Skip to main content
Erschienen in: neurogenetics 3/2019

30.04.2019 | Original Article

A pathogenic CtBP1 missense mutation causes altered cofactor binding and transcriptional activity

verfasst von: David B. Beck, T. Subramanian, S. Vijayalingam, Uthayashankar R. Ezekiel, Sandra Donkervoort, Michele L. Yang, Holly A. Dubbs, Xilma R. Ortiz-Gonzalez, Shenela Lakhani, Devorah Segal, Margaret Au, John M. Graham Jr, Sumit Verma, Darrel Waggoner, Marwan Shinawi, Carsten G. Bönnemann, Wendy K. Chung, G. Chinnadurai

Erschienen in: Neurogenetics | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

We previously reported a pathogenic de novo p.R342W mutation in the transcriptional corepressor CTBP1 in four independent patients with neurodevelopmental disabilities [1]. Here, we report the clinical phenotypes of seven additional individuals with the same recurrent de novo CTBP1 mutation. Within this cohort, we identified consistent CtBP1-related phenotypes of intellectual disability, ataxia, hypotonia, and tooth enamel defects present in most patients. The R342W mutation in CtBP1 is located within a region implicated in a high affinity-binding cleft for CtBP-interacting proteins. Unbiased proteomic analysis demonstrated reduced interaction of several chromatin-modifying factors with the CtBP1 W342 mutant. Genome-wide transcriptome analysis in human glioblastoma cell lines expressing -CtBP1 R342 (wt) or W342 mutation revealed changes in the expression profiles of genes controlling multiple cellular processes. Patient-derived dermal fibroblasts were found to be more sensitive to apoptosis during acute glucose deprivation compared to controls. Glucose deprivation strongly activated the BH3-only pro-apoptotic gene NOXA, suggesting a link between enhanced cell death and NOXA expression in patient fibroblasts. Our results suggest that context-dependent relief of transcriptional repression of the CtBP1 mutant W342 allele may contribute to deregulation of apoptosis in target tissues of patients leading to neurodevelopmental phenotypes.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Beck DB, Cho MT, Millan F, Yates C, Hannibal M, O’Connor B, Shinawi M, Connolly AM, Waggoner D, Halbach S, Angle B, Sanders V, Shen Y, Retterer K, Begtrup A, Bai R, Chung WK (2016) A recurrent de novo CTBP1 mutation is associated with developmental delay, hypotonia, ataxia, and tooth enamel defects. Neurogenetics 17:173–178CrossRefPubMed Beck DB, Cho MT, Millan F, Yates C, Hannibal M, O’Connor B, Shinawi M, Connolly AM, Waggoner D, Halbach S, Angle B, Sanders V, Shen Y, Retterer K, Begtrup A, Bai R, Chung WK (2016) A recurrent de novo CTBP1 mutation is associated with developmental delay, hypotonia, ataxia, and tooth enamel defects. Neurogenetics 17:173–178CrossRefPubMed
2.
Zurück zum Zitat Boyd JM, Subramanian T, Schaeper U, la Regina M, Bayley S, Chinnadurai G (1993) A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J 12:469–478CrossRefPubMedPubMedCentral Boyd JM, Subramanian T, Schaeper U, la Regina M, Bayley S, Chinnadurai G (1993) A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J 12:469–478CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G (1995) Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci U S A 92:10467–10471CrossRefPubMedPubMedCentral Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G (1995) Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci U S A 92:10467–10471CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Chinnadurai G (2002) CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 9:213–224CrossRefPubMed Chinnadurai G (2002) CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 9:213–224CrossRefPubMed
5.
Zurück zum Zitat Chinnadurai G (2007) Transcriptional regulation by C-terminal binding proteins. Int J Biochem Cell Biol 39:1593–1607CrossRefPubMed Chinnadurai G (2007) Transcriptional regulation by C-terminal binding proteins. Int J Biochem Cell Biol 39:1593–1607CrossRefPubMed
6.
Zurück zum Zitat Shi Y, Sawada JI, Sui G, Affar EB, Whetstine JR, Lan F, Ogawa H, Po-Shan Luke M, Nakatani Y, Shi Y (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422:735–738CrossRefPubMed Shi Y, Sawada JI, Sui G, Affar EB, Whetstine JR, Lan F, Ogawa H, Po-Shan Luke M, Nakatani Y, Shi Y (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422:735–738CrossRefPubMed
7.
Zurück zum Zitat Fang M, Li J, Blauwkamp T, Bhambhani C, Campbell N, Cadigan KM (2006) C-terminal-binding protein directly activates and represses Wnt transcriptional targets in drosophila. EMBO J 25:2735–2745CrossRefPubMedPubMedCentral Fang M, Li J, Blauwkamp T, Bhambhani C, Campbell N, Cadigan KM (2006) C-terminal-binding protein directly activates and represses Wnt transcriptional targets in drosophila. EMBO J 25:2735–2745CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Itoh TQ, Matsumoto A, Tanimura T (2013) C-terminal binding protein (CtBP) activates the expression of E-box clock genes with CLOCK/CYCLE in drosophila. PLoS One 8:e63113CrossRefPubMedPubMedCentral Itoh TQ, Matsumoto A, Tanimura T (2013) C-terminal binding protein (CtBP) activates the expression of E-box clock genes with CLOCK/CYCLE in drosophila. PLoS One 8:e63113CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Paliwal S, Ho N, Parker D, Grossman SR (2012) CtBP2 promotes human Cancer cell migration by transcriptional activation of Tiam1. Genes Cancer 3:481–490PubMedPubMedCentral Paliwal S, Ho N, Parker D, Grossman SR (2012) CtBP2 promotes human Cancer cell migration by transcriptional activation of Tiam1. Genes Cancer 3:481–490PubMedPubMedCentral
10.
Zurück zum Zitat Ray SK, Li HJ, Metzger E, Schule R, Leiter AB (2014) CtBP and associated LSD1 are required for transcriptional activation by NeuroD1 in gastrointestinal endocrine cells. Mol Cell Biol 34:2308–2317CrossRefPubMedPubMedCentral Ray SK, Li HJ, Metzger E, Schule R, Leiter AB (2014) CtBP and associated LSD1 are required for transcriptional activation by NeuroD1 in gastrointestinal endocrine cells. Mol Cell Biol 34:2308–2317CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Bhambhani C, Chang JL, Akey DL, Cadigan KM (2011) The oligomeric state of CtBP determines its role as a transcriptional co-activator and co-repressor of wingless targets. EMBO J 30:2031–2043CrossRefPubMedPubMedCentral Bhambhani C, Chang JL, Akey DL, Cadigan KM (2011) The oligomeric state of CtBP determines its role as a transcriptional co-activator and co-repressor of wingless targets. EMBO J 30:2031–2043CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Madison DL, Wirz JA, Siess D, Lundblad JR (2013) Nicotinamide adenine dinucleotide-induced multimerization of the co-repressor CtBP1 relies on a switching tryptophan. J Biol Chem 288:27836–27848CrossRefPubMedPubMedCentral Madison DL, Wirz JA, Siess D, Lundblad JR (2013) Nicotinamide adenine dinucleotide-induced multimerization of the co-repressor CtBP1 relies on a switching tryptophan. J Biol Chem 288:27836–27848CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Bellesis AG, Jecrois AM, Hayes JA, Schiffer CA, Royer WE Jr (2018) Assembly of human C-terminal binding protein (CtBP) into tetramers. In: J biol Chem, vol 293, pp 9101–9112 Bellesis AG, Jecrois AM, Hayes JA, Schiffer CA, Royer WE Jr (2018) Assembly of human C-terminal binding protein (CtBP) into tetramers. In: J biol Chem, vol 293, pp 9101–9112
15.
Zurück zum Zitat Kuppuswamy M, Vijayalingam S, Zhao LJ, Zhou Y, Subramanian T, Ryerse J, Chinnadurai G (2008) Role of the PLDLS-binding cleft region of CtBP1 in recruitment of core and auxiliary components of the corepressor complex. Mol Cell Biol 28:269–281CrossRefPubMed Kuppuswamy M, Vijayalingam S, Zhao LJ, Zhou Y, Subramanian T, Ryerse J, Chinnadurai G (2008) Role of the PLDLS-binding cleft region of CtBP1 in recruitment of core and auxiliary components of the corepressor complex. Mol Cell Biol 28:269–281CrossRefPubMed
16.
Zurück zum Zitat Nardini M, Spanò S, Cericola C, Pesce A, Massaro A, Millo E, Luini A, Corda D, Bolognesi M (2003) CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. EMBO J 22:3122–3130CrossRefPubMedPubMedCentral Nardini M, Spanò S, Cericola C, Pesce A, Massaro A, Millo E, Luini A, Corda D, Bolognesi M (2003) CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. EMBO J 22:3122–3130CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Kumar V, Carlson JE, Ohgi KA, Edwards TA, Rose DW, Escalante CR, Rosenfeld MG, Aggarwal AK (2002) Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell 10:857–869CrossRefPubMed Kumar V, Carlson JE, Ohgi KA, Edwards TA, Rose DW, Escalante CR, Rosenfeld MG, Aggarwal AK (2002) Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell 10:857–869CrossRefPubMed
18.
Zurück zum Zitat Zhang Q, Piston DW, Goodman RH (2002) Regulation of corepressor function by nuclear NADH. Science 295:1895–1897PubMed Zhang Q, Piston DW, Goodman RH (2002) Regulation of corepressor function by nuclear NADH. Science 295:1895–1897PubMed
19.
Zurück zum Zitat Hildebrand JD, Soriano P (2002) Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol 22:5296–5307CrossRefPubMedPubMedCentral Hildebrand JD, Soriano P (2002) Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol 22:5296–5307CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Byun JS, Gardner K (2013) C-terminal binding protein: a molecular link between metabolic imbalance and epigenetic regulation in breast Cancer. Int J Cell Biol 2013:647975CrossRefPubMedPubMedCentral Byun JS, Gardner K (2013) C-terminal binding protein: a molecular link between metabolic imbalance and epigenetic regulation in breast Cancer. Int J Cell Biol 2013:647975CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Dcona MM, Morris BL, Ellis KC, Grossman SR (2017) CtBP- an emerging oncogene and novel small molecule drug target: advances in the understanding of its oncogenic action and identification of therapeutic inhibitors. Cancer Biol Ther 18:379–391CrossRefPubMedPubMedCentral Dcona MM, Morris BL, Ellis KC, Grossman SR (2017) CtBP- an emerging oncogene and novel small molecule drug target: advances in the understanding of its oncogenic action and identification of therapeutic inhibitors. Cancer Biol Ther 18:379–391CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Sommerville EW, Alston CL, Pyle A, He L, Falkous G, Naismith K, Chinnery PF, McFarland R, Taylor RW (2017) De novo CTBP1 variant is associated with decreased mitochondrial respiratory chain activities. Neurol Gen 3:e187CrossRef Sommerville EW, Alston CL, Pyle A, He L, Falkous G, Naismith K, Chinnery PF, McFarland R, Taylor RW (2017) De novo CTBP1 variant is associated with decreased mitochondrial respiratory chain activities. Neurol Gen 3:e187CrossRef
23.
Zurück zum Zitat Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658CrossRefPubMed Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658CrossRefPubMed
24.
Zurück zum Zitat da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRef da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRef
25.
Zurück zum Zitat Zhao LJ, Kuppuswamy M, Vijayalingam S, Chinnadurai G (2009) Interaction of ZEB and histone deacetylase with the PLDLS-binding cleft region of monomeric C-terminal binding protein 2. BMC Mol Biol 10:89CrossRefPubMedPubMedCentral Zhao LJ, Kuppuswamy M, Vijayalingam S, Chinnadurai G (2009) Interaction of ZEB and histone deacetylase with the PLDLS-binding cleft region of monomeric C-terminal binding protein 2. BMC Mol Biol 10:89CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Grooteclaes ML, Frisch SM (2000) Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 19:3823–3828CrossRefPubMed Grooteclaes ML, Frisch SM (2000) Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 19:3823–3828CrossRefPubMed
27.
Zurück zum Zitat Kovi RC, Paliwal S, Pande S, Grossman SR (2010) An ARF/CtBP2 complex regulates BH3-only gene expression and p53-independent apoptosis. Cell Death Differ 17:513–521CrossRefPubMed Kovi RC, Paliwal S, Pande S, Grossman SR (2010) An ARF/CtBP2 complex regulates BH3-only gene expression and p53-independent apoptosis. Cell Death Differ 17:513–521CrossRefPubMed
28.
Zurück zum Zitat Lowman XH, McDonnell MA, Kosloske A, Odumade OA, Jenness C, Karim CB, Jemmerson R, Kelekar A (2010) The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose. Mol Cell 40:823–833CrossRefPubMed Lowman XH, McDonnell MA, Kosloske A, Odumade OA, Jenness C, Karim CB, Jemmerson R, Kelekar A (2010) The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose. Mol Cell 40:823–833CrossRefPubMed
29.
Zurück zum Zitat Grooteclaes M, Deveraux Q, Hildebrand J, Zhang Q, Goodman RH, Frisch SM (2003) C-terminal-binding protein corepresses epithelial and proapoptotic gene expression programs. Proc Natl Acad Sci U S A 100:4568–4573CrossRefPubMedPubMedCentral Grooteclaes M, Deveraux Q, Hildebrand J, Zhang Q, Goodman RH, Frisch SM (2003) C-terminal-binding protein corepresses epithelial and proapoptotic gene expression programs. Proc Natl Acad Sci U S A 100:4568–4573CrossRefPubMedPubMedCentral
Metadaten
Titel
A pathogenic CtBP1 missense mutation causes altered cofactor binding and transcriptional activity
verfasst von
David B. Beck
T. Subramanian
S. Vijayalingam
Uthayashankar R. Ezekiel
Sandra Donkervoort
Michele L. Yang
Holly A. Dubbs
Xilma R. Ortiz-Gonzalez
Shenela Lakhani
Devorah Segal
Margaret Au
John M. Graham Jr
Sumit Verma
Darrel Waggoner
Marwan Shinawi
Carsten G. Bönnemann
Wendy K. Chung
G. Chinnadurai
Publikationsdatum
30.04.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Neurogenetics / Ausgabe 3/2019
Print ISSN: 1364-6745
Elektronische ISSN: 1364-6753
DOI
https://doi.org/10.1007/s10048-019-00578-1

Weitere Artikel der Ausgabe 3/2019

neurogenetics 3/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.