008) High-field solution NMR spectroscopy as a tool for assessing protein interactions with small molecule ligands. J Pharm Sci 97(11):4670–4695PubMedPubMedCentral Skinner AL, Laurence JS (2008) High-field solution NMR spectroscopy as a tool for assessing protein interactions with small molecule ligands. J Pharm Sci 97(11):4670–4695PubMedPubMedCentral
255.
Zurück zum Zitat Larsen E, Olivieri C, Walker C, Manu VS, Gao J, Bernlohr D et al (2018) Probing protein-protein interactions using asymmetric labeling and carbonyl-carbon selective heteronuclear NMR spectroscopy. Molecules 23(8):1937PubMedCentral Larsen E, Olivieri C, Walker C, Manu VS, Gao J, Bernlohr D et al (2018) Probing protein-protein interactions using asymmetric labeling and carbonyl-carbon selective heteronuclear NMR spectroscopy. Molecules 23(8):1937PubMedCentral
256.
Zurück zum Zitat Cobine PA, McKay RT, Zangger K, Dameron CT, Armitage IM (2004) Solution structure of Cu6 metallothionein from the fungus Neurospora crassa. Eur J Biochem 271(21):4213–4221PubMed Cobine PA, McKay RT, Zangger K, Dameron CT, Armitage IM (2004) Solution structure of Cu6 metallothionein from the fungus Neurospora crassa. Eur J Biochem 271(21):4213–4221PubMed
257.
Zurück zum Zitat Maret W (2011) Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. Biometals 24(3):411–418PubMed Maret W (2011) Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. Biometals 24(3):411–418PubMed
258.
Zurück zum Zitat Chong LX, Ash M-R, Maher MJ, Hinds MG, Xiao Z, Wedd AG (2009) Unprecedented binding cooperativity between CuI and CuII in the copper resistance protein CopK from Cupriavidus metallidurans CH34: implications from structural studies by NMR spectroscopy and X-ray crystallography. J Am Chem Soc 131(10):3549–3564PubMed Chong LX, Ash M-R, Maher MJ, Hinds MG, Xiao Z, Wedd AG (2009) Unprecedented binding cooperativity between CuI and CuII in the copper resistance protein CopK from Cupriavidus metallidurans CH34: implications from structural studies by NMR spectroscopy and X-ray crystallography. J Am Chem Soc 131(10):3549–3564PubMed
259.
Zurück zum Zitat Ou M-H, Chen Y-M, Chang Y-H, Lu W-K, Liu G-C, Wang Y-M (2007) Synthesis, complexation and water exchange properties of Gd (iii)–TTDA-mono and bis (amide) derivatives and their binding affinity to human serum albumin. Dalton Trans 26:2749–2759 Ou M-H, Chen Y-M, Chang Y-H, Lu W-K, Liu G-C, Wang Y-M (2007) Synthesis, complexation and water exchange properties of Gd (iii)–TTDA-mono and bis (amide) derivatives and their binding affinity to human serum albumin. Dalton Trans 26:2749–2759
260.
Zurück zum Zitat Evans EG, Pushie MJ, Markham KA, Lee H-W, Millhauser GL (2016) Interaction between prion protein's copper-bound octarepeat domain and a charged C-terminal pocket suggests a mechanism for N-terminal regulation. Structure. 24(7):1057–1067PubMedPubMedCentral Evans EG, Pushie MJ, Markham KA, Lee H-W, Millhauser GL (2016) Interaction between prion protein's copper-bound octarepeat domain and a charged C-terminal pocket suggests a mechanism for N-terminal regulation. Structure. 24(7):1057–1067PubMedPubMedCentral
261.
Zurück zum Zitat Narayanan SP, Nair DG, Schaal D, De Aguiar MB, Wenzel S, Kremer W et al (2016) Structural transitions in full-length human prion protein detected by xenon as probe and spin labeling of the N-terminal domain. Sci Rep 6:28419PubMedPubMedCentral Narayanan SP, Nair DG, Schaal D, De Aguiar MB, Wenzel S, Kremer W et al (2016) Structural transitions in full-length human prion protein detected by xenon as probe and spin labeling of the N-terminal domain. Sci Rep 6:28419PubMedPubMedCentral
262.
Zurück zum Zitat De Ricco R, Potocki S, Kozlowski H, Valensin D (2014) NMR investigations of metal interactions with unstructured soluble protein domains. Coord Chem Rev 269:1–12 De Ricco R, Potocki S, Kozlowski H, Valensin D (2014) NMR investigations of metal interactions with unstructured soluble protein domains. Coord Chem Rev 269:1–12
263.
Zurück zum Zitat O'sullivan DB, Jones CE, Abdelraheim SR, Brazier MW, Toms H, Brown DR et al (2009) Dynamics of a truncated prion protein, PrP (113–231), from 15N NMR relaxation: order parameters calculated and slow conformational fluctuations localized to a distinct region. Protein Sci 18(2):410–423PubMedPubMedCentral O'sullivan DB, Jones CE, Abdelraheim SR, Brazier MW, Toms H, Brown DR et al (2009) Dynamics of a truncated prion protein, PrP (113–231), from 15N NMR relaxation: order parameters calculated and slow conformational fluctuations localized to a distinct region. Protein Sci 18(2):410–423PubMedPubMedCentral
264.
Zurück zum Zitat Guantieri V, Venzo A, Di Marco V, Acampora M, Biondi B (2007) Potentiometric and NMR studies on Cd2+ coordination with the histidine-containing Ac184–188NH2 prion protein fragment. Inorg Chim Acta 360(14):4051–4057 Guantieri V, Venzo A, Di Marco V, Acampora M, Biondi B (2007) Potentiometric and NMR studies on Cd2+ coordination with the histidine-containing Ac184–188NH2 prion protein fragment. Inorg Chim Acta 360(14):4051–4057
265.
Zurück zum Zitat Wells MA, Jackson GS, Jones S, Hosszu LL, Craven CJ, Clarke AR et al (2006) A reassessment of copper (II) binding in the full-length prion protein. Biochem J 399(3):435–444PubMedPubMedCentral Wells MA, Jackson GS, Jones S, Hosszu LL, Craven CJ, Clarke AR et al (2006) A reassessment of copper (II) binding in the full-length prion protein. Biochem J 399(3):435–444PubMedPubMedCentral
266.
Zurück zum Zitat Gaggelli E, Bernardi F, Molteni E, Pogni R, Valensin D, Valensin G et al (2005) Interaction of the human prion PrP (106− 126) sequence with copper (II), manganese (II), and zinc (II): NMR and EPR studies. J Am Chem Soc 127(3):996–1006PubMed Gaggelli E, Bernardi F, Molteni E, Pogni R, Valensin D, Valensin G et al (2005) Interaction of the human prion PrP (106− 126) sequence with copper (II), manganese (II), and zinc (II): NMR and EPR studies. J Am Chem Soc 127(3):996–1006PubMed
267.
Zurück zum Zitat Wissler J, Laub M, Jennissen H, editors. 3D-Rapid prototyping molecular image models of cellular prion proteins [PrPC] based on NMR data: metalloregulated interactions with copper-structured RNA biaptamers and relation to RNA chaperones. FASEB JOURNAL; 2003: FEDERATION AMER SOC EXP BIOL 9650 ROCKVILLE PIKE, BETHESDA, MD 20814–3998 USA Wissler J, Laub M, Jennissen H, editors. 3D-Rapid prototyping molecular image models of cellular prion proteins [PrPC] based on NMR data: metalloregulated interactions with copper-structured RNA biaptamers and relation to RNA chaperones. FASEB JOURNAL; 2003: FEDERATION AMER SOC EXP BIOL 9650 ROCKVILLE PIKE, BETHESDA, MD 20814–3998 USA
268.
Zurück zum Zitat Banci L, Bertini I, Ciofi-Baffoni S, Gonnelli L, Su X-C (2003) Structural basis for the function of the N-terminal domain of the ATPase CopA from Bacillus subtilis. J Biol Chem 278(50):50506–50513PubMed Banci L, Bertini I, Ciofi-Baffoni S, Gonnelli L, Su X-C (2003) Structural basis for the function of the N-terminal domain of the ATPase CopA from Bacillus subtilis. J Biol Chem 278(50):50506–50513PubMed
269.
Zurück zum Zitat Banci L, Bertini I, Ciofi-Baffoni S, Su X-C, Borrelly GP, Robinson NJ (2004) Solution structures of a cyanobacterial metallochaperone INSIGHT INTO AN ATYPICAL COPPER-BINDING MOTIF. J Biol Chem 279(26):27502–27510PubMed Banci L, Bertini I, Ciofi-Baffoni S, Su X-C, Borrelly GP, Robinson NJ (2004) Solution structures of a cyanobacterial metallochaperone INSIGHT INTO AN ATYPICAL COPPER-BINDING MOTIF. J Biol Chem 279(26):27502–27510PubMed
270.
Zurück zum Zitat Myari A, Hadjiliadis N, Fatemi N, Sarkar B (2004) Copper (I) interaction with model peptides of WD6 and TM6 domains of Wilson ATPase: regulatory and mechanistic implications. J Inorg Biochem 98(9):1483–1494PubMed Myari A, Hadjiliadis N, Fatemi N, Sarkar B (2004) Copper (I) interaction with model peptides of WD6 and TM6 domains of Wilson ATPase: regulatory and mechanistic implications. J Inorg Biochem 98(9):1483–1494PubMed
271.
Zurück zum Zitat Abajian C, Yatsunyk LA, Ramirez BE, Rosenzweig AC (2004) Yeast Cox17 solution structure and copper (I) binding. J Biol Chem 279(51):53584–53592PubMed Abajian C, Yatsunyk LA, Ramirez BE, Rosenzweig AC (2004) Yeast Cox17 solution structure and copper (I) binding. J Biol Chem 279(51):53584–53592PubMed
272.
Zurück zum Zitat Wernimont AK, Huffman DL, Finney LA, Demeler B, O'Halloran TV, Rosenzweig AC (2003) Crystal structure and dimerization equilibria of PcoC, a methionine-rich copper resistance protein from Escherichia coli. JBIC J Biol Inorg Chem 8(1–2):185–194PubMed Wernimont AK, Huffman DL, Finney LA, Demeler B, O'Halloran TV, Rosenzweig AC (2003) Crystal structure and dimerization equilibria of PcoC, a methionine-rich copper resistance protein from Escherichia coli. JBIC J Biol Inorg Chem 8(1–2):185–194PubMed
273.
Zurück zum Zitat Cobine PA, George GN, Jones CE, Wickramasinghe WA, Solioz M, Dameron CT (2002) Copper transfer from the Cu (I) chaperone, CopZ, to the repressor, Zn (II) CopY: metal coordination environments and protein interactions. Biochemistry 41(18):5822–5829PubMed Cobine PA, George GN, Jones CE, Wickramasinghe WA, Solioz M, Dameron CT (2002) Copper transfer from the Cu (I) chaperone, CopZ, to the repressor, Zn (II) CopY: metal coordination environments and protein interactions. Biochemistry 41(18):5822–5829PubMed
274.
Zurück zum Zitat Bonomo RP, Pappalardo G, Rizzarelli E, Tabbì G, Vagliasindi LI (2008) Studies of nitric oxide interaction with mono-and dinuclear copper (II) complexes of prion protein bis-octarepeat fragments. Dalton Trans 29:3805–3816 Bonomo RP, Pappalardo G, Rizzarelli E, Tabbì G, Vagliasindi LI (2008) Studies of nitric oxide interaction with mono-and dinuclear copper (II) complexes of prion protein bis-octarepeat fragments. Dalton Trans 29:3805–3816
275.
Zurück zum Zitat Martic S, Rains MK, Kraatz H-B (2013) Probing copper/tau protein interactions electrochemically. Anal Biochem 442(2):130–137PubMed Martic S, Rains MK, Kraatz H-B (2013) Probing copper/tau protein interactions electrochemically. Anal Biochem 442(2):130–137PubMed
276.
Zurück zum Zitat Viles JH, Cohen FE, Prusiner SB, Goodin DB, Wright PE, Dyson HJ (1999) Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc Natl Acad Sci 96(5):2042–2047PubMed Viles JH, Cohen FE, Prusiner SB, Goodin DB, Wright PE, Dyson HJ (1999) Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc Natl Acad Sci 96(5):2042–2047PubMed
277.
Zurück zum Zitat Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem Rev 106(6):1995–2044PubMed Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem Rev 106(6):1995–2044PubMed
278.
Zurück zum Zitat Migliorini C, Sinicropi A, Kozlowski H, Luczkowski M, Valensin D (2014) Copper-induced structural propensities of the amyloidogenic region of human prion protein. JBIC J Biol Inorg Chem 19(4–5):635–645PubMed Migliorini C, Sinicropi A, Kozlowski H, Luczkowski M, Valensin D (2014) Copper-induced structural propensities of the amyloidogenic region of human prion protein. JBIC J Biol Inorg Chem 19(4–5):635–645PubMed
279.
Zurück zum Zitat Berti F, Gaggelli E, Guerrini R, Janicka A, Kozlowski H, Legowska A et al (2007) Structural and dynamic characterization of copper (II) binding of the human prion protein outside the octarepeat region. Chem Eur J 13(7):1991–2001PubMed Berti F, Gaggelli E, Guerrini R, Janicka A, Kozlowski H, Legowska A et al (2007) Structural and dynamic characterization of copper (II) binding of the human prion protein outside the octarepeat region. Chem Eur J 13(7):1991–2001PubMed
280.
Zurück zum Zitat Hecel A, Migliorini C, Valensin D, Luczkowski M, Kozlowski H (2015) Impact of SDS surfactant on the interactions of Cu2+ ions with the amyloidogenic region of human prion protein. Dalton Trans 44(29):13125–13132PubMed Hecel A, Migliorini C, Valensin D, Luczkowski M, Kozlowski H (2015) Impact of SDS surfactant on the interactions of Cu2+ ions with the amyloidogenic region of human prion protein. Dalton Trans 44(29):13125–13132PubMed
281.
Zurück zum Zitat Cox DL, Pan J, Singh RR (2006) A mechanism for copper inhibition of infectious prion conversion. Biophys J 91(2):L11–LL3PubMedPubMedCentral Cox DL, Pan J, Singh RR (2006) A mechanism for copper inhibition of infectious prion conversion. Biophys J 91(2):L11–LL3PubMedPubMedCentral
282.
Zurück zum Zitat Viles JH (2012) Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer's, Parkinson's and prion disease. Coord Chem Rev 256:2271–2284 Viles JH (2012) Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer's, Parkinson's and prion disease. Coord Chem Rev 256:2271–2284
283.
Zurück zum Zitat Sarell CJ, Syme CD, Rigby SEJ, Viles JH (2009) Copper (II) binding to amyloid-β fibrils of Alzheimer’s disease reveals a picomolar affinity: stoichiometry and coordination geometry are independent of Aβ oligomeric form. Biochemistry 48(20):4388–4402PubMed Sarell CJ, Syme CD, Rigby SEJ, Viles JH (2009) Copper (II) binding to amyloid-β fibrils of Alzheimer’s disease reveals a picomolar affinity: stoichiometry and coordination geometry are independent of Aβ oligomeric form. Biochemistry 48(20):4388–4402PubMed
284.
Zurück zum Zitat Burns CS, Aronoff-Spencer E, Legname G, Prusiner SB, Antholine WE, Gerfen GJ et al (2003) Copper coordination in the full-length, recombinant prion protein. Biochemistry 42(22):6794–6803PubMedPubMedCentral Burns CS, Aronoff-Spencer E, Legname G, Prusiner SB, Antholine WE, Gerfen GJ et al (2003) Copper coordination in the full-length, recombinant prion protein. Biochemistry 42(22):6794–6803PubMedPubMedCentral
285.
Zurück zum Zitat Whittal RM, Ball HL, Cohen FE, Burlingame AL, Prusiner SB, Baldwin MA (2000) Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry. Protein Sci 9(2):332–343PubMedPubMedCentral Whittal RM, Ball HL, Cohen FE, Burlingame AL, Prusiner SB, Baldwin MA (2000) Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry. Protein Sci 9(2):332–343PubMedPubMedCentral
286.
Zurück zum Zitat Kramer ML, Kratzin HD, Schmidt B, Römer A, Windl O, Liemann S et al (2001) Prion protein binds copper within the physiological concentration range. J Biol Chem 276(20):16711–16719PubMed Kramer ML, Kratzin HD, Schmidt B, Römer A, Windl O, Liemann S et al (2001) Prion protein binds copper within the physiological concentration range. J Biol Chem 276(20):16711–16719PubMed
287.
Zurück zum Zitat Qin K, Yang Y, Mastrangelo P, Westaway D (2002) Mapping Cu (II) binding sites in prion proteins by diethyl pyrocarbonate modification and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometric footprinting. J Biol Chem 277(3):1981–1990PubMed Qin K, Yang Y, Mastrangelo P, Westaway D (2002) Mapping Cu (II) binding sites in prion proteins by diethyl pyrocarbonate modification and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometric footprinting. J Biol Chem 277(3):1981–1990PubMed
288.
Zurück zum Zitat Klewpatinond M, Davies P, Bowen S, Brown DR, Viles JH (2008) Deconvoluting the Cu2+ binding modes of full-length prion protein. J Biol Chem 283(4):1870–1881PubMed Klewpatinond M, Davies P, Bowen S, Brown DR, Viles JH (2008) Deconvoluting the Cu2+ binding modes of full-length prion protein. J Biol Chem 283(4):1870–1881PubMed
289.
Zurück zum Zitat Viles JH, Klewpatinond M, Nadal RC (2008) Copper and the structural biology of the prion protein. Biochem Soc Trans 36(Pt 6):1288–1292PubMed Viles JH, Klewpatinond M, Nadal RC (2008) Copper and the structural biology of the prion protein. Biochem Soc Trans 36(Pt 6):1288–1292PubMed
290.
Zurück zum Zitat Younan ND, Klewpatinond M, Davies P, Ruban AV, Brown DR, Viles JH (2011) Copper (II) induced secondary structure changes and reduced folding stability of the prion protein. J Mol Biol 410:369–382PubMed Younan ND, Klewpatinond M, Davies P, Ruban AV, Brown DR, Viles JH (2011) Copper (II) induced secondary structure changes and reduced folding stability of the prion protein. J Mol Biol 410:369–382PubMed
Metadaten
Titel
Using NMR spectroscopy to investigate the role played by copper in prion diseases
verfasst von
Rawiah A. Alsiary
Mawadda Alghrably
Abdelhamid Saoudi
Suliman Al-Ghamdi
Lukasz Jaremko
Mariusz Jaremko
Abdul-Hamid Emwas
Publikationsdatum
24.04.2020
Verlag
Springer International Publishing
Erschienen in
Neurological Sciences / Ausgabe 9/2020
Print ISSN: 1590-1874
Elektronische ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-020-04321-9

Weitere Artikel der Ausgabe 9/2020

Neurological Sciences 9/2020 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.