Skip to main content
Erschienen in: Angiogenesis 2/2014

01.04.2014 | Original Paper

Vascular endothelial growth factor-C enhances radiosensitivity of lymphatic endothelial cells

verfasst von: Cristina T. Kesler, Angera H. Kuo, Hon-Kit Wong, David J. Masuck, Jennifer L. Shah, Kevin R. Kozak, Kathryn D. Held, Timothy P. Padera

Erschienen in: Angiogenesis | Ausgabe 2/2014

Einloggen, um Zugang zu erhalten

Abstract

Radiation therapy after lymph node dissection increases the risk of developing painful and incurable lymphedema in breast cancer patients. Lymphedema occurs when lymphatic vessels become unable to maintain proper fluid balance. The sensitivity of lymphatic endothelial cells (LECs) to ionizing radiation has not been reported to date. Here, the radiosensitivity of LECs in vitro has been determined using clonogenic survival assays. The ability of various growth factors to alter LEC radiosensitivity was also examined. Vascular endothelial growth factor (VEGF)-C enhanced radiosensitivity when LECs were treated prior to radiation. VEGF-C-treated LECs exhibited higher levels of entry into the cell cycle at the time of radiation, with a greater number of cells in the S and G2/M phases. These LECs showed higher levels of γH2A.X—an indicator of DNA damage—after radiation. VEGF-C did not increase cell death as a result of radiation. Instead, it increased the relative number of quiescent LECs. These data suggest that abundant VEGF-C or lymphangiogenesis may predispose patients to radiation-induced lymphedema by impairing lymphatic vessel repair through induction of LEC quiescence.
Literatur
1.
2.
Zurück zum Zitat Meek AG (1998) Breast radiotherapy and lymphedema. Cancer 83(12 Suppl American):2788–2797 Meek AG (1998) Breast radiotherapy and lymphedema. Cancer 83(12 Suppl American):2788–2797
3.
Zurück zum Zitat Hinrichs CS et al (2004) Lymphedema secondary to postmastectomy radiation: incidence and risk factors. Ann Surg Oncol 11(6):573–580PubMedCrossRef Hinrichs CS et al (2004) Lymphedema secondary to postmastectomy radiation: incidence and risk factors. Ann Surg Oncol 11(6):573–580PubMedCrossRef
4.
Zurück zum Zitat Tammela T et al (2007) Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med 13(12):1458–1466PubMedCrossRef Tammela T et al (2007) Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med 13(12):1458–1466PubMedCrossRef
5.
Zurück zum Zitat Gershenwald JE, Fidler IJ (2002) Targeting lymphatic metastasis. Science 296(5574):1811–1812PubMedCrossRef Gershenwald JE, Fidler IJ (2002) Targeting lymphatic metastasis. Science 296(5574):1811–1812PubMedCrossRef
6.
Zurück zum Zitat Gorski DH et al (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59(14):3374–3378PubMed Gorski DH et al (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59(14):3374–3378PubMed
7.
Zurück zum Zitat Gupta VK et al (2002) Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J 8(1):47–54PubMedCrossRef Gupta VK et al (2002) Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J 8(1):47–54PubMedCrossRef
8.
Zurück zum Zitat Karkkainen MJ et al (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5(1):74–80PubMedCrossRef Karkkainen MJ et al (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5(1):74–80PubMedCrossRef
9.
Zurück zum Zitat Avraham T et al (2010) Radiation therapy causes loss of dermal lymphatic vessels and interferes with lymphatic function by TGF-beta1-mediated tissue fibrosis. Am J Physiol Cell Physiol 299(3):C589–C605PubMedCentralPubMedCrossRef Avraham T et al (2010) Radiation therapy causes loss of dermal lymphatic vessels and interferes with lymphatic function by TGF-beta1-mediated tissue fibrosis. Am J Physiol Cell Physiol 299(3):C589–C605PubMedCentralPubMedCrossRef
11.
Zurück zum Zitat McMahon AM et al (1994) The effects of radiation on the contractile activity of guinea pig mesenteric lymphatics. Lymphology 27(4):193–200PubMed McMahon AM et al (1994) The effects of radiation on the contractile activity of guinea pig mesenteric lymphatics. Lymphology 27(4):193–200PubMed
12.
Zurück zum Zitat Mortimer PS et al (1991) Time-related changes in lymphatic clearance in pig skin after a single dose of 18 Gy of X rays. Br J Radiol 64(768):1140–1146PubMedCrossRef Mortimer PS et al (1991) Time-related changes in lymphatic clearance in pig skin after a single dose of 18 Gy of X rays. Br J Radiol 64(768):1140–1146PubMedCrossRef
13.
Zurück zum Zitat Sung HK et al (2006) Intestinal and peri-tumoral lymphatic endothelial cells are resistant to radiation-induced apoptosis. Biochem Biophys Res Commun 345(2):545–551PubMedCrossRef Sung HK et al (2006) Intestinal and peri-tumoral lymphatic endothelial cells are resistant to radiation-induced apoptosis. Biochem Biophys Res Commun 345(2):545–551PubMedCrossRef
14.
Zurück zum Zitat Ch’ang HJ et al (2005) ATM regulates target switching to escalating doses of radiation in the intestines. Nat Med 11(5):484–490PubMedCrossRef Ch’ang HJ et al (2005) ATM regulates target switching to escalating doses of radiation in the intestines. Nat Med 11(5):484–490PubMedCrossRef
15.
Zurück zum Zitat Nagy JA et al (2002) VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. Cold Spring Harb Symp Quant Biol 67:227–237PubMedCrossRef Nagy JA et al (2002) VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. Cold Spring Harb Symp Quant Biol 67:227–237PubMedCrossRef
16.
Zurück zum Zitat Joukov V et al (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15(7):1751PubMed Joukov V et al (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15(7):1751PubMed
17.
Zurück zum Zitat Kukk E et al (1996) VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122(12):3829–3837PubMed Kukk E et al (1996) VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122(12):3829–3837PubMed
18.
Zurück zum Zitat Kubo H et al (2002) Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci USA 99(13):8868–8873PubMedCentralPubMedCrossRef Kubo H et al (2002) Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci USA 99(13):8868–8873PubMedCentralPubMedCrossRef
19.
20.
Zurück zum Zitat Makinen T et al (2001) Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 20(17):4762–4773PubMedCentralPubMedCrossRef Makinen T et al (2001) Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 20(17):4762–4773PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Rhee JG, Lee I, Song CW (1986) The clonogenic response of bovine aortic endothelial cells in culture to radiation. Radiat Res 106(2):182–189PubMedCrossRef Rhee JG, Lee I, Song CW (1986) The clonogenic response of bovine aortic endothelial cells in culture to radiation. Radiat Res 106(2):182–189PubMedCrossRef
22.
Zurück zum Zitat Cho MM et al (1999) Estrogen modulates paracellular permeability of human endothelial cells by eNOS- and iNOS-related mechanisms. Am J Physiol 276(2 Pt 1):C337–C349PubMed Cho MM et al (1999) Estrogen modulates paracellular permeability of human endothelial cells by eNOS- and iNOS-related mechanisms. Am J Physiol 276(2 Pt 1):C337–C349PubMed
23.
Zurück zum Zitat Abdollahi A et al (2003) SU5416 and SU6668 attenuate the angiogenic effects of radiation-induced tumor cell growth factor production and amplify the direct anti-endothelial action of radiation in vitro. Cancer Res 63(13):3755–3763PubMed Abdollahi A et al (2003) SU5416 and SU6668 attenuate the angiogenic effects of radiation-induced tumor cell growth factor production and amplify the direct anti-endothelial action of radiation in vitro. Cancer Res 63(13):3755–3763PubMed
24.
Zurück zum Zitat Paull TT et al (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10(15):886–895PubMedCrossRef Paull TT et al (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10(15):886–895PubMedCrossRef
25.
Zurück zum Zitat Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182(3):311–322PubMedCrossRef Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182(3):311–322PubMedCrossRef
26.
Zurück zum Zitat Donker M et al (2007) Negligible radiation protection of endothelial cells by vascular endothelial growth factor. Oncol Rep 18(3):709–714PubMed Donker M et al (2007) Negligible radiation protection of endothelial cells by vascular endothelial growth factor. Oncol Rep 18(3):709–714PubMed
Metadaten
Titel
Vascular endothelial growth factor-C enhances radiosensitivity of lymphatic endothelial cells
verfasst von
Cristina T. Kesler
Angera H. Kuo
Hon-Kit Wong
David J. Masuck
Jennifer L. Shah
Kevin R. Kozak
Kathryn D. Held
Timothy P. Padera
Publikationsdatum
01.04.2014
Verlag
Springer Netherlands
Erschienen in
Angiogenesis / Ausgabe 2/2014
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-013-9400-7

Weitere Artikel der Ausgabe 2/2014

Angiogenesis 2/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.