Skip to main content
Erschienen in: Archives of Virology 1/2015

01.01.2015 | Original Article

Vaccine and oncogenic strains of gallid herpesvirus 2 contain specific subtype variations in the 5′ region of the latency-associated transcript that evolve in vitro and in vivo

verfasst von: Jennifer Labaille, Adrien Lion, Elodie Boissel, Sascha Trapp, Venugopal Nair, Denis Rasschaert, Ginette Dambrine

Erschienen in: Archives of Virology | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

Gallid herpesvirus 2 (GaHV-2) is the alphaherpesvirus responsible for Marek’s disease (MD), a T-cell lymphoma of chickens. The virulence of the GaHV-2 field strain is steadily increasing, but MD is still controlled by the CVI988/Rispens vaccine. We tried to determine distinguishing traits of the CVI988/Rispens vaccine by focusing on the 5′ end region of the latency-associated transcript (5′LAT). It includes a variable number of 60-bp tandem repeats depending on the GaHV-2 strain. By analyzing six batches of vaccine, we showed that CVI988/Rispens consisted of a population of 5′LAT molecular subtypes, all with deletions and lacking 60-bp tandem repeat motifs, with two major subtypes that probably constitute CVI988/Rispens markers. Serial passages in cell culture led to a substantial change in the frequency of CVI988/Rispens 5′LAT subtypes, with non-deleted subtypes harboring up to four 60-bp repeats emerging during the last few passages. Dynamic changes in the distribution of 5′LAT-deleted subtypes were also detected after infection of chickens. By contrast, the 5′LAT region of the oncogenic clonal RB-1B strain, which was investigated at every step from the isolation of the clonal bacmid RB-1B DNA to the isolation of the ovarian lymphoma cell line, consisted of non-deleted 5′LAT subtypes harboring at least two 60-bp repeats. Thus, vaccine and oncogenic GaHV-2 strains consist of specific populations of viral genomes that are constantly evolving in vivo and in vitro and providing potential markers for epidemiological surveys.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Osterrieder N, Kamil JP, Schumacher D, Tischer BK, Trapp S (2006) Marek’s disease virus: from miasma to model. Nat Rev Microbiol 4:283–294PubMedCrossRef Osterrieder N, Kamil JP, Schumacher D, Tischer BK, Trapp S (2006) Marek’s disease virus: from miasma to model. Nat Rev Microbiol 4:283–294PubMedCrossRef
2.
Zurück zum Zitat Okazaki W, Purchase HG, Burmester BR (1970) Protection against Marek’s disease by vaccination with a herpesvirus of turkeys. Avian Dis 14:413–429PubMedCrossRef Okazaki W, Purchase HG, Burmester BR (1970) Protection against Marek’s disease by vaccination with a herpesvirus of turkeys. Avian Dis 14:413–429PubMedCrossRef
3.
Zurück zum Zitat Calnek BW, Schat KA, Peckham MC, Fabricant J (1983) Field trials with a bivalent vaccine (HVT and SB-1) against Marek’s disease. Avian Dis 27:844–849PubMedCrossRef Calnek BW, Schat KA, Peckham MC, Fabricant J (1983) Field trials with a bivalent vaccine (HVT and SB-1) against Marek’s disease. Avian Dis 27:844–849PubMedCrossRef
4.
Zurück zum Zitat Witter RL, Lee LF (1984) Polyvalent Marek’s disease vaccines: safety, efficacy and protective synergism in chickens with maternal antibodies. Avian Pathol 13:75–92PubMedCrossRef Witter RL, Lee LF (1984) Polyvalent Marek’s disease vaccines: safety, efficacy and protective synergism in chickens with maternal antibodies. Avian Pathol 13:75–92PubMedCrossRef
5.
Zurück zum Zitat Rispens BH, van Vloten H, Mastenbroek N, Maas HJ, Schat KA (1972) Control of Marek’s disease in the Netherlands. I. Isolation of an avirulent Marek’s disease virus (strain CVI 988) and its use in laboratory vaccination trials. Avian Dis 16:108–125PubMedCrossRef Rispens BH, van Vloten H, Mastenbroek N, Maas HJ, Schat KA (1972) Control of Marek’s disease in the Netherlands. I. Isolation of an avirulent Marek’s disease virus (strain CVI 988) and its use in laboratory vaccination trials. Avian Dis 16:108–125PubMedCrossRef
6.
Zurück zum Zitat Rispens BH, van Vloten H, Mastenbroek N, Maas JL, Schat KA (1972) Control of Marek’s disease in the Netherlands. II. Field trials on vaccination with an avirulent strain (CVI 988) of Marek’s disease virus. Avian Dis 16:126–138PubMedCrossRef Rispens BH, van Vloten H, Mastenbroek N, Maas JL, Schat KA (1972) Control of Marek’s disease in the Netherlands. II. Field trials on vaccination with an avirulent strain (CVI 988) of Marek’s disease virus. Avian Dis 16:126–138PubMedCrossRef
7.
Zurück zum Zitat Gimeno IM (2008) Marek’s disease vaccines: a solution for today but a worry for tomorrow? Vaccine 26(Suppl 3):C31–C41PubMedCrossRef Gimeno IM (2008) Marek’s disease vaccines: a solution for today but a worry for tomorrow? Vaccine 26(Suppl 3):C31–C41PubMedCrossRef
8.
Zurück zum Zitat Witter RL (1997) Increased virulence of Marek’s disease virus field isolates. Avian Dis 41:149–163PubMedCrossRef Witter RL (1997) Increased virulence of Marek’s disease virus field isolates. Avian Dis 41:149–163PubMedCrossRef
9.
Zurück zum Zitat Atkins KE, Read AF, Savill NJ, Renz KG, Islam AF, Walkden-Brown SW, Woolhouse ME (2013) Vaccination and reduced cohort duration can drive virulence evolution: Marek’s disease virus and industrialized agriculture. Evolution 67:851–860PubMedCrossRef Atkins KE, Read AF, Savill NJ, Renz KG, Islam AF, Walkden-Brown SW, Woolhouse ME (2013) Vaccination and reduced cohort duration can drive virulence evolution: Marek’s disease virus and industrialized agriculture. Evolution 67:851–860PubMedCrossRef
10.
Zurück zum Zitat Spatz SJ (2010) Accumulation of attenuating mutations in varying proportions within a high passage very virulent plus strain of Gallid herpesvirus type 2. Virus Res 149:135–142PubMedCrossRef Spatz SJ (2010) Accumulation of attenuating mutations in varying proportions within a high passage very virulent plus strain of Gallid herpesvirus type 2. Virus Res 149:135–142PubMedCrossRef
11.
Zurück zum Zitat Spatz SJ, Volkening JD, Gimeno IM, Heidari M, Witter RL (2012) Dynamic equilibrium of Marek’s disease genomes during in vitro serial passage. Virus Genes 45:526–536PubMedCrossRef Spatz SJ, Volkening JD, Gimeno IM, Heidari M, Witter RL (2012) Dynamic equilibrium of Marek’s disease genomes during in vitro serial passage. Virus Genes 45:526–536PubMedCrossRef
12.
Zurück zum Zitat Petherbridge L, Howes K, Baigent SJ, Sacco MA, Evans S, Osterrieder N, Nair V (2003) Replication-competent bacterial artificial chromosomes of Marek’s disease virus: novel tools for generation of molecularly defined herpesvirus vaccines. J Virol 77:8712–8718PubMedCrossRefPubMedCentral Petherbridge L, Howes K, Baigent SJ, Sacco MA, Evans S, Osterrieder N, Nair V (2003) Replication-competent bacterial artificial chromosomes of Marek’s disease virus: novel tools for generation of molecularly defined herpesvirus vaccines. J Virol 77:8712–8718PubMedCrossRefPubMedCentral
13.
Zurück zum Zitat Spatz SJ, Smith LP, Baigent SJ, Petherbridge L, Nair V (2011) Genotypic characterization of two bacterial artificial chromosome clones derived from a single DNA source of the very virulent gallid herpesvirus-2 strain C12/130. J Gen Virol 92:1500–1507PubMedCrossRef Spatz SJ, Smith LP, Baigent SJ, Petherbridge L, Nair V (2011) Genotypic characterization of two bacterial artificial chromosome clones derived from a single DNA source of the very virulent gallid herpesvirus-2 strain C12/130. J Gen Virol 92:1500–1507PubMedCrossRef
14.
Zurück zum Zitat Kaerner HC, Schroder CH, Ott-Hartmann A, Kumel G, Kirchner H (1983) Genetic variability of herpes simplex virus: development of a pathogenic variant during passaging of a nonpathogenic herpes simplex virus type 1 virus strain in mouse brain. J Virol 46:83–93PubMedPubMedCentral Kaerner HC, Schroder CH, Ott-Hartmann A, Kumel G, Kirchner H (1983) Genetic variability of herpes simplex virus: development of a pathogenic variant during passaging of a nonpathogenic herpes simplex virus type 1 virus strain in mouse brain. J Virol 46:83–93PubMedPubMedCentral
15.
Zurück zum Zitat Renzette N, Bhattacharjee B, Jensen JD, Gibson L, Kowalik TF (2011) Extensive genome-wide variability of human cytomegalovirus in congenitally infected infants. PLoS Pathog 7:e1001344PubMedCrossRefPubMedCentral Renzette N, Bhattacharjee B, Jensen JD, Gibson L, Kowalik TF (2011) Extensive genome-wide variability of human cytomegalovirus in congenitally infected infants. PLoS Pathog 7:e1001344PubMedCrossRefPubMedCentral
16.
Zurück zum Zitat Szpara ML, Tafuri YR, Parsons L, Shamim SR, Verstrepen KJ, Legendre M, Enquist LW (2011) A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses. PLoS Pathog 7:e1002282PubMedCrossRefPubMedCentral Szpara ML, Tafuri YR, Parsons L, Shamim SR, Verstrepen KJ, Legendre M, Enquist LW (2011) A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses. PLoS Pathog 7:e1002282PubMedCrossRefPubMedCentral
17.
18.
Zurück zum Zitat Spatz SJ, Silva RF (2007) Sequence determination of variable regions within the genomes of gallid herpesvirus-2 pathotypes. Arch Virol 152:1665–1678PubMedCrossRef Spatz SJ, Silva RF (2007) Sequence determination of variable regions within the genomes of gallid herpesvirus-2 pathotypes. Arch Virol 152:1665–1678PubMedCrossRef
19.
Zurück zum Zitat Kishi M, Bradley G, Jessip J, Tanaka A, Nonoyama M (1991) Inverted repeat regions of Marek’s disease virus DNA possess a structure similar to that of the a sequence of herpes simplex virus DNA and contain host cell telomere sequences. J Virol 65:2791–2797PubMedPubMedCentral Kishi M, Bradley G, Jessip J, Tanaka A, Nonoyama M (1991) Inverted repeat regions of Marek’s disease virus DNA possess a structure similar to that of the a sequence of herpes simplex virus DNA and contain host cell telomere sequences. J Virol 65:2791–2797PubMedPubMedCentral
20.
Zurück zum Zitat Roizman B, Knipe DM, Whitley RJ (2007) Herpes simplex virus. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 2502–2601 Roizman B, Knipe DM, Whitley RJ (2007) Herpes simplex virus. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 2502–2601
21.
Zurück zum Zitat Umene K, Oohashi S, Yoshida M, Fukumaki Y (2008) Diversity of the a sequence of herpes simplex virus type 1 developed during evolution. J Gen Virol 89:841–852PubMedCrossRef Umene K, Oohashi S, Yoshida M, Fukumaki Y (2008) Diversity of the a sequence of herpes simplex virus type 1 developed during evolution. J Gen Virol 89:841–852PubMedCrossRef
22.
Zurück zum Zitat Deng H, Dewhurst S (1998) Functional identification and analysis of cis-acting sequences which mediate genome cleavage and packaging in human herpesvirus 6. J Virol 72:320–329PubMedPubMedCentral Deng H, Dewhurst S (1998) Functional identification and analysis of cis-acting sequences which mediate genome cleavage and packaging in human herpesvirus 6. J Virol 72:320–329PubMedPubMedCentral
23.
Zurück zum Zitat Volkening JD, Spatz SJ (2013) Identification and characterization of the genomic termini and cleavage/packaging signals of gallid herpesvirus type 2. Avian Dis 57:401–408PubMedCrossRef Volkening JD, Spatz SJ (2013) Identification and characterization of the genomic termini and cleavage/packaging signals of gallid herpesvirus type 2. Avian Dis 57:401–408PubMedCrossRef
24.
Zurück zum Zitat Cantello JL, Anderson AS, Morgan RW (1994) Identification of latency-associated transcripts that map antisense to the ICP4 homolog gene of Marek’s disease virus. J Virol 68:6280–6290PubMedPubMedCentral Cantello JL, Anderson AS, Morgan RW (1994) Identification of latency-associated transcripts that map antisense to the ICP4 homolog gene of Marek’s disease virus. J Virol 68:6280–6290PubMedPubMedCentral
25.
Zurück zum Zitat Li DS, Pastorek J, Zelnik V, Smith GD, Ross LJ (1994) Identification of novel transcripts complementary to the Marek’s disease virus homologue of the ICP4 gene of herpes simplex virus. J Gen Virol 75(Pt 7):1713–1722PubMedCrossRef Li DS, Pastorek J, Zelnik V, Smith GD, Ross LJ (1994) Identification of novel transcripts complementary to the Marek’s disease virus homologue of the ICP4 gene of herpes simplex virus. J Gen Virol 75(Pt 7):1713–1722PubMedCrossRef
26.
Zurück zum Zitat Strassheim S, Stik G, Rasschaert D, Laurent S (2012) mdv1-miR-M7-5p, located in the newly identified first intron of the latency-associated transcript of Marek’s disease virus, targets the immediate-early genes ICP4 and ICP27. J Gen Virol 93:1731–1742PubMedCrossRef Strassheim S, Stik G, Rasschaert D, Laurent S (2012) mdv1-miR-M7-5p, located in the newly identified first intron of the latency-associated transcript of Marek’s disease virus, targets the immediate-early genes ICP4 and ICP27. J Gen Virol 93:1731–1742PubMedCrossRef
27.
Zurück zum Zitat Stik G, Laurent S, Coupeau D, Coutaud B, Dambrine G, Rasschaert D, Muylkens B (2010) A p53-dependent promoter associated with polymorphic tandem repeats controls the expression of a viral transcript encoding clustered microRNAs. RNA 16:2263–2276PubMedCrossRefPubMedCentral Stik G, Laurent S, Coupeau D, Coutaud B, Dambrine G, Rasschaert D, Muylkens B (2010) A p53-dependent promoter associated with polymorphic tandem repeats controls the expression of a viral transcript encoding clustered microRNAs. RNA 16:2263–2276PubMedCrossRefPubMedCentral
28.
Zurück zum Zitat Petherbridge L, Brown AC, Baigent SJ, Howes K, Sacco MA, Osterrieder N, Nair VK (2004) Oncogenicity of virulent Marek’s disease virus cloned as bacterial artificial chromosomes. J Virol 78:13376–13380PubMedCrossRefPubMedCentral Petherbridge L, Brown AC, Baigent SJ, Howes K, Sacco MA, Osterrieder N, Nair VK (2004) Oncogenicity of virulent Marek’s disease virus cloned as bacterial artificial chromosomes. J Virol 78:13376–13380PubMedCrossRefPubMedCentral
29.
Zurück zum Zitat Schat KA, Purchase HG (1998) Cell culture methods. In: Swayne DE, Glisson JR, Jackwood MW, Pearson JE, Reed WM (eds) A laboratory manual for the isolation and dentification of avian pathogens. Am Assoc Avian Pathol, Kennet Square, PA, pp 223–234 Schat KA, Purchase HG (1998) Cell culture methods. In: Swayne DE, Glisson JR, Jackwood MW, Pearson JE, Reed WM (eds) A laboratory manual for the isolation and dentification of avian pathogens. Am Assoc Avian Pathol, Kennet Square, PA, pp 223–234
30.
Zurück zum Zitat Amor S, Strassheim S, Dambrine G, Remy S, Rasschaert D, Laurent S (2011) ICP27 protein of Marek’s disease virus interacts with SR proteins and inhibits the splicing of cellular telomerase chTERT and viral vIL8 transcripts. J Gen Virol 92:1273–1278PubMedCrossRef Amor S, Strassheim S, Dambrine G, Remy S, Rasschaert D, Laurent S (2011) ICP27 protein of Marek’s disease virus interacts with SR proteins and inhibits the splicing of cellular telomerase chTERT and viral vIL8 transcripts. J Gen Virol 92:1273–1278PubMedCrossRef
31.
Zurück zum Zitat Djeraba-AitLounis A, Soubieux D, Klapper W, Rasschaert D (2004) Induction of telomerase activity in avian lymphoblastoid cell line transformed by Marek’s disease virus, MDCC-MSB1. Vet Pathol 41:405–407PubMedCrossRef Djeraba-AitLounis A, Soubieux D, Klapper W, Rasschaert D (2004) Induction of telomerase activity in avian lymphoblastoid cell line transformed by Marek’s disease virus, MDCC-MSB1. Vet Pathol 41:405–407PubMedCrossRef
32.
Zurück zum Zitat Baigent SJ, Petherbridge LJ, Howes K, Smith LP, Currie RJ, Nair VK (2005) Absolute quantitation of Marek’s disease virus genome copy number in chicken feather and lymphocyte samples using real-time PCR. J Virol Methods 123:53–64PubMedCrossRef Baigent SJ, Petherbridge LJ, Howes K, Smith LP, Currie RJ, Nair VK (2005) Absolute quantitation of Marek’s disease virus genome copy number in chicken feather and lymphocyte samples using real-time PCR. J Virol Methods 123:53–64PubMedCrossRef
33.
Zurück zum Zitat Parcells MS, Lin SF, Dienglewicz RL, Majerciak V, Robinson DR, Chen HC, Wu Z, Dubyak GR, Brunovskis P, Hunt HD, Lee LF, Kung HJ (2001) Marek’s disease virus (MDV) encodes an interleukin-8 homolog (vIL-8): characterization of the vIL-8 protein and a vIL-8 deletion mutant MDV. J Virol 75:5159–5173PubMedCrossRefPubMedCentral Parcells MS, Lin SF, Dienglewicz RL, Majerciak V, Robinson DR, Chen HC, Wu Z, Dubyak GR, Brunovskis P, Hunt HD, Lee LF, Kung HJ (2001) Marek’s disease virus (MDV) encodes an interleukin-8 homolog (vIL-8): characterization of the vIL-8 protein and a vIL-8 deletion mutant MDV. J Virol 75:5159–5173PubMedCrossRefPubMedCentral
34.
Zurück zum Zitat Witter RL, Kreager KS (2004) Serotype 1 viruses modified by backpassage or insertional mutagenesis: approaching the threshold of vaccine efficacy in Marek’s disease. Avian Dis 48:768–782PubMedCrossRef Witter RL, Kreager KS (2004) Serotype 1 viruses modified by backpassage or insertional mutagenesis: approaching the threshold of vaccine efficacy in Marek’s disease. Avian Dis 48:768–782PubMedCrossRef
35.
Zurück zum Zitat Debba-Pavard M, Le Galludec H, Dambrine G, Rasschaert D (2008) Variations in the H/ACA base sequence of viral telomerase RNA of isolates of CVI988 Rispens isolates. Arch Virol 153:1563–1568PubMedCrossRef Debba-Pavard M, Le Galludec H, Dambrine G, Rasschaert D (2008) Variations in the H/ACA base sequence of viral telomerase RNA of isolates of CVI988 Rispens isolates. Arch Virol 153:1563–1568PubMedCrossRef
36.
Zurück zum Zitat de Boer GF, Groenendal JE, Boerrigter HM, Kok GL, Pol JM (1986) Protective efficacy of Marek’s disease virus (MDV) CVI-988 CEF65 clone C against challenge infection with three very virulent MDV strains. Avian Dis 30:276–283PubMedCrossRef de Boer GF, Groenendal JE, Boerrigter HM, Kok GL, Pol JM (1986) Protective efficacy of Marek’s disease virus (MDV) CVI-988 CEF65 clone C against challenge infection with three very virulent MDV strains. Avian Dis 30:276–283PubMedCrossRef
37.
Zurück zum Zitat Pol JM, Kok GL, Oei HL, de Boer GF (1986) Pathogenicity studies with plaque-purified preparations of Marek’s disease virus strain CVI-988. Avian Dis 30:271–275PubMedCrossRef Pol JM, Kok GL, Oei HL, de Boer GF (1986) Pathogenicity studies with plaque-purified preparations of Marek’s disease virus strain CVI-988. Avian Dis 30:271–275PubMedCrossRef
38.
Zurück zum Zitat Gimeno IM, Witter RL, Hunt HD, Reddy SM, Reed WM (2004) Biocharacteristics shared by highly protective vaccines against Marek’s disease. Avian Pathol 33:59–68PubMedCrossRef Gimeno IM, Witter RL, Hunt HD, Reddy SM, Reed WM (2004) Biocharacteristics shared by highly protective vaccines against Marek’s disease. Avian Pathol 33:59–68PubMedCrossRef
39.
Zurück zum Zitat Jaramillo N, Domingo E, Munoz-Egea MC, Tabares E, Gadea I (2013) Evidence of Muller’s ratchet in herpes simplex virus type 1. J Gen Virol 94:366–375PubMedCrossRef Jaramillo N, Domingo E, Munoz-Egea MC, Tabares E, Gadea I (2013) Evidence of Muller’s ratchet in herpes simplex virus type 1. J Gen Virol 94:366–375PubMedCrossRef
40.
Zurück zum Zitat Witter RL (1987) New serotype 2 and attenuated serotype 1 Marek’s disease vaccine viruses: comparative efficacy. Avian Dis 31:752–765PubMedCrossRef Witter RL (1987) New serotype 2 and attenuated serotype 1 Marek’s disease vaccine viruses: comparative efficacy. Avian Dis 31:752–765PubMedCrossRef
41.
Zurück zum Zitat Witter RL (1991) Attenuated revertant serotype 1 Marek’s disease viruses: safety and protective efficacy. Avian Dis 35:877–891PubMedCrossRef Witter RL (1991) Attenuated revertant serotype 1 Marek’s disease viruses: safety and protective efficacy. Avian Dis 35:877–891PubMedCrossRef
42.
Zurück zum Zitat Witter RL, Lee LF, Fadly AM (1995) Characteristics of CVI988/Rispens and R2/23, two prototype vaccine strains of serotype 1 Marek’s disease virus. Avian Dis 39:269–284PubMedCrossRef Witter RL, Lee LF, Fadly AM (1995) Characteristics of CVI988/Rispens and R2/23, two prototype vaccine strains of serotype 1 Marek’s disease virus. Avian Dis 39:269–284PubMedCrossRef
43.
Zurück zum Zitat Niikura M, Kim T, Silva RF, Dodgson J, Cheng HH (2011) Virulent Marek’s disease virus generated from infectious bacterial artificial chromosome clones with complete DNA sequence and the implication of viral genetic homogeneity in pathogenesis. J Gen Virol 92:598–607PubMedCrossRef Niikura M, Kim T, Silva RF, Dodgson J, Cheng HH (2011) Virulent Marek’s disease virus generated from infectious bacterial artificial chromosome clones with complete DNA sequence and the implication of viral genetic homogeneity in pathogenesis. J Gen Virol 92:598–607PubMedCrossRef
44.
Zurück zum Zitat Delecluse HJ, Hammerschmidt W (1993) Status of Marek’s disease virus in established lymphoma cell lines: herpesvirus integration is common. J Virol 67:82–92PubMedPubMedCentral Delecluse HJ, Hammerschmidt W (1993) Status of Marek’s disease virus in established lymphoma cell lines: herpesvirus integration is common. J Virol 67:82–92PubMedPubMedCentral
45.
Zurück zum Zitat Delecluse HJ, Schuller S, Hammerschmidt W (1993) Latent Marek’s disease virus can be activated from its chromosomally integrated state in herpesvirus-transformed lymphoma cells. EMBO J 12:3277–3286PubMedPubMedCentral Delecluse HJ, Schuller S, Hammerschmidt W (1993) Latent Marek’s disease virus can be activated from its chromosomally integrated state in herpesvirus-transformed lymphoma cells. EMBO J 12:3277–3286PubMedPubMedCentral
46.
Zurück zum Zitat Mwangi WN, Smith LP, Baigent SJ, Beal RK, Nair V, Smith AL (2011) Clonal structure of rapid-onset MDV-driven CD4+ lymphomas and responding CD8+ T cells. PLoS Pathog 7:e1001337PubMedCrossRefPubMedCentral Mwangi WN, Smith LP, Baigent SJ, Beal RK, Nair V, Smith AL (2011) Clonal structure of rapid-onset MDV-driven CD4+ lymphomas and responding CD8+ T cells. PLoS Pathog 7:e1001337PubMedCrossRefPubMedCentral
47.
Zurück zum Zitat Umene K (1999) Mechanism and application of genetic recombination in herpesviruses. Rev Med Virol 9:171–182PubMedCrossRef Umene K (1999) Mechanism and application of genetic recombination in herpesviruses. Rev Med Virol 9:171–182PubMedCrossRef
48.
Zurück zum Zitat Thiry E, Meurens F, Muylkens B, McVoy M, Gogev S, Thiry J, Vanderplasschen A, Epstein A, Keil G, Schynts F (2005) Recombination in alphaherpesviruses. Rev Med Virol 15:89–103PubMedCrossRef Thiry E, Meurens F, Muylkens B, McVoy M, Gogev S, Thiry J, Vanderplasschen A, Epstein A, Keil G, Schynts F (2005) Recombination in alphaherpesviruses. Rev Med Virol 15:89–103PubMedCrossRef
49.
Zurück zum Zitat van Iddekinge BJ, Stenzler L, Schat KA, Boerrigter H, Koch G (1999) Genome analysis of Marek’s disease virus strain CVI-988: effect of cell culture passage on the inverted repeat regions. Avian Dis 43:182–188PubMedCrossRef van Iddekinge BJ, Stenzler L, Schat KA, Boerrigter H, Koch G (1999) Genome analysis of Marek’s disease virus strain CVI-988: effect of cell culture passage on the inverted repeat regions. Avian Dis 43:182–188PubMedCrossRef
50.
Zurück zum Zitat Bradley G, Lancz G, Tanaka A, Nonoyama M (1989) Loss of Marek’s disease virus tumorigenicity is associated with truncation of RNAs transcribed within BamHI-H. J Virol 63:4129–4135PubMedPubMedCentral Bradley G, Lancz G, Tanaka A, Nonoyama M (1989) Loss of Marek’s disease virus tumorigenicity is associated with truncation of RNAs transcribed within BamHI-H. J Virol 63:4129–4135PubMedPubMedCentral
51.
Zurück zum Zitat Rasschaert D, Dambrine G, Labaille J, Lion A, Boissel E, Laurent S (2014) Deletion mutants of Gallidherpes virus and vaccinal compositions containing the same. n°PCT/IB2014/000244 (PCT/FR2014/050308) Rasschaert D, Dambrine G, Labaille J, Lion A, Boissel E, Laurent S (2014) Deletion mutants of Gallidherpes virus and vaccinal compositions containing the same. n°PCT/IB2014/000244 (PCT/FR2014/050308)
Metadaten
Titel
Vaccine and oncogenic strains of gallid herpesvirus 2 contain specific subtype variations in the 5′ region of the latency-associated transcript that evolve in vitro and in vivo
verfasst von
Jennifer Labaille
Adrien Lion
Elodie Boissel
Sascha Trapp
Venugopal Nair
Denis Rasschaert
Ginette Dambrine
Publikationsdatum
01.01.2015
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 1/2015
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-014-2248-3

Weitere Artikel der Ausgabe 1/2015

Archives of Virology 1/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.