Skip to main content
Erschienen in: Inflammation 5/2016

15.07.2016 | ORIGINAL ARTICLE

Yeast (Saccharomyces cerevisiae) Polarizes Both M-CSF- and GM-CSF-Differentiated Macrophages Toward an M1-Like Phenotype

verfasst von: Michelle Seif, Anja Philippi, Frank Breinig, Alexandra K. Kiemer, Jessica Hoppstädter

Erschienen in: Inflammation | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

Macrophages are a heterogeneous and plastic cell population with two main phenotypes: pro-inflammatory classically activated macrophages (M1) and anti-inflammatory alternatively activated macrophages (M2). Saccharomyces cerevisiae is a promising vehicle for the delivery of vaccines. It is well established that S. cerevisiae is taken up by professional phagocytic cells. However, the response of human macrophages to S. cerevisiae is ill-defined. In this study, we characterized the interaction between S. cerevisiae and M1- or M2-like macrophages. M1-like macrophages had a higher yeast uptake capacity than M2-like macrophages, but both cell types internalized opsonized yeast to the same extent. The M1 surface markers HLAII and CD86 were upregulated after yeast uptake in M1- and M2-like macrophages. Moreover, mRNA expression levels of pro-inflammatory cytokines, such as TNF-α, IL-12, and IL-6, increased, whereas the expression of anti-inflammatory mediators did not change. These results demonstrate that S. cerevisiae can target both M1 and M2 macrophages, paralleled by skewing toward an M1 phenotype. Thus, the use of yeast-based delivery systems might be a promising approach for the treatment of pathologic conditions that would benefit from the presence of M1-polarized macrophages, such as cancer.
Literatur
2.
Zurück zum Zitat Krausgruber, T., K. Blazek, T. Smallie, S. Alzabin, H. Lockstone, N. Sahgal, et al. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 12: 231–238. doi:10.1038/ni.1990.CrossRefPubMed Krausgruber, T., K. Blazek, T. Smallie, S. Alzabin, H. Lockstone, N. Sahgal, et al. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 12: 231–238. doi:10.​1038/​ni.​1990.CrossRefPubMed
3.
Zurück zum Zitat Verreck, F.A.W., T. De Boer, D.M.L. Langenberg, L. Van Der Zanden, and T.H.M. Ottenhoff. 2006. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-ɣ- and CD40L-mediated costimulation. Journal of Leukocyte Biology 79: 285–293. doi:10.1189/jlb.0105015.Journal.CrossRefPubMed Verreck, F.A.W., T. De Boer, D.M.L. Langenberg, L. Van Der Zanden, and T.H.M. Ottenhoff. 2006. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-ɣ- and CD40L-mediated costimulation. Journal of Leukocyte Biology 79: 285–293. doi:10.​1189/​jlb.​0105015.​Journal.CrossRefPubMed
6.
Zurück zum Zitat Leopold Wager, C.M., and F.L. Wormley Jr. 2014. Classical versus alternative macrophage activation: the Ying and the Yang in host defense against pulmonary fungal infections. Mucosal Immunology 7: 1023–1035. doi:10.1038/mi.2014.65.CrossRefPubMed Leopold Wager, C.M., and F.L. Wormley Jr. 2014. Classical versus alternative macrophage activation: the Ying and the Yang in host defense against pulmonary fungal infections. Mucosal Immunology 7: 1023–1035. doi:10.​1038/​mi.​2014.​65.CrossRefPubMed
7.
Zurück zum Zitat Reales-Calderón, J.A., N. Aguilera-Montilla, Á.L. Corbí, G. Molero, and C. Gil. 2014. Proteomic characterization of human pro-inflammatory M1 and anti-inflammatory M2 macrophages and their response to Candida albicans. Proteomics 14: 1503–1518. doi:10.1002/pmic.201300508.CrossRefPubMed Reales-Calderón, J.A., N. Aguilera-Montilla, Á.L. Corbí, G. Molero, and C. Gil. 2014. Proteomic characterization of human pro-inflammatory M1 and anti-inflammatory M2 macrophages and their response to Candida albicans. Proteomics 14: 1503–1518. doi:10.​1002/​pmic.​201300508.CrossRefPubMed
8.
Zurück zum Zitat De Souza Silva, C., Tavares, A.H., Sousa Jeronimo, M., Soares De Lima, Y., Da Silveira Derengowski, L., Lorenzetti Bocca, A., et al. 2015. The Effects of Paracoccidioides brasiliensis Infection on GM-CSF-and M-CSF-Induced Mouse Bone Marrow-Derived Macrophage from Resistant and Susceptible Mice Strains. Mediators of Inflammation :17–19. doi:10.1155/2015/605450. De Souza Silva, C., Tavares, A.H., Sousa Jeronimo, M., Soares De Lima, Y., Da Silveira Derengowski, L., Lorenzetti Bocca, A., et al. 2015. The Effects of Paracoccidioides brasiliensis Infection on GM-CSF-and M-CSF-Induced Mouse Bone Marrow-Derived Macrophage from Resistant and Susceptible Mice Strains. Mediators of Inflammation :17–19. doi:10.​1155/​2015/​605450.
10.
11.
Zurück zum Zitat Liu, M., F. Luo, C. Ding, S. Albeituni, X. Hu, Y. Ma, et al. 2016. Dectin-1 activation by a natural product β -glucan converts immunosuppressive macrophages into an M1-like phenotype. Journal of Immunology. doi:10.4049/jimmunol.1501158. Liu, M., F. Luo, C. Ding, S. Albeituni, X. Hu, Y. Ma, et al. 2016. Dectin-1 activation by a natural product β -glucan converts immunosuppressive macrophages into an M1-like phenotype. Journal of Immunology. doi:10.​4049/​jimmunol.​1501158.
12.
Zurück zum Zitat Elcombe, S.E., Naqvi, S., Van Den Bosch, M.W.M., MacKenzie, K.F., Cianfanelli, F, Brown,G.D., et al. 2013. Dectin-1 Regulates IL-10 Production via a MSK1/2 and CREB Dependent Pathway and Promotes the Induction of Regulatory Macrophage Markers. PLoS One 8. doi:10.1371/journal.pone.0060086. Elcombe, S.E., Naqvi, S., Van Den Bosch, M.W.M., MacKenzie, K.F., Cianfanelli, F, Brown,G.D., et al. 2013. Dectin-1 Regulates IL-10 Production via a MSK1/2 and CREB Dependent Pathway and Promotes the Induction of Regulatory Macrophage Markers. PLoS One 8. doi:10.​1371/​journal.​pone.​0060086.
13.
Zurück zum Zitat Hoppstädter, J, Seif, M., Dembek, A., Cavelius, C., Huwer, H., Kraegeloh, A., et al. 2015. M2 polarization enhances silica nanoparticle uptake by macrophages. Front Pharmacol 6. Hoppstädter, J, Seif, M., Dembek, A., Cavelius, C., Huwer, H., Kraegeloh, A., et al. 2015. M2 polarization enhances silica nanoparticle uptake by macrophages. Front Pharmacol 6.
14.
Zurück zum Zitat Hoppstädter, J., B. Diesel, R. Zarbock, T. Breinig, D. Monz, M. Koch, et al. 2010. Differential cell reaction upon Toll-like receptor 4 and 9 activation in human alveolar and lung interstitial macrophages. Respiratory Research 11: 1–15. doi:10.1186/1465-9921-11-124. Hoppstädter, J., B. Diesel, R. Zarbock, T. Breinig, D. Monz, M. Koch, et al. 2010. Differential cell reaction upon Toll-like receptor 4 and 9 activation in human alveolar and lung interstitial macrophages. Respiratory Research 11: 1–15. doi:10.​1186/​1465-9921-11-124.
15.
Zurück zum Zitat Rey-Giraud, F., Hafner, M. and C.H. Ries. 2012. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions. PLoS One 7. doi:10.1371/journal.pone.0042656. Rey-Giraud, F., Hafner, M. and C.H. Ries. 2012. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions. PLoS One 7. doi:10.​1371/​journal.​pone.​0042656.
17.
Zurück zum Zitat Bender, A.T., C.L. Ostenson, D. Giordano, and J.A. Beavo. 2004. Differentiation of human monocytes in vitro with granulocyte – macrophage colony-stimulating factor and macrophage colony-stimulating factor produces distinct changes in cGMP phosphodiesterase expression. Cellular Signalling 16: 365–374. doi:10.1016/j.cellsig.2003.08.009.CrossRefPubMed Bender, A.T., C.L. Ostenson, D. Giordano, and J.A. Beavo. 2004. Differentiation of human monocytes in vitro with granulocyte – macrophage colony-stimulating factor and macrophage colony-stimulating factor produces distinct changes in cGMP phosphodiesterase expression. Cellular Signalling 16: 365–374. doi:10.​1016/​j.​cellsig.​2003.​08.​009.CrossRefPubMed
18.
Zurück zum Zitat Lawrence, T., and G. Natoli. 2011. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nature Reviews Immunology 11: 750–761. doi:10.1038/nri3088.CrossRefPubMed Lawrence, T., and G. Natoli. 2011. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nature Reviews Immunology 11: 750–761. doi:10.​1038/​nri3088.CrossRefPubMed
21.
Zurück zum Zitat Heusinkveld, M. and S.H. van der Burg. 2011. Identification and manipulation of tumor associated macrophages in human cancers. Journal of Translational Medicine 9. doi:10.1186/1479-5876-9-216. Heusinkveld, M. and S.H. van der Burg. 2011. Identification and manipulation of tumor associated macrophages in human cancers. Journal of Translational Medicine 9. doi:10.​1186/​1479-5876-9-216.
22.
Zurück zum Zitat Xu, W., N. Schlagwein, A. Roos, T.K. van den Berg, M.R. Daha, and C. van Kooten. 2007. Human peritoneal macrophages show functional characteristics of M-CSF-driven anti-inflammatory type 2 macrophages. European Journal of Immunology 37: 1594–1599. doi:10.1002/eji.200737042.CrossRefPubMed Xu, W., N. Schlagwein, A. Roos, T.K. van den Berg, M.R. Daha, and C. van Kooten. 2007. Human peritoneal macrophages show functional characteristics of M-CSF-driven anti-inflammatory type 2 macrophages. European Journal of Immunology 37: 1594–1599. doi:10.​1002/​eji.​200737042.CrossRefPubMed
23.
Zurück zum Zitat Martinez, F.O., S. Gordon, M. Locati, A. Mantovani, F.O. Martinez, S. Gordon, et al. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of Immunology 177: 7303–7311. doi:10.4049/jimmunol.177.10.7303.CrossRef Martinez, F.O., S. Gordon, M. Locati, A. Mantovani, F.O. Martinez, S. Gordon, et al. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of Immunology 177: 7303–7311. doi:10.​4049/​jimmunol.​177.​10.​7303.CrossRef
24.
Zurück zum Zitat Hoppstädter, J., and A.K. Kiemer. 2015. Glucocorticoid-induced leucine zipper (GILZ) in immuno suppression: master regulator or bystander? Oncotarget :1–11. doi:10.18632/oncotarget.6197. Hoppstädter, J., and A.K. Kiemer. 2015. Glucocorticoid-induced leucine zipper (GILZ) in immuno suppression: master regulator or bystander? Oncotarget :1–11. doi:10.18632/oncotarget.6197.
25.
Zurück zum Zitat Berrebi, D., S. Bruscoli, N. Cohen, A. Foussat, G. Migliorati, L. Bouchet-Delbos, et al. 2003. Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood 101: 729–738. doi:10.1182/blood-2002-02-0538.CrossRefPubMed Berrebi, D., S. Bruscoli, N. Cohen, A. Foussat, G. Migliorati, L. Bouchet-Delbos, et al. 2003. Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood 101: 729–738. doi:10.​1182/​blood-2002-02-0538.CrossRefPubMed
26.
Zurück zum Zitat Vago, J.P., L.P. Tavares, C.C. Garcia, K.M. Lima, L.O. Perucci, É.L. Vieira, et al. 2015. The role and effects of glucocorticoid-induced leucine zipper in the context of inflammation resolution. Journal of Immunology 194: 4940–4950. doi:10.4049/jimmunol.1401722.CrossRef Vago, J.P., L.P. Tavares, C.C. Garcia, K.M. Lima, L.O. Perucci, É.L. Vieira, et al. 2015. The role and effects of glucocorticoid-induced leucine zipper in the context of inflammation resolution. Journal of Immunology 194: 4940–4950. doi:10.​4049/​jimmunol.​1401722.CrossRef
27.
Zurück zum Zitat Hoppstädter, J., S.M. Kessler, S. Bruscoli, H. Huwer, C. Riccardi, and A.K. Kiemer. 2015. Glucocorticoid-induced leucine zipper: a critical factor in macrophage endotoxin tolerance. Journal of Immunology 194: 6057–6067. doi:10.4049/jimmunol.1403207.CrossRef Hoppstädter, J., S.M. Kessler, S. Bruscoli, H. Huwer, C. Riccardi, and A.K. Kiemer. 2015. Glucocorticoid-induced leucine zipper: a critical factor in macrophage endotoxin tolerance. Journal of Immunology 194: 6057–6067. doi:10.​4049/​jimmunol.​1403207.CrossRef
30.
Zurück zum Zitat \Kittan, N.A., R.M. Allen, A. Dhaliwal, K.A. Cavassani, M. Schaller, K.A. Gallagher, et al. 2013. Cytokine induced phenotypic and epigenetic signatures are key to establishing specific macrophage phenotypes. PLoS One 8: 1–15. doi:10.1371/journal.pone.0078045.CrossRef \Kittan, N.A., R.M. Allen, A. Dhaliwal, K.A. Cavassani, M. Schaller, K.A. Gallagher, et al. 2013. Cytokine induced phenotypic and epigenetic signatures are key to establishing specific macrophage phenotypes. PLoS One 8: 1–15. doi:10.​1371/​journal.​pone.​0078045.CrossRef
31.
Zurück zum Zitat Chroneos, Z., and V. L. Shepherd. 1995. Differential regulation of the mannose and SP-A receptors on macrophages. The American Journal of Physiology 269. Chroneos, Z., and V. L. Shepherd. 1995. Differential regulation of the mannose and SP-A receptors on macrophages. The American Journal of Physiology 269.
32.
Zurück zum Zitat Jaguin, M., N. Houlbert, O. Fardel, and V. Lecureur. 2013. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cellular Immunology 281: 51–61. doi:10.1016/j.cellimm.2013.01.010.CrossRefPubMed Jaguin, M., N. Houlbert, O. Fardel, and V. Lecureur. 2013. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cellular Immunology 281: 51–61. doi:10.​1016/​j.​cellimm.​2013.​01.​010.CrossRefPubMed
33.
Zurück zum Zitat Ambarus, C.A., S. Krausz, M. van Eijk, J. Hamann, T.R.D.J. Radstake, K.A. Reedquist, et al. 2012. Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. Journal of Immunological Methods 375: 196–206. doi:10.1016/j.jim.2011.10.013.CrossRefPubMed Ambarus, C.A., S. Krausz, M. van Eijk, J. Hamann, T.R.D.J. Radstake, K.A. Reedquist, et al. 2012. Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. Journal of Immunological Methods 375: 196–206. doi:10.​1016/​j.​jim.​2011.​10.​013.CrossRefPubMed
34.
Zurück zum Zitat Giaimis, J., Y. Lombard, and P. Fonteneau. 1993. Both mannose and betaglucan receptors are involved in phagocytosis of unopsonized, heat-killed Saccharomyces cerevisiae by murine macrophages. Journal of Leukocyte Biology 54: 564–571.PubMed Giaimis, J., Y. Lombard, and P. Fonteneau. 1993. Both mannose and betaglucan receptors are involved in phagocytosis of unopsonized, heat-killed Saccharomyces cerevisiae by murine macrophages. Journal of Leukocyte Biology 54: 564–571.PubMed
35.
Zurück zum Zitat Porcaro, I., Vidal, M., Jouvert, S., Stahl, P.D., and J. Giaimis. 2003. Mannose receptor contribution to Candida albicans phagocytosis by murine E-clone J774 macrophages. Journal of Leukocyte Biology 74. doi:10.1189/jlb.1202608.http. Porcaro, I., Vidal, M., Jouvert, S., Stahl, P.D., and J. Giaimis. 2003. Mannose receptor contribution to Candida albicans phagocytosis by murine E-clone J774 macrophages. Journal of Leukocyte Biology 74. doi:10.​1189/​jlb.​1202608.​http.
36.
Zurück zum Zitat Boschi, S., G. Geginat, T. Breinig, M.J. Schmitt, and F. Breinig. 2011. Uptake of various yeast genera by antigen-presenting cells and influence of subcellular antigen localization on the activation of ovalbumin-specific CD8 T lymphocytes. Vaccine 29: 8165–8173. doi:10.1016/j.vaccine.2011.07.141.CrossRef Boschi, S., G. Geginat, T. Breinig, M.J. Schmitt, and F. Breinig. 2011. Uptake of various yeast genera by antigen-presenting cells and influence of subcellular antigen localization on the activation of ovalbumin-specific CD8 T lymphocytes. Vaccine 29: 8165–8173. doi:10.​1016/​j.​vaccine.​2011.​07.​141.CrossRef
38.
Zurück zum Zitat Jouault, T., M. El Abed-El Behi, M. Martínez-Esparza, L. Breuilh, P.-A. Trinel, M. Chamaillard, et al. 2006. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. Journal of Immunology 177: 4679–4687. doi:10.4049/jimmunol.177.7.4679.CrossRef Jouault, T., M. El Abed-El Behi, M. Martínez-Esparza, L. Breuilh, P.-A. Trinel, M. Chamaillard, et al. 2006. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. Journal of Immunology 177: 4679–4687. doi:10.​4049/​jimmunol.​177.​7.​4679.CrossRef
39.
41.
Zurück zum Zitat Bilusic, M., C.R. Heery, P.M. Arlen, M. Rauckhorst, K.Y. Tsang, J.A. Tucker, et al. 2015. Phase I Trial of a recombinant yeast-CEA vaccine (GI-6207) in adults with metastatic CEA-expressing carcinoma. Cancer Immunology, Immunotherapy 63: 225–234. doi:10.1007/s00262-013-1505-8.CrossRef Bilusic, M., C.R. Heery, P.M. Arlen, M. Rauckhorst, K.Y. Tsang, J.A. Tucker, et al. 2015. Phase I Trial of a recombinant yeast-CEA vaccine (GI-6207) in adults with metastatic CEA-expressing carcinoma. Cancer Immunology, Immunotherapy 63: 225–234. doi:10.​1007/​s00262-013-1505-8.CrossRef
42.
Zurück zum Zitat Assis-Marques, M.A., A.F. Oliveira, L.P. Ruas, F. Reis, M.C. Roque-barreira, P. Sergio, et al. 2015. Saccharomyces cerevisiae expressing Gp43 protects mice against Paracoccidioides brasiliensis infection. PLoS One 10: 1–13. doi:10.1371/journal.pone.0120201.CrossRef Assis-Marques, M.A., A.F. Oliveira, L.P. Ruas, F. Reis, M.C. Roque-barreira, P. Sergio, et al. 2015. Saccharomyces cerevisiae expressing Gp43 protects mice against Paracoccidioides brasiliensis infection. PLoS One 10: 1–13. doi:10.​1371/​journal.​pone.​0120201.CrossRef
43.
Zurück zum Zitat Walch-Rückheim, B., R. Kiefer, G. Geginat, M.J. Schmitt, and F. Breinig. 2015. Coexpression of human perforin improves yeast-mediated delivery of DNA and mRNA to mammalian antigen- presenting cells. Gene Therapy 23: 103–107. doi:10.1038/gt.2015.77.CrossRefPubMed Walch-Rückheim, B., R. Kiefer, G. Geginat, M.J. Schmitt, and F. Breinig. 2015. Coexpression of human perforin improves yeast-mediated delivery of DNA and mRNA to mammalian antigen- presenting cells. Gene Therapy 23: 103–107. doi:10.​1038/​gt.​2015.​77.CrossRefPubMed
45.
Metadaten
Titel
Yeast (Saccharomyces cerevisiae) Polarizes Both M-CSF- and GM-CSF-Differentiated Macrophages Toward an M1-Like Phenotype
verfasst von
Michelle Seif
Anja Philippi
Frank Breinig
Alexandra K. Kiemer
Jessica Hoppstädter
Publikationsdatum
15.07.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2016
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0404-5

Weitere Artikel der Ausgabe 5/2016

Inflammation 5/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.