Skip to main content
Erschienen in: Japanese Journal of Radiology 1/2022

28.07.2021 | Original Article

A novel strategy to develop deep learning for image super-resolution using original ultra-high-resolution computed tomography images of lung as training dataset

verfasst von: Hitoshi Kitahara, Yukihiro Nagatani, Hideji Otani, Ryohei Nakayama, Yukako Kida, Akinaga Sonoda, Yoshiyuki Watanabe

Erschienen in: Japanese Journal of Radiology | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To improve the image quality of inflated fixed cadaveric human lungs by utilizing ultra-high-resolution computed tomography (U-HRCT) as a training dataset for super-resolution processing using deep learning (SR-DL).

Materials and methods

Image data of nine cadaveric human lungs were acquired using U-HRCT. Three different matrix images of U-HRCT images were obtained with two acquisition modes: normal mode (512-matrix image) and super-high-resolution mode (1024- and 2048-matrix image). SR-DL used 512- and 1024-matrix images as training data for deep learning. The virtual 2048-matrix images were acquired by applying SR-DL to the 1024-matrix images. Three independent observers scored normal anatomical structures and abnormal computed tomography (CT) findings of both types of 2048-matrix images on a 3-point scale compared to 1024-matrix images. The image noise values were quantitatively calculated. Moreover, the edge rise distance (ERD) and edge rise slope (ERS) were also calculated using the CT attenuation profile to evaluate margin sharpness.

Results

The virtual 2048-matrix images significantly improved visualization of normal anatomical structures and abnormal CT findings, except for consolidation and nodules, compared with the conventional 2048-matrix images (p < 0.01). Quantitative noise values were significantly lower in the virtual 2048-matrix images than in the conventional 2048-matrix images (p < 0.001). ERD was significantly shorter in the virtual 2048-matrix images than in the conventional 2048-matrix images (p < 0.01). ERS was significantly higher in the virtual 2048-matrix images than in the conventional 2048-matrix images (p < 0.01).

Conclusion

SR-DL using original U-HRCT images as a training dataset might be a promising tool for image enhancement in terms of margin sharpness and image noise reduction. By applying trained SR-DL to U-HRCT SHR mode images, virtual ultra-high-resolution images were obtained which surpassed the image quality of unmodified SHR mode images.
Literatur
1.
Zurück zum Zitat Higaki T, Nakamura Y, Tatsugami F, Nakaura T, Awai K. Improvement of image quality at CT and MRI using deep learning. Jpn J Radiol. 2019;37:73–80.CrossRef Higaki T, Nakamura Y, Tatsugami F, Nakaura T, Awai K. Improvement of image quality at CT and MRI using deep learning. Jpn J Radiol. 2019;37:73–80.CrossRef
2.
Zurück zum Zitat Dong C, Loy CC, He K, Tang X. Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell. 2016;38:295–307.CrossRef Dong C, Loy CC, He K, Tang X. Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell. 2016;38:295–307.CrossRef
3.
Zurück zum Zitat Umehara K, Ota J, Ishida T. Application of super-resolution convolutional neural network for enhancing image resolution in chest CT. J Digit Imaging. 2018;31:441–50.CrossRef Umehara K, Ota J, Ishida T. Application of super-resolution convolutional neural network for enhancing image resolution in chest CT. J Digit Imaging. 2018;31:441–50.CrossRef
4.
Zurück zum Zitat Hata A, Yanagawa M, Honda O, Kikuchi N, Miyata T, Tsukagoshi S, et al. Effect of matrix size on the image quality of ultra-high-resolution ct of the lung: comparison of 512 × 512, 1024 × 1024, and 2048 × 2048. Acad Radiol. 2018;25:869–76.CrossRef Hata A, Yanagawa M, Honda O, Kikuchi N, Miyata T, Tsukagoshi S, et al. Effect of matrix size on the image quality of ultra-high-resolution ct of the lung: comparison of 512 × 512, 1024 × 1024, and 2048 × 2048. Acad Radiol. 2018;25:869–76.CrossRef
5.
Zurück zum Zitat Yanagawa M, Hata A, Honda O, Kikuchi N, Miyata T, Uranishi A, et al. Subjective and objective comparisons of image quality between ultra-high-resolution CT and conventional area detector CT in phantoms and cadaveric human lungs. Eur Radiol. 2018;28:5060–8.CrossRef Yanagawa M, Hata A, Honda O, Kikuchi N, Miyata T, Uranishi A, et al. Subjective and objective comparisons of image quality between ultra-high-resolution CT and conventional area detector CT in phantoms and cadaveric human lungs. Eur Radiol. 2018;28:5060–8.CrossRef
6.
Zurück zum Zitat Iwasawa T, Sato M, Yamaya T, Sato Y, Uchida Y, Kitamura H, et al. Ultra-high-resolution computed tomography can demonstrate alveolar collapse in novel coronavirus (COVID-19) pneumonia. Jpn J Radiol. 2020;38:394–8.CrossRef Iwasawa T, Sato M, Yamaya T, Sato Y, Uchida Y, Kitamura H, et al. Ultra-high-resolution computed tomography can demonstrate alveolar collapse in novel coronavirus (COVID-19) pneumonia. Jpn J Radiol. 2020;38:394–8.CrossRef
7.
Zurück zum Zitat Markarian B, Dailey ET. Preparation of inflated lung specimens. In: Groskin SA, editor. The lung: radiologic-pathologic correlations. 3rd ed. St. Louis: Mosby; 1993. p. 4–12. Markarian B, Dailey ET. Preparation of inflated lung specimens. In: Groskin SA, editor. The lung: radiologic-pathologic correlations. 3rd ed. St. Louis: Mosby; 1993. p. 4–12.
8.
Zurück zum Zitat Kim J, Lee J, Lee KM. Accurate image super-resolution using very deep convolutional networks. IEEE Conf Comp Vision Pattern Recogn (CVPR). 2016;2016:1646–54. Kim J, Lee J, Lee KM. Accurate image super-resolution using very deep convolutional networks. IEEE Conf Comp Vision Pattern Recogn (CVPR). 2016;2016:1646–54.
9.
Zurück zum Zitat Boehm T, Willmann JK, Hilfiker PR, Weishaupt D, Seifert B, Crook DW, et al. Thin-section CT of the lung: does electrocardiographic triggering influence diagnosis? Radiology. 2003;229:483–91.CrossRef Boehm T, Willmann JK, Hilfiker PR, Weishaupt D, Seifert B, Crook DW, et al. Thin-section CT of the lung: does electrocardiographic triggering influence diagnosis? Radiology. 2003;229:483–91.CrossRef
10.
Zurück zum Zitat Tatsugami F, Higaki T, Nakamura Y, Yu Z, Zhou J, Lu Y, et al. Deep learning-based image restoration algorithm for coronary CT angiography. Eur Radiol. 2019;29:5322–9.CrossRef Tatsugami F, Higaki T, Nakamura Y, Yu Z, Zhou J, Lu Y, et al. Deep learning-based image restoration algorithm for coronary CT angiography. Eur Radiol. 2019;29:5322–9.CrossRef
11.
Zurück zum Zitat Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRef Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRef
12.
Zurück zum Zitat Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J. Fleischner society: glossary of terms for thoracic imaging. Radiology. 2008;246:697–722.CrossRef Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J. Fleischner society: glossary of terms for thoracic imaging. Radiology. 2008;246:697–722.CrossRef
14.
Zurück zum Zitat Kang E, Min J, Ye JC. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys. 2017;44:e360–75.CrossRef Kang E, Min J, Ye JC. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys. 2017;44:e360–75.CrossRef
16.
Zurück zum Zitat Akagi M, Nakamura Y, Higaki T, Narita K, Honda Y, Zhou J, et al. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol. 2019;29:6163–71.CrossRef Akagi M, Nakamura Y, Higaki T, Narita K, Honda Y, Zhou J, et al. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol. 2019;29:6163–71.CrossRef
Metadaten
Titel
A novel strategy to develop deep learning for image super-resolution using original ultra-high-resolution computed tomography images of lung as training dataset
verfasst von
Hitoshi Kitahara
Yukihiro Nagatani
Hideji Otani
Ryohei Nakayama
Yukako Kida
Akinaga Sonoda
Yoshiyuki Watanabe
Publikationsdatum
28.07.2021
Verlag
Springer Singapore
Erschienen in
Japanese Journal of Radiology / Ausgabe 1/2022
Print ISSN: 1867-1071
Elektronische ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-021-01184-8

Weitere Artikel der Ausgabe 1/2022

Japanese Journal of Radiology 1/2022 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.