Skip to main content
Erschienen in: neurogenetics 4/2016

Open Access 17.09.2016 | Original Article

A customized high-resolution array-comparative genomic hybridization to explore copy number variations in Parkinson’s disease

verfasst von: Valentina La Cognata, Giovanna Morello, Giulia Gentile, Velia D’Agata, Chiara Criscuolo, Francesca Cavalcanti, Sebastiano Cavallaro

Erschienen in: Neurogenetics | Ausgabe 4/2016

Abstract

Parkinson’s disease (PD), the second most common progressive neurodegenerative disorder, was long believed to be a non-genetic sporadic syndrome. Today, only a small percentage of PD cases with genetic inheritance patterns are known, often complicated by reduced penetrance and variable expressivity. The few well-characterized Mendelian genes, together with a number of risk factors, contribute to the major sporadic forms of the disease, thus delineating an intricate genetic profile at the basis of this debilitating and incurable condition. Along with single nucleotide changes, gene-dosage abnormalities and copy number variations (CNVs) have emerged as significant disease-causing mutations in PD. However, due to their size variability and to the quantitative nature of the assay, CNV genotyping is particularly challenging. For this reason, innovative high-throughput platforms and bioinformatics algorithms are increasingly replacing classical CNV detection methods. Here, we report the design strategy, development, validation and implementation of NeuroArray, a customized exon-centric high-resolution array-based comparative genomic hybridization (aCGH) tailored to detect single/multi-exon deletions and duplications in a large panel of PD-related genes. This targeted design allows for a focused evaluation of structural imbalances in clinically relevant PD genes, combining exon-level resolution with genome-wide coverage. The NeuroArray platform may offer new insights in elucidating inherited potential or de novo structural alterations in PD patients and investigating new candidate genes.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s10048-016-0494-0) contains supplementary material, which is available to authorized users.
Abkürzungen
aCGH
Comparative genomic hybridization array
AD
Alzheimer’s disease
ALS
Amyotrophic lateral sclerosis
BMD
Becker muscular dystrophy
CNV
Copy number variation
DMD
Duchenne muscular dystrophy
HSP
Hereditary spastic paraplegia
LGMD
Limb-girdle muscular dystrophy
MLPA
Multiplex ligation-dependent probe amplification
NF
Neurofibromatosis
NGS
Next generation sequencing
PD
Parkinson’s disease
PN
Peripheral neuropathy
qPCR
Quantitative polymerase chain reaction
RTT
Rett syndrome
SCA
Spinocerebellar ataxia
TSC
Tuberous sclerosis

Introduction

Parkinson’s disease (PD) is a progressive debilitating movement disorder that affects approximately 1 % of the population older than 65 years of age worldwide [1]. Clinically, most patients present resting tremor, bradykinesia, stiffness of movement and postural instability. These major symptoms derive from the profound and selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNc), coupled with the accumulation of eosinophilic intracytoplasmic aggregates termed Lewy bodies (LBs) [1]. Like other complex diseases, PD is believed to be a multifactorial syndrome, resulting from an elaborate interplay of numerous elements (genes, susceptibility alleles, environmental exposures and gene-environment interactions), and its molecular aetiology remains incompletely understood [2].
In recent years, the intensive efforts of the scientific community and the significant and rapid advancement of biotechnologies have fuelled several steps towards the elucidation of the genetic components of PD. Genome-wide linkage scans and exome sequencing of well-characterized PD families have been successful in discovering disease-causing mutations in dominant (SNCA, LRRK2, VPS35 and the recent TMEM230), recessive (PARK2, PINK1, DJ1, DNAJC6) [24] and X-linked (RAB39B) PD genes [5, 6]. Other genes, such as CHCHD2 and EIF4G1, are associated with familial PD inheritance but still require independent confirmations [7, 8]. Moreover, a set of genes related to atypical parkinsonian forms is known and includes ATP13A2, whose mutations cause the Kufor-Rakeb syndrome (PARK9) [9]. Despite the existence of these rare Mendelian monogenic forms, it is now clear that PD is a genetically heterogeneous and most likely complex disorder. This complexity is underlined by the notion that we are currently aware of dozens of loci, genes and risk factors that seem to contribute to PD [2, 10]. These genes are involved in numerous cellular pathways, such as the ubiquitin-proteasome system, synaptic transmission, autophagy, lysosomal autophagy, endosomal trafficking, mitochondrial metabolism, apoptosis and inflammatory mechanisms, all of which are generally implicated in neuronal cell death [11].
While the major pathogenic mutations are single nucleotide polymorphisms (SNPs) in the coding regions of PD-linked genes, the contribution of other types of DNA molecular defects (e.g. structural chromosome abnormalities such as CNVs) to the genomic architecture is less emphasized but equally significant [12, 13]. CNVs are unbalanced rearrangements larger than 50 bp and arise from genomic instability [12]. They are recognized as critical elements for the development and maintenance of the nervous system and appear to contribute to hereditable or sporadic neurological diseases, including neuropathies, epilepsy, autistic syndromes, psychiatric illnesses and neurodegenerative diseases, such as PD [1416]. In this regard, several CNVs have been reported in PD patients, including specific pathogenic anomalies mapped in PD loci or involving candidate PD-related genes [17]. To mention the most recurrent, SNCA copy-number gains have been proven to play a major role in the disease severity of PARK1, while PARK2 homozygous or compound heterozygous exon copy number changes are very common among the early-onset cases, rendering the gene-dosage assay essential in mutational screening.
Currently, the detection of CNVs and gene dosage imbalances mainly relies on traditional methodological approaches (karyotyping and PCR-based approaches such as quantitative PCR and multiple ligation probe analysis). However, these methodologies bear objective limits: they are time-consuming and labour-intensive, require multiple phase steps and severe equipment costs and, above all, do not provide a complete genomic overview of structural imbalances at sufficiently high resolution. The development of the array-based comparative genomic hybridization (aCGH) technology has dramatically improved and catalysed the detection and characterization of multiple CNVs, offering high reproducibility, high resolution and scalability for complete genome-wide mapping of imbalances [18]. The aCGH technique has been refined to the most advanced aCGH plus SNP edition, a widely used array able to simultaneously perform SNP genotyping and CNV detection. This methodology shows higher sensitivity for the detection of low-level mosaic aneuploidies and chimerism and offers the ability to detect loss of heterozygosity, but it has a limited ability to detect single-exon CNVs due to the distribution of SNPs across the genome. For this reason, several customized aCGHs suitably designed to focus on specific clinically relevant chromosomal locations have been developed and are already applied to different human diseases, including neuromuscular diseases, cancer, autism, epilepsy, multiple sclerosis, mitochondrial and metabolic disorders [1924].
In this study, we developed a customized exon-centric aCGH (hereafter called NeuroArray), tailored to detect single/multi-exon deletions and duplications in a large panel of PD-related genes. We will first report the design strategy and the applied analysis methods. Then, we will show two representative PD cases tested on NeuroArray. Our findings show the advantages of the NeuroArray platform in terms of results, time and costs, as well as for the discovery of new potential genetic biomarkers underlying the pathogenic mechanisms of PD and commonly shared genetic signatures with other neurological diseases.

Materials and methods

Gene selection and aCGH design strategy

To build the customized NeuroArray aCGH platform, we aimed to obtain a high-density probe coverage in the coding region of clinically relevant genes associated with PD. Gene selection relied on our expertise in the clinic, genetics and literature data and has been extended to the entire currently known sets of genes collected in PDGene (http://​www.​pdgene.​org/​) [25]. The list of selected genes embraces disease-causing genes, known and putative risk factors and other genetic regions affected by different types of mutations. To perform a differential diagnosis, we also included genes related to other neurological conditions (see Supplementary Information and Supplementary Tables).
The array design was carried out by using the web-based Agilent SureDesign Software (Agilent Technologies, Santa Clara, CA), a web application that allows one to define regions of interest and select the “best-performing” probes from the High-Density (HD) Agilent probe library. Candidate probes were scored and filtered using bioinformatics prediction criteria for probe sensitivity, specificity and responsiveness under appropriate conditions. We also selected a limited number of probes by genomic tiling to cover regions inadequately represented in the Agilent database. All probes had similar characteristics: isothermal probes, with melting temperature (Tm) of 80 °C and probe length of approximately 60-mers, in accordance with the manufacturer’s specifications. Further details about the design method, the number of genes and exons, the median probe spacing and other characteristics of NeuroArray are summarized in Table 1, Supplementary Information and Supplementary Table 1.
Table 1
Main characteristics of the customized PD panel
Customized PD panel design
Total genes
505
Total exonic targets
6826
Target coverage
94 %
Total target/exon size
1935 Mbp
Total probes (1–2 probes per exon)
11,161
Total unique probes from HD database
10,411
Total unique probes by genomic tiling
750
Median probe spacing
391 bp
Mean target size
323 bp
Uncovered targets
431
The table lists the total number of selected genes and exon targets, the mean exon size, the number of probes, the median probe spacing and the total coverage of the customized design for CNV detection in PD. The array design was performed through the Agilent SureDesign software (https://​earray.​chem.​agilent.​com/​suredesign/​). The majority of probes have been scored and filtered from the High-Density (HD) Agilent probe library. A limited number of probes have been designed with the Genomic Tiling option to cover regions inadequately represented in the Agilent database. All probes have been chosen with similar characteristics: isothermal probes, with melting temperature (Tm) of 80 °C and probe length of ̴ 60-mers

Clinical sample selection

To validate the NeuroArray, we selected DNA samples from individuals suffering from PD or other neurological disorders and previously subjected to gene dosage through multiplex ligation-dependent probe amplification (MLPA), quantitative real-time polymerase chain reaction (qPCR) or other commercially available whole-genome aCGH. Moreover, DNA samples of patients with PD phenotypes but an incomplete molecular diagnosis were referred for NeuroArray molecular cytogenetic testing. Informed consent was obtained for the use of DNA samples and for the access to medical records for research purposes.

Microarray experiment and data analysis

Genomic DNA was extracted from peripheral blood lymphocytes using the EZ1 DNA Blood extraction kit (Qiagen, Hilden, Germany) by the BioRobot EZ1 following the manufacturer’s recommendations (Qiagen, Hilden, Germany). Highly concentrated DNA was checked for quality using the NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE). Array experiments were performed as recommended by the manufacturer (Agilent Technologies, Santa Clara, CA), and data were extracted using Feature Extraction software (Agilent Technologies, Santa Clara, CA). After the quality control check, data visualization and analysis were performed with CytoGenomics software v. 3.0.6.6. (Agilent Technologies, Santa Clara, CA) using both ADM-2 and ADM-1 algorithms. Moreover, we took into account a single-probe analysis to include putative exonic variants. Significant single exonic probe signals were clustered for pathologies according to their location on causative or susceptibility genes through a homemade script on R-platform [26]. Full details on microarray experiments and data analysis are available in the Supplementary Information.

Validation

Ad hoc qPCR assays were performed to validate genomic imbalances detected by the NeuroArray as previously described [27]. Primers flanking the putative exonic imbalances were designed using the Primer-BLAST tool (http://​www.​ncbi.​nlm.​nih.​gov/​tools/​primer-blast/​). Each qPCR assay was performed in triplicate using the LightCycler 1.5 (Roche Diagnostics, Germany). The relative quantification was measured using the ∆∆Ct method, which requires a healthy control sample (diploid) as a calibrator in all amplifications [28]. As a calibrator control, we used the same DNA reference hybridized in the NeuroArray experiments. A control gene, checked as normal double copies on NeuroArray, was used as a reference for normalization. We considered a ΔΔCt value ≤0.6 as a loss, included from 0.8 to 1.2 as normal diploid, and ≥1.4 as a gain. PCR products were visualized by agarose gel electrophoresis.

Results

aCGH design on a targeted PD gene panel

To perform a comprehensive analysis of CNVs in PD-related genes, we developed a focused customized oligonucleotide aCGH design targeting 505 genes and 6826 exonic regions linked to PD. Overall, 11,161 probes with a median probe spacing of 391 bp were enriched in the coding regions of these genes (Table 1). The majority of targeted genes map on chromosome 1, while lower numbers are distributed among the other chromosomes (Fig. 1).
The tightly restricted criteria used for the array customization have allowed a higher exonic probe enrichment on selected gene panels, overcoming the resolution of commercially available genome-wide CGH array platforms. Overall, 94 % of the total exon targets are covered by at least one probe in the NeuroArray design (Table 1), while other commercially available aCGH platforms provide a lower probe coverage of the same selected exonic regions. For example, the Agilent SurePrint G3 Human CGH Microarray 8 × 60K slide format covers our selected regions by 8.2 %, while the highest-resolution 1 × 1M array provides 25 % of our target coverage. A representative illustration is reported in Fig. 2 and focuses on PINK1 (RefSeq acc. no. NM_032409.2).
To perform an accurate differential analysis between PD patients and other neurological phenotypes, we also included genes related to other neurological disorders (Supplementary Information and Supplementary Tables ). Specifically, 160 of the 505 PD-related genes were linked to other neurological conditions (Fig. 1).
NeuroArray was able to confirm copy number changes previously characterized by other methodological strategies and revealed new interesting genomic imbalances. In the following sections, we will show two representative examples of NeuroArray tests obtained by using genomic DNA samples of PD patients. Further CNVs were observed in other neurological disease-related panels and were validated by qPCR (data not shown).

Application of an integrated ADM-1 and ADM-2 algorithm-based data analysis to improve CNV calling

The DNA sample of patient no. 1 was referred to our laboratory for molecular testing of PARK2, PINK1 and DJ1, to confirm the clinical diagnosis of familial recessive early-onset PD. Mutation analysis showed a heterozygous C1305T single nucleotide substitution in the coding region of PARK2. NeuroArray (with the ADM-1 algorithm) revealed 10 different CNVs, overall composed of 6 gains and 4 losses (Table 2). Four of them included genes previously linked to PD [2932], while the others overlapped with genes related to other neurological conditions [3342] (Table 2).
Table 2
Representative view of genomic CNVs detected by NeuroArray in a PD patient
CNV type
Chr
Start–stop (bp)
Size (kb)
Cytoband
No. of probes
Annotations
Disease-linked genes
Ref.
Previously described in DGV?
ClinGen nomenclature (described pathogenic variants)
Gain
1
6,579,851–8,021,801
1442
p36.31–p36.23
3
PLEKHG5, NOL9, TAS1R1, ZBTB48, THAP3, DNAJC11, KLHL21, PHF13, CAMTA1, VAMP3, PER3, UTS2, TNFRSF9, PARK7
PLEKHG5 (neuropathies and ALS), PARK7 (PD and ALS)
[2, 3941]
Overlaps nsv1004598
Almost completely contained within nssv1602095, nssv578510, nssv578509
Gain
1
54,704,828–54,747,170
42
p32.3
12
SSBP3
PD
[29]
No
Completely contained within nssv578523 and nssv578522
Gain
2
179,541,928–179,542,606
1
q31.2
3
TTN
Limb-girdle muscular dystrophy
[38]
No
Not reported
Loss
3
142,216,000–142,222,244
6
q23
6
ATR
Epilepsy
[42]
Overlaps nsv528954
Completely contained within nssv583804, nssv577921, nssv577927, nssv583018, nssv1602712, nssv3395109
Loss
3
178,922,270–178,927,435
5
q26.32
3
PIK3CA
Epilepsy
[37]
No
Not reported
Gain
5
70,307,077–70,308,602
2
q13.2
4
NAIP
ALS
[36]
Yes (completely contained in several genomic structural variants)
Completely contained within nssv1602328
Gain
9
131,012,433–131,314,975
303
q34.11
6
DNM1, GOLGA2, C9orf119, TRUB2, COQ4, SLC27A4, URM1, CERCAM, ODF2, GLE1, SPTAN1
DNM1 (epilepsy), SPTAN1 (epilepsy)
[34, 35]
Overlaps nsv1051081
Completely contained within nssv579112, nssv579118, nssv579123, nssv579147, nssv579149, nssv576650, nssv584344, nssv584434, nssv579136, nssv579139, nssv579121, nssv579124, nssv579127, nssv579138, nssv579140, nssv1602335, nssv1494937, nssv1415412, nssv1603388, nssv3397050, nssv3397066, nssv3397108
Loss
9
139,903,473–139,904,058
1
q34.3
4
ABCA2
AD
[33]
Yes (completely contained in several genomic structural variants)
Completely contained within nssv579112, nssv579118, nssv579123, nssv579147, nssv579149, nssv576610, nssv576650, nssv584344, nssv584430, nssv584434, nssv579136, nssv579139, nssv1603388, nssv1604614, nssv3397050, nssv3397066, nssv3397108, nssv579121, nssv579124, nssv579127, nssv579138, nssv579145, nssv707149, nssv582161, nssv1602986, nssv1494937, nssv1415412, nssv1602335, nssv1494929
Gain
12
56,615,423–56,615,694
0.27
q13.3
3
RNF41
PD
[30]
Yes (completely contained within nsv1051961)
Completely contained with nssv1603959
Loss
17
44,701,610–44,771,900
70
q21.31
14
NSF, NSFP1
PD
[45]
Yes (completely contained in several genomic structural variants)
Not reported
The NeuroArray aCGH (ADM-1 analysis method) revealed 10 different CNVs overall composed of six gains and four losses. Four of them overlapped with genes belonging to the PD panel (in bold type), while the others mainly included ALS or epilepsy-related genes. Overlapping structural variants previously described and deposited in DGV (http://​dgv.​tcag.​ca/) or ClinGen (https://​www.​clinicalgenome.​org/​) databases are also indicated. Start and stop coordinates refer to UCSC Genome Browser Human Feb. 2009 Assembly (GRCh37/hg19)
The most interesting findings regarded two principal dosage anomalies: (i) the gain of a 1442-kb region on chromosome 1, which encompasses PARK7, and (ii) the loss of the NSF (N-ethylmaleimide-sensitive factor) gene on chromosome 17 (Fig. 3a, b). Mutations in PARK7 comprehensively account for ∼1 % of the early-onset familial cases [1], and its copy number changes have been previously observed in PD patients [43, 44]. NSF is involved in vesicular trafficking, membrane fusion and synaptic neurotransmission, and its genetic alterations (both SNPs and deletion) have been previously reported in PD patients [31, 45]. Validations of these genomic rearrangements were performed with qPCR assays, suitably designed to target PARK7 exon 1 and NSF exon 11. Both assays confirmed the CNVs with 100 % concordance and confirmed the heterozygous gain/loss (Fig. 3c). Primer sequences and PCR conditions are available upon request.
It should be highlighted that the default analysis with the ADM-2 algorithm revealed the loss of only the NSF gene. If this method were the only one applied, other relevant real CNVs (like the PARK7 gain, later confirmed by qPCR) would have been lost. On the other hand, the analysis with ADM-2 allowed for the filtering of possible false-positive CNVs within the ADM-1 analysis. It appears important, therefore, to integrate data from both CNV calling algorithms in order to provide a more accurate data analysis and, consequently, ensure a more effective quality assessment and experimental validation.

Detection of single-exon copy number changes by NeuroArray

Although some authors have outlined the evidence that a significant proportion of single probe intervals represents real events [46], in aCGH studies, it is often recommended to report only intervals detected by three or more consecutive probes. Due to this approach, deletions or duplications below certain size cut-offs are usually ignored in the aCGH reports and not reported. However, these genomic alterations (detected by less than three probes) have been demonstrated to be definitively crucial for particular clinical diagnoses [47]. Along this line, we applied a single probe analysis to reveal short genomic imbalances in the exonic regions of strongly linked causative genes. The utility of this approach on NeuroArray data analysis is shown in the following case.
Patient no. 2 was a sporadic PD patient, carrying a heterozygous deletion of two adjacent exons (4 and 5) of the PARK2 gene. This deletion was previously revealed by an MLPA assay (SALSA MLPA Kit P051/P052 Parkinson; MRC-Holland). The NeuroArray test was able to detect and confirm the deletion of exon 5 through two consecutive probes (Fig. 4) but was not able to detect the exon 4 deletion because during the phase of array design, this exon skipped the optimum parameters for probe coverage. The total concordance with the MLPA test was 91 %. Despite this limit, the one-probe analysis was essential to detect the exon 5 PARK2 deletion, which otherwise would not have been properly outlined using the analysis of three consecutive probes. However, this approach may result in a great number of false positives. Therefore, it is advisable to use it as a validation strategy for previously known exonic imbalances, i.e. next generation sequencing (NGS)-targeted panels, or to investigate copy number changes in a small set of strongly causative genes.

Discussion

In recent years, several studies have highlighted the key role of CNVs in the development of hereditable or sporadic neurological diseases, including PD [1416]. Many gene-dosage anomalies have been previously mapped in PD patients, including familiar genes (SNCA, PARK2, PINK1, PARK7, ATP13A2) [48, 49], as well as several rare CNVs in candidate regions [45]. The aCGH biotechnology currently represents a useful tool for the detection of unbalanced chromosomal changes across the human genome, and its applications to screen common benign and rare pathogenetic CNVs are extensively growing [1923]. The classical methodologic approaches are a gold-standard test when applied to monogenic disorders, but when applied to multigenic complex pathologies (such as PD), they require higher equipment costs, time, steps and personnel [50]. Conversely, targeted aCGH is rapid, relatively inexpensive, highly sensitive and an accurate method to simultaneously detect single- and multi-exon CNVs in numerous genes on a unique common platform. For this reason, several whole-genome and exon-targeted aCGH platforms have already been implemented in human diseases [1924], and their utility has been demonstrated in patients with various clinical complex phenotypes [5153].
In this study, we have designed and validated a targeted exon-centric aCGH platform (NeuroArray) as a molecular testing tool to simultaneously screen CNV imbalances in a large set of clinically relevant genes for PD and other complex neurological diseases. This customized design offers some considerable advantages: it allows an exon-focused evaluation of structural imbalances in clinically relevant regions at a higher resolution than whole-genome commercially available platforms and lowers the costs of an “exon by exon” analysis through PCR-based approaches, simultaneously providing an extensive window of further potentially involved genetic alterations.
In addition to the customized design, we also applied several approaches for data analysis. The first interesting result was the need to integrate data from both the ADM-1 and ADM-2 algorithms for CNV calling aberrations in order to reduce the number of false positives and to bring out relevant CNVs that otherwise would have been lost. We have also employed a one-probe analysis to reveal small imbalances at the single-exon level. Although this approach has the potential to detect crucial genetic variations ignored by multi-probe analysis, it largely increases the quantity of false-positive probe signals. Therefore, the single-probe analysis would be a useful validation strategy for NGS experiments or to investigate exon copy number changes in a smaller set of causative genes (as we performed with the script in the R-platform).
The use of dedicated high-throughput genotyping platforms like our NeuroArray could offer new opportunities for the PD genomic research field, mainly for familiar PD cases with an incomplete molecular diagnosis or sporadic cases without any detected genetic anomalies. The large-scale screening of genes that are involved in nervous system dysfunctions could allow for differential diagnosis with other common neurological disorders, refine the genotype-phenotype correlations and explore the potential genetic overlapping signatures among different neurological conditions [54]. Specifically, the PD panel shares a good number of genes with other neurological diseases (Fig. 1). Given the existence of PD patients with combined clinical and pathological features [5557], this strategy could be useful to investigate common genetic anomalies underlying very complex phenotypes.
Similarly to other aCGH-based technology, NeuroArray has some limitations, such as the inability to detect mosaicism poorly represented, balanced structural chromosomal abnormalities, nucleotide repeat expansions (e.g. in C9orf72 or ATXN2 genes) and mutations included in regions not covered by probes. To overcome some of these limits and reduce the number of false-positive signals, we are developing a second version of the NeuroArray design with the aim of improving probe coverage in non-targeted genomic regions, including (where necessary) the intronic flanking regions and the alternatively spliced cassette exons of relevant PD genes [5860].

Conclusions

Our NeuroArray platform represents a powerful and reliable tool for the analysis of genomic imbalances associated with PD and other neurological diseases. Compared to PCR-based approaches applied to multigene analysis or to whole-genome commercially available CGH arrays, it provides a focused higher resolution at a lower cost, enabling a more detailed analysis of clinically relevant exonic regions and offering a better cost/benefit ratio. In future years, the use of this platform may offer new insights into the investigation of new genetic molecular anomalies contributing to PD, as well as a more precise definition of genotype-phenotype relationships. It may also offer novel clues in the elucidation of potential genetic overlapping among different neurological conditions.

Acknowledgments

This work was supported by the Italian Ministry of Education, Universities and Research through grant CTN01_00177_817708 and the international Ph.D. program in Neuroscience of the University of Catania. The authors gratefully acknowledge Cristina Calì, Alfia Corsino, Maria Patrizia D’Angelo and Francesco Marino for their administrative and technical support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Experiments involving human participants have been approved by an ethical committee for medical research and have been performed in accordance with ethical standards.
Informed consent was obtained from all individual participants included in the study.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Literatur
3.
Zurück zum Zitat Deng HX, Shi Y, Yang Y, Ahmeti KB, Miller N, Huang C, Cheng L, Zhai H, Deng S, Nuytemans K, Corbett NJ, Kim MJ, Deng H, Tang B, Yang Z, Xu Y, Chan P, Huang B, Gao XP, Song Z, Liu Z, Fecto F, Siddique N, Foroud T, Jankovic J, Ghetti B, Nicholson DA, Krainc D, Melen O, Vance JM, Pericak-Vance MA, Ma YC, Rajput AH, Siddique T (2016) Identification of TMEM230 mutations in familial Parkinson’s disease. Nat Genet 48(7):733–739. doi:10.1038/ng.3589 PubMedCrossRef Deng HX, Shi Y, Yang Y, Ahmeti KB, Miller N, Huang C, Cheng L, Zhai H, Deng S, Nuytemans K, Corbett NJ, Kim MJ, Deng H, Tang B, Yang Z, Xu Y, Chan P, Huang B, Gao XP, Song Z, Liu Z, Fecto F, Siddique N, Foroud T, Jankovic J, Ghetti B, Nicholson DA, Krainc D, Melen O, Vance JM, Pericak-Vance MA, Ma YC, Rajput AH, Siddique T (2016) Identification of TMEM230 mutations in familial Parkinson’s disease. Nat Genet 48(7):733–739. doi:10.​1038/​ng.​3589 PubMedCrossRef
4.
Zurück zum Zitat Olgiati S, Quadri M, Fang M, Rood JP, Saute JA, Chien HF, Bouwkamp CG, Graafland J, Minneboo M, Breedveld GJ, Zhang J, International Parkinsonism Genetics N, Verheijen FW, Boon AJ, Kievit AJ, Jardim LB, Mandemakers W, Barbosa ER, Rieder CR, Leenders KL, Wang J, Bonifati V (2016) DNAJC6 mutations associated with early-onset Parkinson’s disease. Ann Neurol 79(2):244–256. doi:10.1002/ana.24553 PubMedCrossRef Olgiati S, Quadri M, Fang M, Rood JP, Saute JA, Chien HF, Bouwkamp CG, Graafland J, Minneboo M, Breedveld GJ, Zhang J, International Parkinsonism Genetics N, Verheijen FW, Boon AJ, Kievit AJ, Jardim LB, Mandemakers W, Barbosa ER, Rieder CR, Leenders KL, Wang J, Bonifati V (2016) DNAJC6 mutations associated with early-onset Parkinson’s disease. Ann Neurol 79(2):244–256. doi:10.​1002/​ana.​24553 PubMedCrossRef
5.
Zurück zum Zitat Wilson GR, Sim JC, McLean C, Giannandrea M, Galea CA, Riseley JR, Stephenson SE, Fitzpatrick E, Haas SA, Pope K, Hogan KJ, Gregg RG, Bromhead CJ, Wargowski DS, Lawrence CH, James PA, Churchyard A, Gao Y, Phelan DG, Gillies G, Salce N, Stanford L, Marsh AP, Mignogna ML, Hayflick SJ, Leventer RJ, Delatycki MB, Mellick GD, Kalscheuer VM, D’Adamo P, Bahlo M, Amor DJ, Lockhart PJ (2014) Mutations in RAB39B cause X-linked intellectual disability and early-onset Parkinson disease with alpha-synuclein pathology. Am J Hum Genet 95(6):729–735. doi:10.1016/j.ajhg.2014.10.015 PubMedPubMedCentralCrossRef Wilson GR, Sim JC, McLean C, Giannandrea M, Galea CA, Riseley JR, Stephenson SE, Fitzpatrick E, Haas SA, Pope K, Hogan KJ, Gregg RG, Bromhead CJ, Wargowski DS, Lawrence CH, James PA, Churchyard A, Gao Y, Phelan DG, Gillies G, Salce N, Stanford L, Marsh AP, Mignogna ML, Hayflick SJ, Leventer RJ, Delatycki MB, Mellick GD, Kalscheuer VM, D’Adamo P, Bahlo M, Amor DJ, Lockhart PJ (2014) Mutations in RAB39B cause X-linked intellectual disability and early-onset Parkinson disease with alpha-synuclein pathology. Am J Hum Genet 95(6):729–735. doi:10.​1016/​j.​ajhg.​2014.​10.​015 PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Mata IF, Jang Y, Kim CH, Hanna DS, Dorschner MO, Samii A, Agarwal P, Roberts JW, Klepitskaya O, Shprecher DR, Chung KA, Factor SA, Espay AJ, Revilla FJ, Higgins DS, Litvan I, Leverenz JB, Yearout D, Inca-Martinez M, Martinez E, Thompson TR, Cholerton BA, Hu SC, Edwards KL, Kim KS, Zabetian CP (2015) The RAB39B p.G192R mutation causes X-linked dominant Parkinson’s disease. Mol Neurodegener 10:50. doi:10.1186/s13024-015-0045-4 PubMedPubMedCentralCrossRef Mata IF, Jang Y, Kim CH, Hanna DS, Dorschner MO, Samii A, Agarwal P, Roberts JW, Klepitskaya O, Shprecher DR, Chung KA, Factor SA, Espay AJ, Revilla FJ, Higgins DS, Litvan I, Leverenz JB, Yearout D, Inca-Martinez M, Martinez E, Thompson TR, Cholerton BA, Hu SC, Edwards KL, Kim KS, Zabetian CP (2015) The RAB39B p.G192R mutation causes X-linked dominant Parkinson’s disease. Mol Neurodegener 10:50. doi:10.​1186/​s13024-015-0045-4 PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Funayama M, Ohe K, Amo T, Furuya N, Yamaguchi J, Saiki S, Li Y, Ogaki K, Ando M, Yoshino H, Tomiyama H, Nishioka K, Hasegawa K, Saiki H, Satake W, Mogushi K, Sasaki R, Kokubo Y, Kuzuhara S, Toda T, Mizuno Y, Uchiyama Y, Ohno K, Hattori N (2015) CHCHD2 mutations in autosomal dominant late-onset Parkinson’s disease: a genome-wide linkage and sequencing study. Lancet Neurol 14(3):274–282. doi:10.1016/S1474-4422(14)70266-2 PubMedCrossRef Funayama M, Ohe K, Amo T, Furuya N, Yamaguchi J, Saiki S, Li Y, Ogaki K, Ando M, Yoshino H, Tomiyama H, Nishioka K, Hasegawa K, Saiki H, Satake W, Mogushi K, Sasaki R, Kokubo Y, Kuzuhara S, Toda T, Mizuno Y, Uchiyama Y, Ohno K, Hattori N (2015) CHCHD2 mutations in autosomal dominant late-onset Parkinson’s disease: a genome-wide linkage and sequencing study. Lancet Neurol 14(3):274–282. doi:10.​1016/​S1474-4422(14)70266-2 PubMedCrossRef
8.
Zurück zum Zitat Chartier-Harlin MC, Dachsel JC, Vilarino-Guell C, Lincoln SJ, Lepretre F, Hulihan MM, Kachergus J, Milnerwood AJ, Tapia L, Song MS, Le Rhun E, Mutez E, Larvor L, Duflot A, Vanbesien-Mailliot C, Kreisler A, Ross OA, Nishioka K, Soto-Ortolaza AI, Cobb SA, Melrose HL, Behrouz B, Keeling BH, Bacon JA, Hentati E, Williams L, Yanagiya A, Sonenberg N, Lockhart PJ, Zubair AC, Uitti RJ, Aasly JO, Krygowska-Wajs A, Opala G, Wszolek ZK, Frigerio R, Maraganore DM, Gosal D, Lynch T, Hutchinson M, Bentivoglio AR, Valente EM, Nichols WC, Pankratz N, Foroud T, Gibson RA, Hentati F, Dickson DW, Destee A, Farrer MJ (2011) Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet 89(3):398–406. doi:10.1016/j.ajhg.2011.08.009 PubMedPubMedCentralCrossRef Chartier-Harlin MC, Dachsel JC, Vilarino-Guell C, Lincoln SJ, Lepretre F, Hulihan MM, Kachergus J, Milnerwood AJ, Tapia L, Song MS, Le Rhun E, Mutez E, Larvor L, Duflot A, Vanbesien-Mailliot C, Kreisler A, Ross OA, Nishioka K, Soto-Ortolaza AI, Cobb SA, Melrose HL, Behrouz B, Keeling BH, Bacon JA, Hentati E, Williams L, Yanagiya A, Sonenberg N, Lockhart PJ, Zubair AC, Uitti RJ, Aasly JO, Krygowska-Wajs A, Opala G, Wszolek ZK, Frigerio R, Maraganore DM, Gosal D, Lynch T, Hutchinson M, Bentivoglio AR, Valente EM, Nichols WC, Pankratz N, Foroud T, Gibson RA, Hentati F, Dickson DW, Destee A, Farrer MJ (2011) Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet 89(3):398–406. doi:10.​1016/​j.​ajhg.​2011.​08.​009 PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Vilarino-Guell C, Soto AI, Lincoln SJ, Ben Yahmed S, Kefi M, Heckman MG, Hulihan MM, Chai H, Diehl NN, Amouri R, Rajput A, Mash DC, Dickson DW, Middleton LT, Gibson RA, Hentati F, Farrer MJ (2009) ATP13A2 variability in Parkinson disease. Hum Mutat 30(3):406–410. doi:10.1002/humu.20877 PubMedPubMedCentralCrossRef Vilarino-Guell C, Soto AI, Lincoln SJ, Ben Yahmed S, Kefi M, Heckman MG, Hulihan MM, Chai H, Diehl NN, Amouri R, Rajput A, Mash DC, Dickson DW, Middleton LT, Gibson RA, Hentati F, Farrer MJ (2009) ATP13A2 variability in Parkinson disease. Hum Mutat 30(3):406–410. doi:10.​1002/​humu.​20877 PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Wang L, Nuytemans K, Bademci G, Jauregui C, Martin ER, Scott WK, Vance JM, Zuchner S (2013) High-resolution survey in familial Parkinson disease genes reveals multiple independent copy number variation events in PARK2. Hum Mutat 34(8):1071–1074. doi:10.1002/humu.22344 PubMedPubMedCentralCrossRef Wang L, Nuytemans K, Bademci G, Jauregui C, Martin ER, Scott WK, Vance JM, Zuchner S (2013) High-resolution survey in familial Parkinson disease genes reveals multiple independent copy number variation events in PARK2. Hum Mutat 34(8):1071–1074. doi:10.​1002/​humu.​22344 PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Pankratz N, Dumitriu A, Hetrick KN, Sun M, Latourelle JC, Wilk JB, Halter C, Doheny KF, Gusella JF, Nichols WC, Myers RH, Foroud T, DeStefano AL, Psg P, GenePd Investigators C, Molecular Genetic L (2011) Copy number variation in familial Parkinson disease. PLoS One 6(8):e20988. doi:10.1371/journal.pone.0020988 PubMedPubMedCentralCrossRef Pankratz N, Dumitriu A, Hetrick KN, Sun M, Latourelle JC, Wilk JB, Halter C, Doheny KF, Gusella JF, Nichols WC, Myers RH, Foroud T, DeStefano AL, Psg P, GenePd Investigators C, Molecular Genetic L (2011) Copy number variation in familial Parkinson disease. PLoS One 6(8):e20988. doi:10.​1371/​journal.​pone.​0020988 PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Shaw-Smith C, Redon R, Rickman L, Rio M, Willatt L, Fiegler H, Firth H, Sanlaville D, Winter R, Colleaux L, Bobrow M, Carter NP (2004) Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 41(4):241–248PubMedPubMedCentralCrossRef Shaw-Smith C, Redon R, Rickman L, Rio M, Willatt L, Fiegler H, Firth H, Sanlaville D, Winter R, Colleaux L, Bobrow M, Carter NP (2004) Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 41(4):241–248PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Ferlini A, Bovolenta M, Neri M, Gualandi F, Balboni A, Yuryev A, Salvi F, Gemmati D, Liboni A, Zamboni P (2010) Custom CGH array profiling of copy number variations (CNVs) on chromosome 6p21.32 (HLA locus) in patients with venous malformations associated with multiple sclerosis. BMC Med Genet 11:64. doi:10.1186/1471-2350-11-64 PubMedPubMedCentralCrossRef Ferlini A, Bovolenta M, Neri M, Gualandi F, Balboni A, Yuryev A, Salvi F, Gemmati D, Liboni A, Zamboni P (2010) Custom CGH array profiling of copy number variations (CNVs) on chromosome 6p21.32 (HLA locus) in patients with venous malformations associated with multiple sclerosis. BMC Med Genet 11:64. doi:10.​1186/​1471-2350-11-64 PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Piluso G, Dionisi M, Del Vecchio BF, Torella A, Aurino S, Savarese M, Giugliano T, Bertini E, Terracciano A, Vainzof M, Criscuolo C, Politano L, Casali C, Santorelli FM, Nigro V (2011) Motor chip: a comparative genomic hybridization microarray for copy-number mutations in 245 neuromuscular disorders. Clin Chem 57(11):1584–1596. doi:10.1373/clinchem.2011.168898 PubMedCrossRef Piluso G, Dionisi M, Del Vecchio BF, Torella A, Aurino S, Savarese M, Giugliano T, Bertini E, Terracciano A, Vainzof M, Criscuolo C, Politano L, Casali C, Santorelli FM, Nigro V (2011) Motor chip: a comparative genomic hybridization microarray for copy-number mutations in 245 neuromuscular disorders. Clin Chem 57(11):1584–1596. doi:10.​1373/​clinchem.​2011.​168898 PubMedCrossRef
21.
Zurück zum Zitat Inazawa J, Inoue J, Imoto I (2004) Comparative genomic hybridization (CGH)-arrays pave the way for identification of novel cancer-related genes. Cancer Sci 95(7):559–563PubMedCrossRef Inazawa J, Inoue J, Imoto I (2004) Comparative genomic hybridization (CGH)-arrays pave the way for identification of novel cancer-related genes. Cancer Sci 95(7):559–563PubMedCrossRef
22.
Zurück zum Zitat Wisniowiecka-Kowalnik B, Kastory-Bronowska M, Bartnik M, Derwinska K, Dymczak-Domini W, Szumbarska D, Ziemka E, Szczaluba K, Sykulski M, Gambin T, Gambin A, Shaw CA, Mazurczak T, Obersztyn E, Bocian E, Stankiewicz P (2013) Application of custom-designed oligonucleotide array CGH in 145 patients with autistic spectrum disorders. Eur J Hum Genet: EJHG 21(6):620–625. doi:10.1038/ejhg.2012.219 PubMedCrossRef Wisniowiecka-Kowalnik B, Kastory-Bronowska M, Bartnik M, Derwinska K, Dymczak-Domini W, Szumbarska D, Ziemka E, Szczaluba K, Sykulski M, Gambin T, Gambin A, Shaw CA, Mazurczak T, Obersztyn E, Bocian E, Stankiewicz P (2013) Application of custom-designed oligonucleotide array CGH in 145 patients with autistic spectrum disorders. Eur J Hum Genet: EJHG 21(6):620–625. doi:10.​1038/​ejhg.​2012.​219 PubMedCrossRef
23.
Zurück zum Zitat Mefford HC, Muhle H, Ostertag P, von Spiczak S, Buysse K, Baker C, Franke A, Malafosse A, Genton P, Thomas P, Gurnett CA, Schreiber S, Bassuk AG, Guipponi M, Stephani U, Helbig I, Eichler EE (2010) Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet 6(5):e1000962. doi:10.1371/journal.pgen.1000962 PubMedPubMedCentralCrossRef Mefford HC, Muhle H, Ostertag P, von Spiczak S, Buysse K, Baker C, Franke A, Malafosse A, Genton P, Thomas P, Gurnett CA, Schreiber S, Bassuk AG, Guipponi M, Stephani U, Helbig I, Eichler EE (2010) Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet 6(5):e1000962. doi:10.​1371/​journal.​pgen.​1000962 PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Lill CM, Roehr JT, McQueen MB, Kavvoura FK, Bagade S, Schjeide BM, Schjeide LM, Meissner E, Zauft U, Allen NC, Liu T, Schilling M, Anderson KJ, Beecham G, Berg D, Biernacka JM, Brice A, DeStefano AL, Do CB, Eriksson N, Factor SA, Farrer MJ, Foroud T, Gasser T, Hamza T, Hardy JA, Heutink P, Hill-Burns EM, Klein C, Latourelle JC, Maraganore DM, Martin ER, Martinez M, Myers RH, Nalls MA, Pankratz N, Payami H, Satake W, Scott WK, Sharma M, Singleton AB, Stefansson K, Toda T, Tung JY, Vance J, Wood NW, Zabetian CP, Me Genetic Epidemiology of Parkinson’s Disease C, International Parkinson’s Disease Genomics C, Parkinson’s Disease GC, Wellcome Trust Case Control C, Young P, Tanzi RE, Khoury MJ, Zipp F, Lehrach H, Ioannidis JP, Bertram L (2012) Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: the PDGene database. PLoS Genet 8(3):e1002548. doi:10.1371/journal.pgen.1002548 PubMedPubMedCentralCrossRef Lill CM, Roehr JT, McQueen MB, Kavvoura FK, Bagade S, Schjeide BM, Schjeide LM, Meissner E, Zauft U, Allen NC, Liu T, Schilling M, Anderson KJ, Beecham G, Berg D, Biernacka JM, Brice A, DeStefano AL, Do CB, Eriksson N, Factor SA, Farrer MJ, Foroud T, Gasser T, Hamza T, Hardy JA, Heutink P, Hill-Burns EM, Klein C, Latourelle JC, Maraganore DM, Martin ER, Martinez M, Myers RH, Nalls MA, Pankratz N, Payami H, Satake W, Scott WK, Sharma M, Singleton AB, Stefansson K, Toda T, Tung JY, Vance J, Wood NW, Zabetian CP, Me Genetic Epidemiology of Parkinson’s Disease C, International Parkinson’s Disease Genomics C, Parkinson’s Disease GC, Wellcome Trust Case Control C, Young P, Tanzi RE, Khoury MJ, Zipp F, Lehrach H, Ioannidis JP, Bertram L (2012) Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: the PDGene database. PLoS Genet 8(3):e1002548. doi:10.​1371/​journal.​pgen.​1002548 PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Team RC (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3–900051–07-0 Team RC (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3–900051–07-0
28.
Zurück zum Zitat Patitucci A, Muglia M, Magariello A, Gabriele AL, Peluso G, Sprovieri T, Conforti FL, Mazzei R, Ungaro C, Condino F, Valentino P, Bono F, Rodolico C, Mazzeo A, Toscano A, Vita G, Quattrone A (2005) Comparison of different techniques for detecting 17p12 duplication in CMT1A. Neuromuscul Disord 15(7):488–492. doi:10.1016/j.nmd.2005.04.006 PubMedCrossRef Patitucci A, Muglia M, Magariello A, Gabriele AL, Peluso G, Sprovieri T, Conforti FL, Mazzei R, Ungaro C, Condino F, Valentino P, Bono F, Rodolico C, Mazzeo A, Toscano A, Vita G, Quattrone A (2005) Comparison of different techniques for detecting 17p12 duplication in CMT1A. Neuromuscul Disord 15(7):488–492. doi:10.​1016/​j.​nmd.​2005.​04.​006 PubMedCrossRef
29.
Zurück zum Zitat Haugarvoll K, Toft M, Skipper L, Heckman MG, Crook JE, Soto A, Ross OA, Hulihan MM, Kachergus JM, Sando SB, White LR, Lynch T, Gibson JM, Uitti RJ, Wszolek ZK, Aasly JO, Farrer MJ (2009) Fine-mapping and candidate gene investigation within the PARK10 locus. Eur J Hum Genet: EJHG 17(3):336–343. doi:10.1038/ejhg.2008.187 PubMedCrossRef Haugarvoll K, Toft M, Skipper L, Heckman MG, Crook JE, Soto A, Ross OA, Hulihan MM, Kachergus JM, Sando SB, White LR, Lynch T, Gibson JM, Uitti RJ, Wszolek ZK, Aasly JO, Farrer MJ (2009) Fine-mapping and candidate gene investigation within the PARK10 locus. Eur J Hum Genet: EJHG 17(3):336–343. doi:10.​1038/​ejhg.​2008.​187 PubMedCrossRef
31.
Zurück zum Zitat Liu X, Cheng R, Verbitsky M, Kisselev S, Browne A, Mejia-Sanatana H, Louis ED, Cote LJ, Andrews H, Waters C, Ford B, Frucht S, Fahn S, Marder K, Clark LN, Lee JH (2011) Genome-wide association study identifies candidate genes for Parkinson’s disease in an Ashkenazi Jewish population. BMC Med Genet 12:104. doi:10.1186/1471-2350-12-104 PubMedPubMedCentralCrossRef Liu X, Cheng R, Verbitsky M, Kisselev S, Browne A, Mejia-Sanatana H, Louis ED, Cote LJ, Andrews H, Waters C, Ford B, Frucht S, Fahn S, Marder K, Clark LN, Lee JH (2011) Genome-wide association study identifies candidate genes for Parkinson’s disease in an Ashkenazi Jewish population. BMC Med Genet 12:104. doi:10.​1186/​1471-2350-12-104 PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299(5604):256–259. doi:10.1126/science.1077209 PubMedCrossRef Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299(5604):256–259. doi:10.​1126/​science.​1077209 PubMedCrossRef
33.
Zurück zum Zitat Mace S, Cousin E, Ricard S, Genin E, Spanakis E, Lafargue-Soubigou C, Genin B, Fournel R, Roche S, Haussy G, Massey F, Soubigou S, Brefort G, Benoit P, Brice A, Campion D, Hollis M, Pradier L, Benavides J, Deleuze JF (2005) ABCA2 is a strong genetic risk factor for early-onset Alzheimer’s disease. Neurobiol Dis 18(1):119–125. doi:10.1016/j.nbd.2004.09.011 PubMedCrossRef Mace S, Cousin E, Ricard S, Genin E, Spanakis E, Lafargue-Soubigou C, Genin B, Fournel R, Roche S, Haussy G, Massey F, Soubigou S, Brefort G, Benoit P, Brice A, Campion D, Hollis M, Pradier L, Benavides J, Deleuze JF (2005) ABCA2 is a strong genetic risk factor for early-onset Alzheimer’s disease. Neurobiol Dis 18(1):119–125. doi:10.​1016/​j.​nbd.​2004.​09.​011 PubMedCrossRef
35.
Zurück zum Zitat Tohyama J, Nakashima M, Nabatame S, Gaik-Siew C, Miyata R, Rener-Primec Z, Kato M, Matsumoto N, Saitsu H (2015) SPTAN1 encephalopathy: distinct phenotypes and genotypes. J Hum Genet 60(4):167–173. doi:10.1038/jhg.2015.5 PubMedCrossRef Tohyama J, Nakashima M, Nabatame S, Gaik-Siew C, Miyata R, Rener-Primec Z, Kato M, Matsumoto N, Saitsu H (2015) SPTAN1 encephalopathy: distinct phenotypes and genotypes. J Hum Genet 60(4):167–173. doi:10.​1038/​jhg.​2015.​5 PubMedCrossRef
36.
Zurück zum Zitat Jackson M, Morrison KE, Al-Chalabi A, Bakker M, Leigh PN (1996) Analysis of chromosome 5q13 genes in amyotrophic lateral sclerosis: homozygous NAIP deletion in a sporadic case. Ann Neurol 39(6):796–800. doi:10.1002/ana.410390616 PubMedCrossRef Jackson M, Morrison KE, Al-Chalabi A, Bakker M, Leigh PN (1996) Analysis of chromosome 5q13 genes in amyotrophic lateral sclerosis: homozygous NAIP deletion in a sporadic case. Ann Neurol 39(6):796–800. doi:10.​1002/​ana.​410390616 PubMedCrossRef
37.
Zurück zum Zitat Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, Scott E, Bafna V, Hill KJ, Collazo A, Funari V, Russ C, Gabriel SB, Mathern GW, Gleeson JG (2012) De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 44(8):941–945. doi:10.1038/ng.2329 PubMedPubMedCentralCrossRef Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, Scott E, Bafna V, Hill KJ, Collazo A, Funari V, Russ C, Gabriel SB, Mathern GW, Gleeson JG (2012) De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 44(8):941–945. doi:10.​1038/​ng.​2329 PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Zheng W, Chen H, Deng X, Yuan L, Yang Y, Song Z, Yang Z, Wu Y, Deng H (2015) Identification of a novel mutation in the titin gene in a Chinese family with limb-girdle muscular dystrophy 2 J. Mol Neurobiol. doi:10.1007/s12035-015-9439-0 Zheng W, Chen H, Deng X, Yuan L, Yang Y, Song Z, Yang Z, Wu Y, Deng H (2015) Identification of a novel mutation in the titin gene in a Chinese family with limb-girdle muscular dystrophy 2 J. Mol Neurobiol. doi:10.​1007/​s12035-015-9439-0
39.
Zurück zum Zitat Hanagasi HA, Giri A, Guven G, Bilgic B, Hauser AK, Emre M, Heutink P, Basak N, Gasser T, Simon-Sanchez J, Lohmann E (2016) A novel homozygous DJ1 mutation causes parkinsonism and ALS in a Turkish family. Parkinsonism Relat Disord. doi:10.1016/j.parkreldis.2016.03.001 PubMed Hanagasi HA, Giri A, Guven G, Bilgic B, Hauser AK, Emre M, Heutink P, Basak N, Gasser T, Simon-Sanchez J, Lohmann E (2016) A novel homozygous DJ1 mutation causes parkinsonism and ALS in a Turkish family. Parkinsonism Relat Disord. doi:10.​1016/​j.​parkreldis.​2016.​03.​001 PubMed
40.
Zurück zum Zitat Kim HJ, Hong YB, Park JM, Choi YR, Kim YJ, Yoon BR, Koo H, Yoo JH, Kim SB, Park M, Chung KW, Choi BO (2013) Mutations in the PLEKHG5 gene is relevant with autosomal recessive intermediate Charcot-Marie-Tooth disease. Orphanet J Rare Dis 8:104. doi:10.1186/1750-1172-8-104 PubMedPubMedCentralCrossRef Kim HJ, Hong YB, Park JM, Choi YR, Kim YJ, Yoon BR, Koo H, Yoo JH, Kim SB, Park M, Chung KW, Choi BO (2013) Mutations in the PLEKHG5 gene is relevant with autosomal recessive intermediate Charcot-Marie-Tooth disease. Orphanet J Rare Dis 8:104. doi:10.​1186/​1750-1172-8-104 PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Ozoguz A, Uyan O, Birdal G, Iskender C, Kartal E, Lahut S, Omur O, Agim ZS, Eken AG, Sen NE, Kavak P, Saygi C, Sapp PC, Keagle P, Parman Y, Tan E, Koc F, Deymeer F, Oflazer P, Hanagasi H, Gurvit H, Bilgic B, Durmus H, Ertas M, Kotan D, Akalin MA, Gulluoglu H, Zarifoglu M, Aysal F, Dosoglu N, Bilguvar K, Gunel M, Keskin O, Akgun T, Ozcelik H, Landers JE, Brown RH, Basak AN (2015) The distinct genetic pattern of ALS in Turkey and novel mutations. Neurobiol Aging 36(4):1764 . doi:10.1016/j.neurobiolaging.2014.12.032e1769-1718PubMedCrossRef Ozoguz A, Uyan O, Birdal G, Iskender C, Kartal E, Lahut S, Omur O, Agim ZS, Eken AG, Sen NE, Kavak P, Saygi C, Sapp PC, Keagle P, Parman Y, Tan E, Koc F, Deymeer F, Oflazer P, Hanagasi H, Gurvit H, Bilgic B, Durmus H, Ertas M, Kotan D, Akalin MA, Gulluoglu H, Zarifoglu M, Aysal F, Dosoglu N, Bilguvar K, Gunel M, Keskin O, Akgun T, Ozcelik H, Landers JE, Brown RH, Basak AN (2015) The distinct genetic pattern of ALS in Turkey and novel mutations. Neurobiol Aging 36(4):1764 . doi:10.​1016/​j.​neurobiolaging.​2014.​12.​032e1769-1718PubMedCrossRef
42.
Zurück zum Zitat Lemke JR, Riesch E, Scheurenbrand T, Schubach M, Wilhelm C, Steiner I, Hansen J, Courage C, Gallati S, Burki S, Strozzi S, Simonetti BG, Grunt S, Steinlin M, Alber M, Wolff M, Klopstock T, Prott EC, Lorenz R, Spaich C, Rona S, Lakshminarasimhan M, Kroll J, Dorn T, Kramer G, Synofzik M, Becker F, Weber YG, Lerche H, Bohm D, Biskup S (2012) Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia 53(8):1387–1398. doi:10.1111/j.1528-1167.2012.03516.x PubMedCrossRef Lemke JR, Riesch E, Scheurenbrand T, Schubach M, Wilhelm C, Steiner I, Hansen J, Courage C, Gallati S, Burki S, Strozzi S, Simonetti BG, Grunt S, Steinlin M, Alber M, Wolff M, Klopstock T, Prott EC, Lorenz R, Spaich C, Rona S, Lakshminarasimhan M, Kroll J, Dorn T, Kramer G, Synofzik M, Becker F, Weber YG, Lerche H, Bohm D, Biskup S (2012) Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia 53(8):1387–1398. doi:10.​1111/​j.​1528-1167.​2012.​03516.​x PubMedCrossRef
43.
Zurück zum Zitat Guo JF, Zhang XW, Nie LL, Zhang HN, Liao B, Li J, Wang L, Yan XX, Tang BS (2010) Mutation analysis of Parkin, PINK1 and DJ-1 genes in Chinese patients with sporadic early onset parkinsonism. J Neurol 257(7):1170–1175. doi:10.1007/s00415-010-5485-8 PubMedCrossRef Guo JF, Zhang XW, Nie LL, Zhang HN, Liao B, Li J, Wang L, Yan XX, Tang BS (2010) Mutation analysis of Parkin, PINK1 and DJ-1 genes in Chinese patients with sporadic early onset parkinsonism. J Neurol 257(7):1170–1175. doi:10.​1007/​s00415-010-5485-8 PubMedCrossRef
44.
Zurück zum Zitat Hedrich K, Djarmati A, Schafer N, Hering R, Wellenbrock C, Weiss PH, Hilker R, Vieregge P, Ozelius LJ, Heutink P, Bonifati V, Schwinger E, Lang AE, Noth J, Bressman SB, Pramstaller PP, Riess O, Klein C (2004) DJ-1 (PARK7) mutations are less frequent than Parkin (PARK2) mutations in early-onset Parkinson disease. Neurology 62(3):389–394PubMedCrossRef Hedrich K, Djarmati A, Schafer N, Hering R, Wellenbrock C, Weiss PH, Hilker R, Vieregge P, Ozelius LJ, Heutink P, Bonifati V, Schwinger E, Lang AE, Noth J, Bressman SB, Pramstaller PP, Riess O, Klein C (2004) DJ-1 (PARK7) mutations are less frequent than Parkin (PARK2) mutations in early-onset Parkinson disease. Neurology 62(3):389–394PubMedCrossRef
45.
Zurück zum Zitat Liu X, Cheng R, Ye X, Verbitsky M, Kisselev S, Mejia-Santana H, Louis E, Cote L, Andrews H, Waters C, Ford B, Fahn S, Marder K, Lee J, Clark L (2013) Increased rate of sporadic and recurrent rare genic copy number variants in Parkinson’s disease among Ashkenazi Jews. Mol Genet Genomic Med 1(3):142–154. doi:10.1002/mgg3.18 PubMedPubMedCentralCrossRef Liu X, Cheng R, Ye X, Verbitsky M, Kisselev S, Mejia-Santana H, Louis E, Cote L, Andrews H, Waters C, Ford B, Fahn S, Marder K, Lee J, Clark L (2013) Increased rate of sporadic and recurrent rare genic copy number variants in Parkinson’s disease among Ashkenazi Jews. Mol Genet Genomic Med 1(3):142–154. doi:10.​1002/​mgg3.​18 PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat de Smith AJ, Tsalenko A, Sampas N, Scheffer A, Yamada NA, Tsang P, Ben-Dor A, Yakhini Z, Ellis RJ, Bruhn L, Laderman S, Froguel P, Blakemore AI (2007) Array CGH analysis of copy number variation identifies 1284 new genes variant in healthy white males: implications for association studies of complex diseases. Hum Mol Genet 16(23):2783–2794. doi:10.1093/hmg/ddm208 PubMedCrossRef de Smith AJ, Tsalenko A, Sampas N, Scheffer A, Yamada NA, Tsang P, Ben-Dor A, Yakhini Z, Ellis RJ, Bruhn L, Laderman S, Froguel P, Blakemore AI (2007) Array CGH analysis of copy number variation identifies 1284 new genes variant in healthy white males: implications for association studies of complex diseases. Hum Mol Genet 16(23):2783–2794. doi:10.​1093/​hmg/​ddm208 PubMedCrossRef
47.
Zurück zum Zitat Mendelsohn BA, Pronold M, Long R, Smaoui N, Slavotinek AM (2014) Advanced bone age in a girl with Wiedemann-Steiner syndrome and an exonic deletion in KMT2A (MLL). Am J Med Genet A 164A(8):2079–2083. doi:10.1002/ajmg.a.36590 PubMedCrossRef Mendelsohn BA, Pronold M, Long R, Smaoui N, Slavotinek AM (2014) Advanced bone age in a girl with Wiedemann-Steiner syndrome and an exonic deletion in KMT2A (MLL). Am J Med Genet A 164A(8):2079–2083. doi:10.​1002/​ajmg.​a.​36590 PubMedCrossRef
48.
Zurück zum Zitat Darvish H, Movafagh A, Omrani MD, Firouzabadi SG, Azargashb E, Jamshidi J, Khaligh A, Haghnejad L, Naeini NS, Talebi A, Heidari-Rostami HR, Noorollahi-Moghaddam H, Karkheiran S, Shahidi GA, Paknejad SM, Ashrafian H, Abdi S, Kayyal M, Akbari M, Pedram N, Emamalizadeh B (2013) Detection of copy number changes in genes associated with Parkinson’s disease in Iranian patients. Neurosci Lett 551:75–78. doi:10.1016/j.neulet.2013.07.013 PubMedCrossRef Darvish H, Movafagh A, Omrani MD, Firouzabadi SG, Azargashb E, Jamshidi J, Khaligh A, Haghnejad L, Naeini NS, Talebi A, Heidari-Rostami HR, Noorollahi-Moghaddam H, Karkheiran S, Shahidi GA, Paknejad SM, Ashrafian H, Abdi S, Kayyal M, Akbari M, Pedram N, Emamalizadeh B (2013) Detection of copy number changes in genes associated with Parkinson’s disease in Iranian patients. Neurosci Lett 551:75–78. doi:10.​1016/​j.​neulet.​2013.​07.​013 PubMedCrossRef
50.
Zurück zum Zitat Tayeh MK, Chin EL, Miller VR, Bean LJ, Coffee B, Hegde M (2009) Targeted comparative genomic hybridization array for the detection of single- and multiexon gene deletions and duplications. Genet Med: Off J Am Coll Med Genet 11(4):232–240. doi:10.1097/GIM.0b013e318195e191 CrossRef Tayeh MK, Chin EL, Miller VR, Bean LJ, Coffee B, Hegde M (2009) Targeted comparative genomic hybridization array for the detection of single- and multiexon gene deletions and duplications. Genet Med: Off J Am Coll Med Genet 11(4):232–240. doi:10.​1097/​GIM.​0b013e318195e191​ CrossRef
51.
Zurück zum Zitat Boone PM, Bacino CA, Shaw CA, Eng PA, Hixson PM, Pursley AN, Kang SH, Yang Y, Wiszniewska J, Nowakowska BA, del Gaudio D, Xia Z, Simpson-Patel G, Immken LL, Gibson JB, Tsai AC, Bowers JA, Reimschisel TE, Schaaf CP, Potocki L, Scaglia F, Gambin T, Sykulski M, Bartnik M, Derwinska K, Wisniowiecka-Kowalnik B, Lalani SR, Probst FJ, Bi W, Beaudet AL, Patel A, Lupski JR, Cheung SW, Stankiewicz P (2010) Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat 31(12):1326–1342. doi:10.1002/humu.21360 PubMedPubMedCentralCrossRef Boone PM, Bacino CA, Shaw CA, Eng PA, Hixson PM, Pursley AN, Kang SH, Yang Y, Wiszniewska J, Nowakowska BA, del Gaudio D, Xia Z, Simpson-Patel G, Immken LL, Gibson JB, Tsai AC, Bowers JA, Reimschisel TE, Schaaf CP, Potocki L, Scaglia F, Gambin T, Sykulski M, Bartnik M, Derwinska K, Wisniowiecka-Kowalnik B, Lalani SR, Probst FJ, Bi W, Beaudet AL, Patel A, Lupski JR, Cheung SW, Stankiewicz P (2010) Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat 31(12):1326–1342. doi:10.​1002/​humu.​21360 PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Tucker T, Zahir FR, Griffith M, Delaney A, Chai D, Tsang E, Lemyre E, Dobrzeniecka S, Marra M, Eydoux P, Langlois S, Hamdan FF, Michaud JL, Friedman JM (2014) Single exon-resolution targeted chromosomal microarray analysis of known and candidate intellectual disability genes. Eur J Hum Genet: EJHG 22(6):792–800. doi:10.1038/ejhg.2013.248 PubMedCrossRef Tucker T, Zahir FR, Griffith M, Delaney A, Chai D, Tsang E, Lemyre E, Dobrzeniecka S, Marra M, Eydoux P, Langlois S, Hamdan FF, Michaud JL, Friedman JM (2014) Single exon-resolution targeted chromosomal microarray analysis of known and candidate intellectual disability genes. Eur J Hum Genet: EJHG 22(6):792–800. doi:10.​1038/​ejhg.​2013.​248 PubMedCrossRef
53.
Zurück zum Zitat Aradhya S, Lewis R, Bonaga T, Nwokekeh N, Stafford A, Boggs B, Hruska K, Smaoui N, Compton JG, Richard G, Suchy S (2012) Exon-level array CGH in a large clinical cohort demonstrates increased sensitivity of diagnostic testing for Mendelian disorders. Genet Med: Off J Am Coll Med Genet 14(6):594–603. doi:10.1038/gim.2011.65 CrossRef Aradhya S, Lewis R, Bonaga T, Nwokekeh N, Stafford A, Boggs B, Hruska K, Smaoui N, Compton JG, Richard G, Suchy S (2012) Exon-level array CGH in a large clinical cohort demonstrates increased sensitivity of diagnostic testing for Mendelian disorders. Genet Med: Off J Am Coll Med Genet 14(6):594–603. doi:10.​1038/​gim.​2011.​65 CrossRef
54.
Zurück zum Zitat Desikan RS, Schork AJ, Wang Y, Witoelar A, Sharma M, McEvoy LK, Holland D, Brewer JB, Chen CH, Thompson WK, Harold D, Williams J, Owen MJ, O’Donovan MC, Pericak-Vance MA, Mayeux R, Haines JL, Farrer LA, Schellenberg GD, Heutink P, Singleton AB, Brice A, Wood NW, Hardy J, Martinez M, Choi SH, DeStefano A, Ikram MA, Bis JC, Smith A, Fitzpatrick AL, Launer L, van Duijn C, Seshadri S, Ulstein ID, Aarsland D, Fladby T, Djurovic S, Hyman BT, Snaedal J, Stefansson H, Stefansson K, Gasser T, Andreassen OA, Dale AM (2015) Genetic overlap between Alzheimer’s disease and Parkinson’s disease at the MAPT locus. Mol Psychiatry. doi:10.1038/mp.2015.6 PubMedCentral Desikan RS, Schork AJ, Wang Y, Witoelar A, Sharma M, McEvoy LK, Holland D, Brewer JB, Chen CH, Thompson WK, Harold D, Williams J, Owen MJ, O’Donovan MC, Pericak-Vance MA, Mayeux R, Haines JL, Farrer LA, Schellenberg GD, Heutink P, Singleton AB, Brice A, Wood NW, Hardy J, Martinez M, Choi SH, DeStefano A, Ikram MA, Bis JC, Smith A, Fitzpatrick AL, Launer L, van Duijn C, Seshadri S, Ulstein ID, Aarsland D, Fladby T, Djurovic S, Hyman BT, Snaedal J, Stefansson H, Stefansson K, Gasser T, Andreassen OA, Dale AM (2015) Genetic overlap between Alzheimer’s disease and Parkinson’s disease at the MAPT locus. Mol Psychiatry. doi:10.​1038/​mp.​2015.​6 PubMedCentral
56.
Zurück zum Zitat Annesi G, Savettieri G, Pugliese P, D’Amelio M, Tarantino P, Ragonese P, La Bella V, Piccoli T, Civitelli D, Annesi F, Fierro B, Piccoli F, Arabia G, Caracciolo M, Ciro Candiano IC, Quattrone A (2005) DJ-1 mutations and parkinsonism-dementia-amyotrophic lateral sclerosis complex. Ann Neurol 58(5):803–807. doi:10.1002/ana.20666 PubMedCrossRef Annesi G, Savettieri G, Pugliese P, D’Amelio M, Tarantino P, Ragonese P, La Bella V, Piccoli T, Civitelli D, Annesi F, Fierro B, Piccoli F, Arabia G, Caracciolo M, Ciro Candiano IC, Quattrone A (2005) DJ-1 mutations and parkinsonism-dementia-amyotrophic lateral sclerosis complex. Ann Neurol 58(5):803–807. doi:10.​1002/​ana.​20666 PubMedCrossRef
59.
Metadaten
Titel
A customized high-resolution array-comparative genomic hybridization to explore copy number variations in Parkinson’s disease
verfasst von
Valentina La Cognata
Giovanna Morello
Giulia Gentile
Velia D’Agata
Chiara Criscuolo
Francesca Cavalcanti
Sebastiano Cavallaro
Publikationsdatum
17.09.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Neurogenetics / Ausgabe 4/2016
Print ISSN: 1364-6745
Elektronische ISSN: 1364-6753
DOI
https://doi.org/10.1007/s10048-016-0494-0

Weitere Artikel der Ausgabe 4/2016

neurogenetics 4/2016 Zur Ausgabe

Acknowledgement to referee

Acknowledgement to Referees 2015/2016

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.