Skip to main content
Erschienen in: The Egyptian Journal of Neurology, Psychiatry and Neurosurgery 1/2022

Open Access 01.12.2022 | Research

Vertebrobasilar dolichoectasia in patients with cerebrovascular ischemic stroke: does it have a role in cerebral microbleeds?

verfasst von: Ahmed Osama, Mohamed Negm, Walid Mosallam, Mohamed Hegazy, Samer Elshamly

Erschienen in: The Egyptian Journal of Neurology, Psychiatry and Neurosurgery | Ausgabe 1/2022

Abstract

Background

Vertebrobasilar dolichoectasia (VBD) may account for cerebral microbleeds (CMBs) in ischemic cerebrovascular stroke.

Objectives

To examine whether VBD is associated with the involvement of CMBs in any region and, if so, whether it is associated with CMBs among ischemic stroke patients located in posterior circulation territory. For patients with VBD, we also studied ischemic stroke subtypes, and checked whether dolichoectasia was linked to vascular risk factors.

Methods

Two hundred ischemic stroke patients in whom detailed clinical data and brain MRI sequences were obtained, and stroke subtyping with TOAST classification (Trial of ORG 10172 in Acute Stroke Treatment) was performed.

Results

The mean age of patients was (65.22 ± 12.88), male patients were more frequent (67.5%); dyslipidemia was the most frequent risk factor (55%). Cardio-embolic stroke subtype was the most frequent (37%) and (71.5%) of patients had no history of previous use of antithrombotic drugs. Ectasia was found in 28 (14%), dolichosis was found in 50 (25%) and vertebrobasilar dolichoectasia was found in 19 (9.5%) of patients. Cerebral microbleeds were detected in 114 (57%) patients. Mild degree CMBs was the most prevalent among patients 69 (61%) and were located predominantly in both anterior and posterior territories 41 (36%). CMBs were significantly more frequent in hypertensive and older patients.

Conclusions

In patients with VBD, severe degree CMBs were more common and were located as a vascular territory supplied by vessels originating from dolichoectatic parent vessels in the posterior region.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CMBs
Cerebral microbleeds
GCS
Glasgow coma scale
IADE
Intracranial arterial dolichoectasia
ICH
Intracerebral hemorrhage
NIHSS
National Institutes of Health Stroke Scale
SAH
Subarachnoid hemorrhage
TOAST
Trial of ORG 10172 in acute stroke treatment
VBD
Vertebrobasilar Dolichoectasia

Introduction

Intracranial arterial dolichoectasia (IADE), or brain vessel dilatative arteriopathy, occurs in approximately 12% of stroke patients and is characterized as an increase in the length and diameter of at least one intracranial artery and subsequent hemodynamic and hemostatic changes [1]. The intracranial arteries that are affected are dilated, elongated and sometimes tortuous. IADE involves the posterior circulation more often than the anterior circulation and affects the basilar artery in 80% of cases [2]. Whereas atherosclerosis involves lipid infiltration and an arterial wall intima inflammatory process, IADE involves rarefaction of the tunica media elastic tissue, and fragmentation of the internal elastic lamina [3].
In the case of arterial rupture, the clinical signs of IADE include brain infarction, cerebral hemorrhage, subarachnoid hemorrhage (SAH), and cranial nerve or brainstem compression. IADE may be asymptomatic as well [4]. Cerebral microbleeds (CMBs) are defined as small, homogeneous, round hypo intense foci on gradient echo T2-weighted magnetic resonance imaging (GRE) or susceptibility-weighted image (SWI) with a size of 2 to 10 mm; without corresponding traditional magnetic resonance imaging (MRI) hypo- or hyperintense [5].
Etiologies that underlie CMBs include several arteriopathies, such as hypertensive arteriopathy, cerebral amyloid angiopathy, Moyamoya disorder, and cerebral autosomal dominant arteriopathy and subcortical infarction and leukoencephalopathy (CADASIL) [6]. In addition, the involvement of CMBs is related to an increased risk of intracerebral hemorrhage (ICH) [7, 8]. In research using adaptive MRI techniques, the prevalence of CMBs in community-dwelling elderly people is as high as 11.1–23.5% [9, 10]. The prevalence is higher in ischemic stroke patients (40%) and spontaneous intracerebral hemorrhage (ICH) patients (47–80%). Ethnicity appears to play a role in CMB prevalence, with higher prevalence among participants of Asian origin. CMBs are related to age, hypertension, leukoaraiosis, amyloid angiopathy, atrial fibrillation, and some genes [11].
Our aim in this study is to examine the relationship between the VBD and CMB in ischemic stroke patients and to evaluate the frequency and anatomical distribution of cerebral microbleeds (CMBs) in patients with VBD.

Methods

This cross-sectional analytical study was performed in Neurology Department. Two hundred adult patients aged ≥ 18 years of both sexes with acute ischemic stroke who were admitted to Neurology department were included. Patients with transient ischemic attack, hemorrhagic stroke, pacemaker, metal objects, and/or an unstable clinical condition disqualifying the patient to undergo an MRI examination safely, intracerebral lesions related to tumor associated bleeding, arteriovenous malformations, cavernomas or abscesses or pregnant were excluded. The study was approved by the faculty of medicine of Suez Canal Faculty of medicine ethical committee (Committee Number: 2932). Written, informed consent was obtained from all subjects before inclusion in the study.
All patients with an acute ischemic stroke who came to Emergency Department were assigned to complete history taking and laboratory tests: clinical characteristics and risk factors data of patients including: age, gender, smoking habits (current smoker, ex-smoker or non-smoker), hypertension was considered when a patient received anti-hypertensive medication prior to admission or when frequent blood pressure measurement ≥ 140 mm Hg systolic and/or ≥ 90 mm Hg diastolic [12] was detected during hospital stay. Diabetes mellitus is considered dependent on history of antidiabetic drugs or insulin intake or two levels of 126 mg/dL or higher fasting blood glucose [13]; Dyslipidemia was considered when total cholesterol ≥ 200 mg/dL, low density lipoprotein (LDL-C) ≥ 100 mg/dL, high density lipoprotein (HDL-C) ≤ 40 mg/dL in males and ≤ 50 mg/dL in females, or triglycerides ≥ 150 mg/dL or treatment with lipid-lowering drugs [14]. Ischemic heart disease and Prior use of antithrombotic medicines in the last 3 months.
Neurological examination: the purpose of the neurological examination is to confirm the presence of a stroke, to differentiate stroke from stroke mimics (e.g. coma, migraine, encephalitis, tumor, and metabolic encephalopathy) [15]. To determine the severity of the stroke using a standardized neurological examination and score (National Institutes of Health Stroke Scale [NIHSS] [16]. Assessment of consciousness level was done using the GCS (severe: GCS ≤ 8, moderate: GCS 9–12, minor: GCS ≥ 13) [17].
Brain imaging: all ischemic stroke patients underwent CT, MRI, MRA and gradient echo sequence brain scan were done, CT brain scan without contrast was done in ER to exclude hemorrhagic stroke with Machine type: Toshiba Aquilion, Multislice helical, Number of slices: 16, 0.5 mm slice width.
MRI, MRA, gradient echo sequence brain scan: done after admission of patients in Neurology department. Machine type: Philips Achieva 1.5-Tesla superconducting Short bore cylindrical magnet. The 3D time-of-flight MRA was obtained from the genu of the corpus callosum to the lower medulla level through 3D spoiled gradient-echo acquisition. Sequences: T2 coronal, T2 axial, Sagittal T1, MRA. The findings were interpreted by two investigators (senior radiologist and senior neurologist) while unaware of any clinical information.
Ischemic stroke was categorized according to the TOAST classification system [18], based on MRI scan, extracranial carotid doppler and electrocardiography (ECG), Holter monitoring, and transthoracic echocardiography, stroke was classified into the following subtypes: cardio-embolism: evidence of stroke in a vascular territory, Small-artery disease and lacunae: brain stem or subcortical hemispheric lesion with a diameter of less than 1.5 cm demonstrated, Large-artery atherosclerosis: cortical or cerebellar lesions and brain stem or subcortical hemispheric infarcts greater than 1.5 cm in diameter are considered to be of potential large-artery atherosclerotic origin, Other determined cause (e.g. extra cranial arterial dissection, primary cerebral vasculitis), Undetermined causes (e.g. complete workup has been unraveling, two likely causes for a given stroke are identified).
Based on MRA scan Vertebrobasilar dolichoectasia was defined as both ectasia and dolichosis which were simultaneously observed in each patient [19]: Ectasia was defined when the diameter of the basilar artery (BA) was > 4.5 mm at any point along its course. Dolichosis of the basilar artery was considered when: it lay lateral to the margin of clivus or dorsum Sella. Or was bifurcated above the plane of the suprasellar cistern. To assess the severity of dolichosis in each patient: the height of BA bifurcation score as [19]: (1) within the supra-sellar cistern, (2) level with the third ventricle floor and (3) indenting and elevating the floor of the third ventricle. The degree of lateral displacement score as [19]: (1) medial-to-lateral margin of the clivus or dorsum sellae, (2) lateral to the lateral margin of the clivus or dorsum sellae and 3 (In) the cerebellopontine cistern. Dolichosis was defined when scores ≥ 2 for the height of BA bifurcation or lateral displacement [19].
Based on gradient echo sequence of MRI Cerebral microbleeds were defined as a homogeneous round signal-intensity-loss lesion 2–5 mm in diameter. The degree of CMBs was classified as [20] Absent, Mild < 5, Moderate 5–10, Sever > 10.
CMB locations was divided into anterior and posterior circulation territories. The anterior circulation of the brain describes the areas of the brain supplied by the right and left internal carotid arteries and their branches. The internal carotid arteries supply the majority of both cerebral hemispheres, except the occipital and medial temporal lobes, which are supplied from the posterior circulation. The Posterior circulation of the brain supply parts of the brainstem, cerebellum, thalamus, sub-thalamic nucleus, basal nucleus, mesial inferior temporal lobe, and occipital and occipito-parietal cortices [21]. The study sample according to presence or absence of vertebrobasilar dolichoectasia and/or cerebral microbleeds was divided into four groups as following: patients had VBD with CMBs, patients had VBD with no CMBs, Patients had no VBD but had CMBs and Patients had neither VBD nor CMBs.

Statistical analysis

Data were fed to the computer and analyzed using IBM SPSS software package version 20.0. (Armonk, NY: Published 2016 by IBM Corp). Qualitative data were described using number and percent. The Kolmogorov–Smirnov test was used to verify the normality of distribution Quantitative data were described using range (minimum and maximum), mean, standard deviation and median. Significance of the obtained results was judged at the 5% level. Descriptive data was expressed as median and interquartile range for continuous nonparametric variables, as mean and SD for continuous parametric variables, and count/total and percentages (%) for categorical and dichotomous variables. One-way analysis of variance (ANOVA) was used to analyze the continuous variables between the two studied groups (e.g. age and ectasia diameter) and Chi-test for categorical and dichotomous variables (e.g. smoking and microbleeds location). The level of statistical significance was (P value < 0.05) and high statistical significance is considered when (P value < 0.01) [22].

Results

The patients’ sample was 200 ischemic stroke patients, the mean age of study sample was (65.22 ± 12.88); males were more predominant 135 (67.5%) patients, while females were 65 (32.5%) patients (Table 1). There was 95 (47.5%) smokers, 92 (46%) diabetics, 91 (45.5%) hypertensive, 110 (55%) had dyslipidemia, and 46 (23%) had ischemic heart disease. Regarding previous use of antithrombotic drugs, 143 (71.5%) were found to have no history of previous use of antithrombotic drugs, 38 (19%) had history of antiplatelet use, 13 (6.5%) had history of anticoagulant use and 6 (3%) had history of thrombolytic drugs use (streptokinase for previous cardiovascular insult) (Table 2). Incidence of stroke subtypes among patients sample was as follow, there was 74 (37%) patients presented with cardio-embolic, 32 (16%) large artery, 48 (24%) small artery, 40 (20%) undetermined causes and 6 (3%) presented with determined cause of ischemic stroke (Table 3).Cerebral microbleeds incidence was significantly more frequent in patients with vertebrobasilar dolichoectasia (84%) than in patients without vertebrobasilar dolichoectasia (53%) (P value = 0.009) (Table 4). Cerebral microbleeds were highly significantly more located in posterior territory in patients with vertebrobasilar dolichoectasia (75%) than in patients without vertebrobasilar dolichoectasia (24%) (P value = 0.000). No significant difference detected in patients with VBD and patients without VBD regarding anterior and both territories (anterior and posterior) (Table 5). Sever degree cerebral microbleeds (CMBs > 10) was significantly more frequent in patients with VBD than in patients without VBD (P value = 0.007). No significant difference detected in patients with VBD and patients without VBD regarding moderate and sever degree CMBs (Table 6).
Table 1
Demographic characteristics among ischemic stroke patients
 
Number = 200 (%)
Gender
 
 Males
135 (67.5%)
 Females
65 (32.5%)
Age
Mean (65.22)
SD (12.88)
Table 2
Risk factors among ischemic stroke patients
Risk factors
Number (%)
Smoking
95 (47.5%)
Hypertension
91 (45.5%)
Ischemic heart disease
46 (23%)
Diabetes mellitus
92 (46%)
Dyslipidemia
110 (55%)
Previous use of antithrombotic drugs
 
 No
143 (71.5%)
 Antiplatelet
38 (19%)
 Anticoagulant
13 (6.5%)
 Thrombolytic
6 (3%)
Table 3
Stroke subtypes among ischemic stroke patients
Stroke subtypes
Number (%)
Cardio-embolic
74 (37%)
Large artery
32 (16%)
Small artery
48 (24%)
Undetermined causes
40 (20%)
Determined cause
6 (3%)
Table 4
Vertebrobasilar dolichoectasia and cerebral microbleeds incidence
Presence of CMBs
Patients with VBD
Patients without VBD
P value
Number = 19 (%)
Number = 181 (%)
With CMBs
16 (84%)
96 (53%)
0.009*
Without CMBs
3 (16%)
85 (47%)
CMBs: cerebral microbleeds; VBD: Vertebrobasilar dolichoectasia
(χ2) test = Pearson chi-square
*Statistically significant difference between both groups (P value < 0.05)
Table 5
Vertebrobasilar dolichoectasia and cerebral microbleeds territorial distribution
CMBs
Patients with VBD
Patients without VBD
P value
Number = 16 (%)
Number = 96 (%)
Anterior Territory
1 (6%)
35 (36%)
0.129 (NS)
Posterior Territory
12 (75%)
23 (24%)
0.000**
Both Territories
3 (19%)
38 (40%)
0.593 (NS)
CMBs: cerebral microbleeds; VBD: vertebrobasilar dolichoectasia
Both Territories (anterior and posterior territory)
2) test = Pearson chi-square
NS: no statistically significant difference
**High Statistically significant difference between both groups (P value < 0.05)
Table 6
Vertebrobasilar dolichoectasia and cerebral microbleeds severity
CMBs
Severity
Patients with VBD
Patients without VBD
P value
Number = 16 (%)
Number = 96 (%)
 
Mild
8 (50%)
59 (61.5%)
0.404 (NS)
Moderate
4 (25%)
28 (29%)
0.528 (NS)
Sever
4 (25%)
9 (9.5%)
0.007*
CMBs: cerebral microbleeds; VBD: vertebrobasilar dolichoectasia
2) test = Pearson chi-square; NS: no statistically significant difference
*Statistically significant difference between both groups (P value < 0.05)
Mild < 5, Moderate 5–10, Sever > 10

Discussion

Regarding the demographic characteristics and the risk factors associated with CMBs. This study found that the mean age of patients was (65.22 ± 12.88 years), (67.5%) male, whereas (32.5%) female, (47.5%) smoker, (46%) diabetic, (45.5%) hypertensive, (55%) dyslipidemia, and (23%) ischemic cardiac disease. Such findings were approximately in line with Jung et al. study [23]. Which was done in (167) patients with an acute ischemic stroke in which male patients constituted (53.9%) and female patients (46.1%); this is also consistent with the O'Donnell et al. [24]. Male patients (57.6%) and female patients (42.4%) and Altafi et al. [25] (54.54%) were male patients and (46%) were female patients [25] in Marinigh et al. [26].
Cerebral infarction increased with advancing age, where (85.6%) of patients were between (46 and 90 years of age) and (14.4%) were patients (about 45 years of age) who agree with our study showing that the mean age of our patients was (65.22 ± 12.88 years of age).
Another research by Marwat et al. [27] identified that the incidence of cerebral infarction increased with increasing age as (2.3%) in the age group (40–50 yeas), (27.2%) in the age group (51–60 years), and (47.7%) in the age group (60 years or older).
Hypertension is considered an important risk factor for the occurrence of ischemic strokes and was found in (62.3%) in study by Lip et al. [28] and (67.3%) in another report by O'Donnell et al. [24] which is higher than our research as it was detected in (45.5%) patients.
Banerjee et al. [29] reported diabetes mellitus in (66.8%) of patients in his study which is higher than our study result recorded in (46%) patients. Dyslipidemia has been reported by Djelilovic-Vranic et al. [30] in (35.3%) of patients in his study which is lower than our study found in (55%) of patients.
Smoking cigarettes is a well-known risk factor for strokes and has a strong association with the thrombotic cycle. In the Framingham study [31] it was found that after correction for age and hypertension, the relative risk of ischemic stroke in smokers was found (2.3 in men and 3.1 in women) and a strong dose–response relationship. The risk of ischemic stroke was increased in heavy smokers relative to the medium smokers. After 5 years of cessation of smoking, the risk of stroke returned to non-smoker levels [31]. In our study, smoking was reported in (47.5%) which is less than the findings of an older study conducted by Labresh and Reeves [32] which found that smoking was associated with (55%) ischemic stroke patients [32].
In a retrograde study conducted by Vernooij et al. [33] on (245) ischemic stroke patients, (23.1%) used platelet aggregation inhibitors primarily, 61 (5.9%) used anticoagulant drugs exclusively, and 10 (4.1%) used thrombolytic drugs. This study is approximate to our study results, which showed that (19%) had used antiplatelet drugs, (6.5%) had used anticoagulant drugs and (3%) had used thrombolytic drugs. Regarding ischemic heart disease, we found that (23%) of patients were recorded to have ischemic heart disease, which is approximate to study by Park et al. [19] who found that (17%) of ischemic stroke patients had ischemic heart disease [19].
In study by Thijs et al. [34], stroke subtypes using TOAST classification were determined in (3748) patients with ischemic stroke The cause of the index stroke was large artery disease in 605 (16.1%), cardio-embolism in 583 (15.6%), SVD in 492 (13.1%), other determined causes in 623 (16.6%), and undetermined cause in 1445 (38.6%) patients. While in our study, we found that (37%) had cardio-embolic, (24%) had small artery, (16%) had large artery, (20%) had undetermined cause, (3%) had determined cause of stroke. Detection of CMBs and their territorial distribution depends on MRI gradient echo time (TE) sequence and according to their count the degree of severity was detected [5, 35]. Dilatation and elongation of basilar artery was detected in brain MRA image [19, 36].
Ectasia of basilar artery study by Ichikawa et al. [37] showed that strong association was found between CMBs and basilar artery dilation [37]. This agrees to our findings that CMBs were significantly more frequent in patients with ectasia (82%) than in patients without ectasia (52%) (P value < 0.05). Study by Zhai et al. [38] investigated cerebral microbleeds territorial distribution, found that basilar artery ectasia was significantly associated with lobar anterior territory CMBs and infratentorial posterior territory CMBs evenly, which is in contrast to our study as we found that CMBs were more frequently found in posterior territory of patients with ectasia (70%) and more frequent in anterior territory in patients without ectasia (39%). In our study we found that sever degree CMBs were more frequently detected in patients with ectasia of basilar artery (22%) than those without ectasia of basilar artery (9%), this is in agreement with study by Nakajima et al. [39] who found strong association between ectasia of basilar artery and sever degree CMBs.
Dolichosis of basilar artery in our study was found to be strongly associated with cerebral microbleeds incidence (82%) than those without dolichosis (47%) (P value < 0.01), this is in agreement to study by Zhang et al. [40] who found strong association between dolichosis and cerebral microbleeds. Anterior and posterior territories cerebral microbleeds were more frequently found in patients with dolichosis in study by Sandhu et al. [41], in contrary to our study that showed frequent CMBs in posterior territory of patients with dolichosis (63%) and frequent CMBs in anterior territory of patients without dolichosis (45%). Our study results agreed with Sandhu et al. [41] in the strong association between dolichosis and severity of CMBs. Pooling ectasia and dolichosis of basilar artery together, vertebrobasilar dolichoectasia in our study was found to be strongly associated with cerebral microbleeds incidence, CMBs were more frequently found in patients with VBD (84%). This is higher than study by Park et al. [19] which showed that (33.3%) of patients with VBD had CMBs [19]. In other study by Thijs et al. [34] found a strong association between intracranial arterial dolichoectasia and the presence of cerebral microbleeds. Of the patients with IADE, (16.3%) [33/202] had microbleeds at any location compared with (4.7%) [65/1372] of the patients without IADE, which is also lower than our study results. Regarding cerebral microbleeds territorial distribution and vertebrobasilar dolichoectasia, our study showed posterior territory predilection (75%) vs (6% and 19%) in anterior and mixed territories, respectively, while in patients without VBD, CMBs were more frequent in mixed territories (40%) than anterior and posterior territory (36% and 24%), respectively. In other study by Park et al. [19] cerebral microbleeds were observed posteriorly in (66.7%) and anteriorly in (45.8%) patients with VBD, but posteriorly in (16.5%) and anteriorly in (15.2%) patients without VBD which is in agreement to our study.
Thijs et al. [34] investigated the territorial distribution of cerebral microbleeds in accordance with intracranial arterial dolichoectasia and demonstrated that microbleeds were more frequent in brain stems, deep regions, and cortico-subcortical areas in patients with intracranial arterial dolichoectasia compared to those without intracranial arterial dolichoectasia [34].
By distinguishing between posterior and anterior circulation, Thijs et al. [34] demonstrated that in patients with vertebrobasilar dolichoectasia, CMBs were found more frequently and significantly in the posterior territory [34].
Del brutto et al. [42] found that there was strong association between vertebrobasilar dolichoectasia and moderate to severe degree cerebral microbleeds [42] this is in approximate to our study which showed that sever degree CMBs were more frequent in patients with VBD (25%) than in patients without VBD (9.5%) (P value < 0.05).

Conclusions

In our research, dolichoectasia of the basilar artery is found in a significant proportion of ischemic–stroke patients. The existence of basilar dolichoectasia appears to increase the risk of cerebral microbleeds that indicate a specific etiopathogenesis of pathological degeneration in the arterial media that can be shared in vertebrobasilar dolichoectasias dilative arteriopathy.

Acknowledgements

Not applicable.

Declarations

The study was approved by the Ethics committee of Suez Canal Faculty of medicine on October 19, 2016. Committee Number: 2932. An informed written consent was taken from all the participants in the study.
Participants signed an informed consent for publication.

Competing interests

The authors declare that they have no competing interests (financial or non-financial).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Lou M, Caplan LR. Vertebrobasilar dilatative arteriopathy (dolichoectasia). Ann N Y Acad Sci. 2010;1184(1):121–33.CrossRef Lou M, Caplan LR. Vertebrobasilar dilatative arteriopathy (dolichoectasia). Ann N Y Acad Sci. 2010;1184(1):121–33.CrossRef
2.
Zurück zum Zitat Gutierrez J, Sacco RL, Wright CB. Dolichoectasia—an evolving arterial disease. Nat Rev Neurol. 2011;7(1):41.CrossRef Gutierrez J, Sacco RL, Wright CB. Dolichoectasia—an evolving arterial disease. Nat Rev Neurol. 2011;7(1):41.CrossRef
3.
Zurück zum Zitat Wolters FJ, Rinkel GJ, Vergouwen MD. Clinical course and treatment of vertebrobasilar dolichoectasia: a systematic review of the literature. Neurol Res. 2013;35(2):131–7.CrossRef Wolters FJ, Rinkel GJ, Vergouwen MD. Clinical course and treatment of vertebrobasilar dolichoectasia: a systematic review of the literature. Neurol Res. 2013;35(2):131–7.CrossRef
4.
Zurück zum Zitat Ikeda K, Nakamura Y, Hirayama T, Sekine T, Nagata R, Kano O, Kawabe K, Kiyozuka T, Tamura M, Iwasaki Y. Cardiovascular risk and neuroradiological profiles in asymptomatic vertebrobasilar dolichoectasia. Cerebrovasc Dis. 2010;30(1):23–8.CrossRef Ikeda K, Nakamura Y, Hirayama T, Sekine T, Nagata R, Kano O, Kawabe K, Kiyozuka T, Tamura M, Iwasaki Y. Cardiovascular risk and neuroradiological profiles in asymptomatic vertebrobasilar dolichoectasia. Cerebrovasc Dis. 2010;30(1):23–8.CrossRef
5.
Zurück zum Zitat Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A, Salman RA, Warach S, Launer LJ, Van Buchem MA, Breteler MM, Microbleed Study Group. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 2009;8(2):165–74.CrossRef Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A, Salman RA, Warach S, Launer LJ, Van Buchem MA, Breteler MM, Microbleed Study Group. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 2009;8(2):165–74.CrossRef
6.
Zurück zum Zitat Kleinig TJ. Associations and implications of cerebral microbleeds. J Clin Neurosci. 2013;20(7):919–27.CrossRef Kleinig TJ. Associations and implications of cerebral microbleeds. J Clin Neurosci. 2013;20(7):919–27.CrossRef
7.
Zurück zum Zitat Kim BJ, Lee S-H. Cerebral microbleeds: their associated factors, radiologic findings, and clinical implications. J Stroke. 2013;15(3):153.CrossRef Kim BJ, Lee S-H. Cerebral microbleeds: their associated factors, radiologic findings, and clinical implications. J Stroke. 2013;15(3):153.CrossRef
8.
Zurück zum Zitat Yates PA, Villemagne VL, Ellis KA, Desmond PM, Masters CL, Rowe CC. Cerebral microbleeds: a review of clinical, genetic, and neuroimaging associations. Front Neurol. 2014;4:205.CrossRef Yates PA, Villemagne VL, Ellis KA, Desmond PM, Masters CL, Rowe CC. Cerebral microbleeds: a review of clinical, genetic, and neuroimaging associations. Front Neurol. 2014;4:205.CrossRef
9.
Zurück zum Zitat Sveinbjornsdottir S, Sigurdsson S, Aspelund T, Kjartansson O, Eiriksdottir G, Valtysdottir B, Lopez OL, Van Buchem MA, Jonsson PV, Gudnason V, Launer LJ. Cerebral microbleeds in the population based AGES Reykjavik study: prevalence and location. J Neurol Neurosurg Psychiatry. 2008;79(9):1002–6.CrossRef Sveinbjornsdottir S, Sigurdsson S, Aspelund T, Kjartansson O, Eiriksdottir G, Valtysdottir B, Lopez OL, Van Buchem MA, Jonsson PV, Gudnason V, Launer LJ. Cerebral microbleeds in the population based AGES Reykjavik study: prevalence and location. J Neurol Neurosurg Psychiatry. 2008;79(9):1002–6.CrossRef
10.
Zurück zum Zitat Vernooij M, van der Lugt A, Ikram MA, Wielopolski PA, Niessen WJ, Hofman A, Krestin GP, Breteler MM. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology. 2008;70(14):1208–14.CrossRef Vernooij M, van der Lugt A, Ikram MA, Wielopolski PA, Niessen WJ, Hofman A, Krestin GP, Breteler MM. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology. 2008;70(14):1208–14.CrossRef
11.
Zurück zum Zitat Wu Y, Chen T. An up-to-date review on cerebral microbleeds. J Stroke Cerebrovasc Dis. 2016;25(6):1301–6.CrossRef Wu Y, Chen T. An up-to-date review on cerebral microbleeds. J Stroke Cerebrovasc Dis. 2016;25(6):1301–6.CrossRef
12.
Zurück zum Zitat Davide SH, Lam A. Understanding the new blood pressure guidelines. 2018 Davide SH, Lam A. Understanding the new blood pressure guidelines. 2018
13.
Zurück zum Zitat Majumdar M. Diabetes diagnosis: 6 tests used to detect blood sugar fluctuations. Diabetes. 2018;140(199):7–8. Majumdar M. Diabetes diagnosis: 6 tests used to detect blood sugar fluctuations. Diabetes. 2018;140(199):7–8.
14.
Zurück zum Zitat Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2014;63:2889–934.CrossRef Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2014;63:2889–934.CrossRef
15.
Zurück zum Zitat Lioutas V-A, Sonni S, Caplan LR. Diagnosis and misdiagnosis of cerebrovascular disease. Curr Treat Options Cardiovasc Med. 2013;15(3):276–87.CrossRef Lioutas V-A, Sonni S, Caplan LR. Diagnosis and misdiagnosis of cerebrovascular disease. Curr Treat Options Cardiovasc Med. 2013;15(3):276–87.CrossRef
16.
Zurück zum Zitat Mattingly EO. Functional evaluation and treatment in acquired brain injury acute rehabilitation. Perspect ASHA Special Interest Groups. 2018;3(2):13–20.CrossRef Mattingly EO. Functional evaluation and treatment in acquired brain injury acute rehabilitation. Perspect ASHA Special Interest Groups. 2018;3(2):13–20.CrossRef
17.
Zurück zum Zitat Teasdale G, Maas A, Lecky F, Manley G, Stocchetti N, Murray G. The Glasgow Coma Scale at 40 years: standing the test of time. Lancet Neurol. 2014;13(8):844–54.CrossRef Teasdale G, Maas A, Lecky F, Manley G, Stocchetti N, Murray G. The Glasgow Coma Scale at 40 years: standing the test of time. Lancet Neurol. 2014;13(8):844–54.CrossRef
18.
Zurück zum Zitat Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24(1):35–41.CrossRef Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24(1):35–41.CrossRef
19.
Zurück zum Zitat Park JM, Koo JS, Kim BK, Kwon O, Lee JJ, Kang K, Lee JS, Lee J, Bae HJ. Vertebrobasilar dolichoectasia as a risk factor for cerebral microbleeds. Eur J Neurol. 2013;20(5):824–30.CrossRef Park JM, Koo JS, Kim BK, Kwon O, Lee JJ, Kang K, Lee JS, Lee J, Bae HJ. Vertebrobasilar dolichoectasia as a risk factor for cerebral microbleeds. Eur J Neurol. 2013;20(5):824–30.CrossRef
20.
Zurück zum Zitat Uiterwijk R, Van Oostenbrugge RJ, Huijts M, De Leeuw PW, Kroon AA, Staals J. Total cerebral small vessel disease MRI score is associated with cognitive decline in executive function in patients with hypertension. Front Aging Neurosci. 2016;8:301.CrossRef Uiterwijk R, Van Oostenbrugge RJ, Huijts M, De Leeuw PW, Kroon AA, Staals J. Total cerebral small vessel disease MRI score is associated with cognitive decline in executive function in patients with hypertension. Front Aging Neurosci. 2016;8:301.CrossRef
21.
Zurück zum Zitat Standring S. Gray's anatomy e-book: the anatomical basis of clinical practice. 2015: Elsevier Health Sciences. Standring S. Gray's anatomy e-book: the anatomical basis of clinical practice. 2015: Elsevier Health Sciences.
22.
Zurück zum Zitat Westfall PH, Young SS. Resampling-based multiple testing: examples and methods for p-value adjustment, vol. 279. Hoboken: Wiley; 1993. Westfall PH, Young SS. Resampling-based multiple testing: examples and methods for p-value adjustment, vol. 279. Hoboken: Wiley; 1993.
23.
Zurück zum Zitat Jung K-H, Lee SH, Kim BJ, Yu KH, Hong KS, Lee BC, Roh JK, Korean Stroke Registry Study Group. Secular trends in ischemic stroke characteristics in a rapidly developed country: results from the Korean Stroke Registry Study (secular trends in Korean stroke). Circulation. 2012;5(3):327–34. Jung K-H, Lee SH, Kim BJ, Yu KH, Hong KS, Lee BC, Roh JK, Korean Stroke Registry Study Group. Secular trends in ischemic stroke characteristics in a rapidly developed country: results from the Korean Stroke Registry Study (secular trends in Korean stroke). Circulation. 2012;5(3):327–34.
24.
Zurück zum Zitat O’Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, Rangarajan S, Islam S, Pais P, McQueen MJ, Mondo C. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376(9735):112–23.CrossRef O’Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, Rangarajan S, Islam S, Pais P, McQueen MJ, Mondo C. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376(9735):112–23.CrossRef
25.
Zurück zum Zitat Altafi D, Khotbesara M, Khotbesara M, Bagheri A. A comparative study OF NIHSS between ischemic stroke patients with and without risk factors. Tech J Eng Appl Sci. 2013;3(17):1954–7. Altafi D, Khotbesara M, Khotbesara M, Bagheri A. A comparative study OF NIHSS between ischemic stroke patients with and without risk factors. Tech J Eng Appl Sci. 2013;3(17):1954–7.
26.
Zurück zum Zitat Marinigh R, Lip GY, Fiotti N, Giansante C, Lane DA. Age as a risk factor for stroke in atrial fibrillation patients: implications for thromboprophylaxis. J Am College Cardiol. 2010;56(11):827–37.CrossRef Marinigh R, Lip GY, Fiotti N, Giansante C, Lane DA. Age as a risk factor for stroke in atrial fibrillation patients: implications for thromboprophylaxis. J Am College Cardiol. 2010;56(11):827–37.CrossRef
27.
Zurück zum Zitat Marwat MA, Usman M, Hussain M. Stroke and its relationship to risk factors. Gomal J Med Sci. 2009;7:17–21. Marwat MA, Usman M, Hussain M. Stroke and its relationship to risk factors. Gomal J Med Sci. 2009;7:17–21.
28.
Zurück zum Zitat Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest. 2010;137(2):263–72.CrossRef Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest. 2010;137(2):263–72.CrossRef
29.
Zurück zum Zitat Banerjee C, Moon YP, Paik MC, Rundek T, Mora-McLaughlin C, Vieira JR, Sacco RL, Elkind MS. Duration of diabetes and risk of ischemic stroke: the Northern Manhattan Study. Stroke. 2012;43(5):1212–7.CrossRef Banerjee C, Moon YP, Paik MC, Rundek T, Mora-McLaughlin C, Vieira JR, Sacco RL, Elkind MS. Duration of diabetes and risk of ischemic stroke: the Northern Manhattan Study. Stroke. 2012;43(5):1212–7.CrossRef
30.
Zurück zum Zitat Djelilovic-Vranic J, Alajbegovic A, Zelija-Asimi V, Niksic M, Tiric-Campara M, Salcic S, Celo A. Predilection role diabetes mellitus and dyslipidemia in the onset of ischemic stroke. Med Arch. 2013;67(2):120.CrossRef Djelilovic-Vranic J, Alajbegovic A, Zelija-Asimi V, Niksic M, Tiric-Campara M, Salcic S, Celo A. Predilection role diabetes mellitus and dyslipidemia in the onset of ischemic stroke. Med Arch. 2013;67(2):120.CrossRef
31.
Zurück zum Zitat Ihle-Hansen H, Thommessen B, Wyller TB, Engedal K, Fure B. Risk factors for and incidence of subtypes of ischemic stroke. Funct Neurol. 2012;27(1):35. Ihle-Hansen H, Thommessen B, Wyller TB, Engedal K, Fure B. Risk factors for and incidence of subtypes of ischemic stroke. Funct Neurol. 2012;27(1):35.
32.
Zurück zum Zitat LaBresh KA, Reeves MJ, Frankel MR, Albright D, Schwamm LH. Hospital treatment of patients with ischemic stroke or transient ischemic attack using the “Get With The Guidelines” program. Arch Intern Med. 2008;168(4):411–7.CrossRef LaBresh KA, Reeves MJ, Frankel MR, Albright D, Schwamm LH. Hospital treatment of patients with ischemic stroke or transient ischemic attack using the “Get With The Guidelines” program. Arch Intern Med. 2008;168(4):411–7.CrossRef
33.
Zurück zum Zitat Vernooij MW, Haag MD, van der Lugt A, Hofman A, Krestin GP, Stricker BH, Breteler MM. Use of antithrombotic drugs and the presence of cerebral microbleeds: the Rotterdam Scan Study. Arch Neurol. 2009;66(6):714–20.CrossRef Vernooij MW, Haag MD, van der Lugt A, Hofman A, Krestin GP, Stricker BH, Breteler MM. Use of antithrombotic drugs and the presence of cerebral microbleeds: the Rotterdam Scan Study. Arch Neurol. 2009;66(6):714–20.CrossRef
34.
Zurück zum Zitat Thijs V, Grittner U, Fazekas F, McCabe DJ, Giese AK, Kessler C, Martus P, Norrving B, Ringelstein EB, Schmidt R, Tanislav C. Dolichoectasia and small vessel disease in young patients with transient ischemic attack and stroke. Stroke. 2017;48(9):2361–7.CrossRef Thijs V, Grittner U, Fazekas F, McCabe DJ, Giese AK, Kessler C, Martus P, Norrving B, Ringelstein EB, Schmidt R, Tanislav C. Dolichoectasia and small vessel disease in young patients with transient ischemic attack and stroke. Stroke. 2017;48(9):2361–7.CrossRef
35.
Zurück zum Zitat Shams S, Martola J, Cavallin L, Granberg T, Shams M, Aspelin P, Wahlund LO, Kristoffersen-Wiberg M. SWI or T2*: which MRI sequence to use in the detection of cerebral microbleeds? The Karolinska Imaging Dementia Study. Am J Neuroradiol. 2015;36(6):1089–95.CrossRef Shams S, Martola J, Cavallin L, Granberg T, Shams M, Aspelin P, Wahlund LO, Kristoffersen-Wiberg M. SWI or T2*: which MRI sequence to use in the detection of cerebral microbleeds? The Karolinska Imaging Dementia Study. Am J Neuroradiol. 2015;36(6):1089–95.CrossRef
36.
Zurück zum Zitat Förster A, Wenz R, Maros ME, Böhme J, Al-Zghloul M, Alonso A, Groden C, Wenz H. Anatomical distribution of cerebral microbleeds and intracerebral hemorrhage in vertebrobasilar dolichoectasia. PLoS ONE. 2018;13(4):e0196149.CrossRef Förster A, Wenz R, Maros ME, Böhme J, Al-Zghloul M, Alonso A, Groden C, Wenz H. Anatomical distribution of cerebral microbleeds and intracerebral hemorrhage in vertebrobasilar dolichoectasia. PLoS ONE. 2018;13(4):e0196149.CrossRef
37.
Zurück zum Zitat Ichikawa H, Mukai M, Katoh H, Hieda S, Murakami H, Kawamura M. Cerebral microbleeds and dilative remodeling of the basilar artery: a magnetic resonance imaging study. J Stroke Cerebrovasc Dis. 2011;20(5):429–35.CrossRef Ichikawa H, Mukai M, Katoh H, Hieda S, Murakami H, Kawamura M. Cerebral microbleeds and dilative remodeling of the basilar artery: a magnetic resonance imaging study. J Stroke Cerebrovasc Dis. 2011;20(5):429–35.CrossRef
38.
Zurück zum Zitat Zhai F-F, Wang Q, Ni J, Zhou LX, Yao M, Li ML, Jin ZY, Cui LY, Zhang S, Zhu YC. Vertebrobasilar dolichoectasia relates to cerebral microbleeds in a population-based study (P6. 257). Neurology. 2017;88(16 Supplement):P6.257. Zhai F-F, Wang Q, Ni J, Zhou LX, Yao M, Li ML, Jin ZY, Cui LY, Zhang S, Zhu YC. Vertebrobasilar dolichoectasia relates to cerebral microbleeds in a population-based study (P6. 257). Neurology. 2017;88(16 Supplement):P6.257.
39.
Zurück zum Zitat Nakajima M, Pearce LA, Ohara N, Field TS, Bazan C, Anderson DC, Hart RG, Benavente OR, SPS3 Investigators. Vertebrobasilar ectasia in patients with lacunar stroke: the secondary prevention of small subcortical strokes trial. J Stroke Cerebrovasc Dis. 2015;24(5):1052–8.CrossRef Nakajima M, Pearce LA, Ohara N, Field TS, Bazan C, Anderson DC, Hart RG, Benavente OR, SPS3 Investigators. Vertebrobasilar ectasia in patients with lacunar stroke: the secondary prevention of small subcortical strokes trial. J Stroke Cerebrovasc Dis. 2015;24(5):1052–8.CrossRef
40.
Zurück zum Zitat Zhang X, Jing J, Zhao X, Liu L, Meng X, Wang A, Pan Y, Wang D, Wang Y, Wang Y. Prognosis of dolichoectasia in non-cardioembolic transient ischemic attack and minor stroke. Neurol Res. 2018;40(6):452–8.CrossRef Zhang X, Jing J, Zhao X, Liu L, Meng X, Wang A, Pan Y, Wang D, Wang Y, Wang Y. Prognosis of dolichoectasia in non-cardioembolic transient ischemic attack and minor stroke. Neurol Res. 2018;40(6):452–8.CrossRef
41.
Zurück zum Zitat Sandhu D, Rizvi A, Kim J, Reshi R. Diffuse cerebral microhemorrhages in a patient with adult-onset Pompe’s disease: a case report. J Vasc Intervent Neurol. 2014;7(5):82. Sandhu D, Rizvi A, Kim J, Reshi R. Diffuse cerebral microhemorrhages in a patient with adult-onset Pompe’s disease: a case report. J Vasc Intervent Neurol. 2014;7(5):82.
42.
Zurück zum Zitat Del Brutto OH, Mera RM, Del Brutto VJ, Costa AF, Zambrano M, Brorson J. Basilar artery dolichoectasia: prevalence and correlates with markers of cerebral small vessel disease in community-dwelling older adults. J Stroke Cerebrovasc Dis. 2017;26(12):2909–14.CrossRef Del Brutto OH, Mera RM, Del Brutto VJ, Costa AF, Zambrano M, Brorson J. Basilar artery dolichoectasia: prevalence and correlates with markers of cerebral small vessel disease in community-dwelling older adults. J Stroke Cerebrovasc Dis. 2017;26(12):2909–14.CrossRef
Metadaten
Titel
Vertebrobasilar dolichoectasia in patients with cerebrovascular ischemic stroke: does it have a role in cerebral microbleeds?
verfasst von
Ahmed Osama
Mohamed Negm
Walid Mosallam
Mohamed Hegazy
Samer Elshamly
Publikationsdatum
01.12.2022
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1186/s41983-022-00588-1

Weitere Artikel der Ausgabe 1/2022

The Egyptian Journal of Neurology, Psychiatry and Neurosurgery 1/2022 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Demenzkranke durch Antipsychotika vielfach gefährdet

Demenz Nachrichten

Der Einsatz von Antipsychotika gegen psychische und Verhaltenssymptome in Zusammenhang mit Demenzerkrankungen erfordert eine sorgfältige Nutzen-Risiken-Abwägung. Neuen Erkenntnissen zufolge sind auf der Risikoseite weitere schwerwiegende Ereignisse zu berücksichtigen.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.