Skip to main content
Erschienen in: Surgical Endoscopy 1/2017

Open Access 18.05.2016 | Review

A systematic review of low-cost laparoscopic simulators

verfasst von: Mimi M. Li, Joseph George

Erschienen in: Surgical Endoscopy | Ausgabe 1/2017

Abstract

Background

Opportunities for surgical skills practice using high-fidelity simulation in the workplace are limited due to cost, time and geographical constraints, and accessibility to junior trainees. An alternative is needed to practise laparoscopic skills at home. Our objective was to undertake a systematic review of low-cost laparoscopic simulators.

Method

A systematic review was undertaken according to PRISMA guidelines. MEDLINE/EMBASE was searched for articles between 1990 and 2014. We included articles describing portable and low-cost laparoscopic simulators that were ready-made or suitable for assembly; articles not in English, with inadequate descriptions of the simulator, and costs >£1500 were excluded. Validation, equipment needed, cost, and ease of assembly were examined.

Results

Seventy-three unique simulators were identified (60 non-commercial, 13 commercial); 55 % (33) of non-commercial trainers were subject to at least one type of validation compared with 92 % (12) of commercial trainers. Commercial simulators had better face validation compared with non-commercial. The cost ranged from £3 to £216 for non-commercial and £60 to £1007 for commercial simulators. Key components of simulator construction were identified as abdominal cavity and wall, port site, light source, visualisation, and camera monitor. Laptop computers were prerequisite where direct vision was not used. Non-commercial models commonly utilised retail off-the-shelf components, which allowed reduction in costs and greater ease of construction.

Conclusion

The models described provide simple and affordable options for self-assembly, although a significant proportion have not been subject to any validation. Portable simulators may be the most equitable solution to allow regular basic skills practice (e.g. suturing, knot-tying) for junior surgical trainees.
The use of laparoscopic surgery has become widely established in clinical practice, with the acquisition of laparoscopic skills now essential for surgical trainees. The technical skills required are, however, distinct from those needed for open surgery; depth perception is impaired due to visualisation on a two-dimensional screen, there is limited tactile feedback, and long laparoscopic instruments create a fulcrum effect and amplify tremor. There is a significant learning curve associated with laparoscopic surgery, and these skills cannot be easily learnt using the traditional apprentice model of surgical training [1].
Simulation is widely regarded as the way forward, and its use has been shown to improve laparoscopic surgical skills in trainees [2, 3]. Simulation offers the opportunity to improve technical skills in a structured, low-pressure environment outside of the operating theatre without risk to patient safety [4]. Different methods of simulation have been described, ranging from high-fidelity virtual reality systems and animal models to low-fidelity box trainers. Box trainers generally have a less realistic interface and are designed for the practice of generic skills required for laparoscopic surgery, such as instrument handling, cutting, and intracorporeal suturing. Virtual reality simulation uses computer-generated graphics and tactile feedback to recreate the operating environment, facilitating practice of procedural-specific skills as well as generic laparoscopic skills [5, 6]. Virtual reality systems are, however, very cost prohibitive and may be inaccessible to many trainees for regular personal use [7]. With the implementation of the European Working Time Directive, opportunities for surgical trainees to gain operative experience in the workplace have also become more limited [8]. A low-cost alternative is needed for trainees to be able to practise and develop their laparoscopic skills outside the workplace. Our objective was to undertake a systematic review of low-cost laparoscopic simulators suitable for home use.

Methods

A systematic review was undertaken according to PRISMA guidelines [9] to define the properties of low-cost laparoscopic simulators. MEDLINE and EMBASE databases were searched for articles on low-cost laparoscopic simulators published between January 1990 and August 2014. The search terms used were (laparoscopic or thoracoscopic or urological or gynaecological or gynaecological), (simulator or simulation or trainer or training), and (low-cost or home-made or inexpensive or DIY or cheap). Relevant articles from the search were identified by their titles and abstracts; the full paper was then assessed for inclusion. Reference lists for relevant articles were also examined to identify additional studies not identified by the original search.
Articles included were those describing low-cost laparoscopic simulators, which were ready-made or suitable for self-assembly. Articles not written in English, with inadequate descriptions of the simulator, and costs of >£1500 were excluded. The simulators described were categorised into commercial (commercially available or intended for commercial use) and non-commercial (intended for self-assembly). Validation, cost, equipment required, and ease of assembly were examined. For ease of comparison, simulator prices in other currencies were converted into British Pound Sterling using the exchange rate on 16 August 2014. We examined whether any form of validation had been described by the authors. The face validity of each simulator was also rated based on pre-defined criteria for the abdominal cavity and visualisation, giving a score between 0 and 6 (see Table 1).
Table 1
Face validity rating system for laparoscopic simulators
Abdominal cavity
Visualisation
 Enclosed cavity
 Use of camera
 Elastic/flexible wall
 Easily adjustable camera
 Trocar used at port site
 Dedicated light source
A0—does not fulfil any of the criteria
B0—does not fulfil any of the criteria
A1—fulfils 1 criterion
B1—fulfils 1 criterion
A2—fulfils 2 criteria
B2—fulfils 2 criteria
A3—fulfils all 3 criteria
B3—fulfils all 3 criteria
Total score: A + B (out of 6)

Results

The results of the search are summarised in Fig. 1. 73 unique simulators were identified from 71 articles: 60 were non-commercial (Table 2) and 13 were commercial (Table 3); 55 % (33) of non-commercial trainers were subject to at least one type of validation compared with 92 % (12) of commercial trainers (Table 4). Commercial simulators were already constructed and ready to use, whereas non-commercial simulators required sourcing and self-assembly of materials. The key components required for non-commercial simulator construction were identified as abdominal cavity and wall, laparoscopic port site, light source, visualisation, and camera monitor.
Table 2
Non-commercial laparoscopic simulator model comparison: 55 papers describing 57 unique simulators
Paper
Cost
Undergone validation
Face validity Score
Abdominal cavity
Abdominal wall
Port sites
Light source
Visualisation
Camera monitor
1991
Sackier (USA) [32]/
Yes
6 (A3 B3)
Custom-made black perspex box; rubber sheet sides
Black perspex
Hole; rubber gasket; trochar
Laparoscope
Laparoscope
Unspecified
1998
Chung (USA) [56]
1992
Majeed (UK) [33]
No
5 (A2 B3)
Metal frame
Black perspex double sheet
Hole; rubber disc; trocar
External lighting
Laparoscope
Video monitor
1992
Mughal (UK) [10]
£75
No
4 (A1 B3)
Opaque plastic storage box
Clear perspex lid
Hole; plastic floor tile; trocar
20 W strip lamps
Laparoscope (or direct vision)
Video monitor
1995
Gue (Australia/NZ) [43]
No
3 (A1 B2)
Small coffee table/TV stand
Black plastic sheet; wire mesh
Hole; trocar
Table lamp
Video camera
TV screen
1996
Shapiro (USA) [57]
Yes
6 (A3 B3)
Custom-made plastic box
Flexible plastic covering
Hole; trocar
Laparoscope
Laparoscope
Video monitor
2001
Hasson (USA) [58]
Yes
6 (A3, B3)
Custom-made metal box
Rubber sheet
Hole; rubber sheet; trocar
Laparoscope
Laparoscope (or camcorder)
Video monitor
2003
Lee (UK) [44]
No
4 (A1 B3)
Computer game station (tiered table)
Table top
Anchored trocar
Lamp; external lighting
Camcorder
TV screen
2004
Pokorny (NZ) [11]
NZ $200 (£101.69)
No
4 (A2 B2)
Translucent plastic storage box
Rubber foam sheet over plastic lid
Hole; rubber foam sheet
External lighting
Spy cam; plastic pipe
TV screen
2005
Beatty (UK) [12]
£50
No
2 (A1 B1)
Clear plastic storage box
Clear plastic lid
Hole
External lighting (bright room/lamp)
Webcam
Unspecified
2005
Blacker (UK) [24]
No
3 (A1 B2)
Desk drawer
Cardboard
Hole
Desk lamp/strip lamps
Webcam
Desktop computer monitor
No
3 (A1 B2)
Brick-weighted cardboard box
Cardboard
Hole
Desk lamp
Digital camera
Desktop computer monitor
2005
Chung (USA) [25]
Yes
2 (A1 B1)
Cut-out cardboard box
Cardboard
Hole
External lighting
Webcam
Laptop
2005
2007
Ricchiuiti (USA) [13]/Bell (USA) [14]
US $360 (£215.70)
No
6 (A3 B3)
Plastic storage box
Plastic lid; plastic sheet
Reinforced hole; neoprene; trocar
Laparoscope/halogen lights
Laparoscope
TV screen
2005
Sharpe (USA) [48]
US $185 (£110.84)
Yes
0 (A0 B0)
Custom-made plastic box
Clear plastic lid
Hole
External lighting
Direct vision
N/A
2006
Chandrasekera (UK) [26]
Yes
1 (A1 B0)
Cut-out cardboard box
Cardboard
Hole; trocar
External lighting
Direct vision (unilaterally blinded)
N/A
2006
Do (USA) [59]
Yes
5 (A2 B3)
2 large plastic basins
Plastic basin base
Hole; trocar
Lamp
Video camera
Laptop
2006
Griffin (UK) [45]
Yes
2 (A0 B2)
Custom-made wooden frame
Thin wooden sheet
Hole
Desk lamp
Camcorder
TV screen
2006
2006
Nataraja (UK) [60]/Nataraja (UK) [61]
Yes
3 (A0 B3)
Perspex box
Darkened perspex lid
Hole
Laparoscope
Laparoscope
TV screen
2006
Robinson (USA) [36]
US $50 (£29.96)
Yes
0 (A0 B0)
Custom-made metal box
Metal lid
Hole; unspecified covering material
External lighting
Mirrors
Mirrors
2007
Dhariwal (India) [42]
Yes
5 (A2 B3)
Custom-made plastic box
Black plastic lid
Hole; rubber gasket; trocar
Fibre-optic light source
Laparoscope
Video monitor
2007
Haveran (USA) [46]
Yes
2 (A0 B2)
Adjustable height posts; wooden sheet
Neoprene; plexiglass frame
Hole
Xenon light source
Camera
TV screen
2007
Martinez (Mexico) [34]
No
5 (A2 B3)
Custom-made semi-cylindrical metal box
Metal
Hole; rubber covering
Fluorescent lamp
Video camera; mirror
TV screen
2008
Clevin (Denmark) [62]
Yes
5 (A2 B3)
White plastic wash tub
Plastic
Hole; trocar
Laparoscope
Laparoscope
Unspecified
2008
Dennis (UK) [35]
£150
No
4 (A2 B2)
Custom-made wooden box
Plaster of paris
Hole; rubber grommet
Bicycle light
Camcorder
Camcorder screen
2008
Mir (India) [27]
No
4 (A1 B3)
Cardboard box
Cardboard
Hole
Laparoscope
Laparoscope
TV screen
2008
Raptis (UK) [15]
£27
No
3 (A2 B1)
Opaque plastic box
Plastic
Hole; trocar
None
Night-vision camera
Computer monitor/TV screen
2008
Sparks (USA) [39]
US $150 (£89.87)
No
3 (A1 B2)
Plywood box; foam board
Plywood hinged lid
Hole
Fluorescent light
Webcam
Laptop
2009
Al-Abed (UK) [16]
£40
No
6 (A3 B3)
Plastic storage box
Foam; latex gloves
Hole; trocar
Halogen light
Webcam; plastic pipe
Laptop
2009
Helmy (Egypt) [40]
Yes
4 (A2 B2)
White foam food storage box
Foam box lid
Hole; trocar
Webcam in-built
Webcam
Laptop
2009
Pawar (India) [47]
No
3 (A1 B2)
Plywood board box
Plywood
Hole
Tube light
Digital camera
TV screen
2009
Jain (India) [63]
Yes
6 (A3 B3)
Custom-made box (unspecified material)
Elastic rubber sheet
Hole; trocar
Laparoscope
Laparoscope
Video monitor
2009
Singh (UK) [28]
No
4 (A2 B2)
Shoebox
Cardboard
Hole; trocar
Desk lamp
Digital camera
TV monitor/computer monitor
2010
Jaber (Saudi Arabia) [64]
US $41 (£24.57)
No
2 (A1 B1)
Metallic wire basket; acrylic sheet
Rubber mouse pad
Hole
External lighting
Webcam
Laptop
2010
Rabie (Saudi Arabia) [29]
No
3 (A1 B2)
Half large plastic water container; plywood board
Plastic
Hole; trocar
Light bulb
Video camera
TV screen
2010
Rivas (Spain) [17]
Yes
4 (A2 B2)
Translucent plastic storage box
Plastic
Reinforced hole; trocar
External lighting
Micro-camera; tube
TV screen
2010
Oliver (UK) [65]
Yes
3 (A1 B2)
Cardboard box
Cardboard lid
Hole
Desk light
Webcam
Laptop
2010
Ramalingam (India) [66]
Yes
5 (A2 B3)
Custom-made white box (unspecified material)
Box lid
Hole; rubber sheet; trocar/tube
Laparoscope
Laparoscope
TV screen
2011
Alfa-Wali (UK) [30]
Yes
3 (A1 B2)
Shoe box
Cardboard
Hole
Torch
Mobile phone camera
Phone screen
2011
Khine (UK) [18]
£60
No
5 (A3 B2)
Translucent plastic storage box
Foldable plastic lid
Hole; neoprene; trocar
Fluorescent light
Webcam
Laptop/desktop computer
2011
Kobayashi (USA) [20]
US $100 (£59.92)
Yes
3 (A2 B1)
Translucent plastic storage box
Plastic lid
Hole; rubber strip
External lighting
Webcam
Laptop
2011
Kiely (Canada) [19] 5 simulators
C $100-160 (£54.98-£87.97)
Yes
3 (A2 B1)
Translucent plastic storage box
Plastic lid
Hole; trocar
External lighting
Webcam (various brands)
Laptop/desktop computer (various brands)
2012
Afuwape (Nigeria) [67]
US $34 (£20.37)
No
2 (A1 B1)
Recycled plastic liquid container; plywood board
Plastic
Hole
External lighting
Webcam
Laptop
2012
Bahsoun (UK) [31]
Yes
3 (A3 B1)
Cut-out cardboard box; polystyrene
Cardboard
Hole; trocar
External lighting
iPad camera
iPad screen
2013
Akdemir (Turkey) [68]
Yes
4 (A1 B3)
Custom-made plastic box
Plastic
Hole; trocar
Laparoscope
Laparoscope
Video monitor
2013
Hennessey (Australia) [69]
No
2 (A1 B1)
None
Laptop lid
Trocar; string; skirt hanger
External lighting
Webcam
Laptop
2013
Moreira-Pinto (Portugal) [21]
€33.67 (£26.99)
Yes
4 (A3 B1)
Translucent plastic storage box
Cut-out plastic lid; rubber sheet
Hole; trocar
External lighting
Webcam
Laptop
2013
Omokanye (Nigeria) [41]
No
4 (A2 B2)
Plywood box
Box lid
Hole; foam piece
Camera in-built; light bulb
IR CCTV Camera
TV screen
2013
Ruparel (USA) [37]
US $5 (£3.00)
Yes
1 (A0 B1)
Ring binder
Ring binder
Hole
External lighting
iPad camera
iPad screen
  
US $5 (£3.00)
Yes
2 (A1 B1)
Cut-out cardboard box
Cardboard
Hole
External lighting
iPad camera
iPad screen
2013
Smith (UK) [70]
US $100 (£59.92)
No
4 (A2 B2)
Plastic crate, plywood and cork sheet
Plastic
Hole; trocar; plastic rings
LED lamp
Webcam
Laptop
US $130 (£77.89)
No
5 (A3 B2)
Upgraded version: add plywood frame and foam pads to port site
2013
Wong (USA) [71]
US $309 (£185.14)
Yes
4 (A2 B2)
Custom-made hard plastic box
Vinyl membrane glued to plastic frame
Hole; trocar
LED strip
Miniature CCD camera
Video monitor
2014
Beard (USA) [22]
US $85 (£50.93)
Yes
3 (A2 B1)
Translucent plastic storage box
Plastic lid
Hole; flexible material cover
External lighting
Webcam
Laptop
2014
Escamirosa (Mexico) [38]
No
2 (A1 B1)
Clear plastic document case
Plastic
Hole
External lighting
Smartphone or tablet camera
Video monitor
2014
Walczak (Poland) [23]
US $51 (£30.56)
No
3 (A2 B1)
Translucent plastic storage box
Opaque plastic lid
Hole; rubber sheet; metal washer; trocar
LED light bulb
Mirrors
Mirrors
  
US $99 (£59.32)
No
5 (A3 B2)
Translucent plastic storage box
Opaque plastic lid
Hole; rubber sheet; metal washer; trocar
LED light bulb
Webcam
Home computer
Table 3
Commercial laparoscopic simulator model comparison: 16 papers describing 14 unique simulators
Paper
Simulator
Price
Validation
Face validity
1998
Derossis [72]/Keyser [73]
USSC Laptrainer
Yes
6 (A3 B3)
2000
2000
Scott [74] /Nakamura [55]
Karl-Storz
Yes
6 (A3 B3)
2011
2003
Adrales [75]/Adrales [76]
US Surgical Trainer
Yes
5 (A2 B3)
2004
2005
Waseda [77]
Tuebinger MIC Trainer (Richard Wolf GmbH)
No
6 (A3 B3)
2007
Hruby [49]
EZ Trainer
$600 (£359.50)
Yes
1 (A0 B1)
2008
Dayan [78]/Boon [79]
Simulab Laptrainer
Yes
3 (A0 B3)
2008
2008
Singh [80]
iSim
Yes
3 (A1 B2)
2010
Hull [81]
Body Torso Trainer BTS300D (Pharmabotics)
£390 ($585) + £975 for Box trainer
No
6 (A3 B3)
2011
Nakamura [55]
Ethicon TASKit
Yes
6 (A3 B3)
2013
Xiao [51]/Xiao [52]
Ergo-Lap
$500 (£299.58)
Yes
5 (A2 B3)
2014
2014
Yoon [53]
iTrainer
$100 (£59.92)
Yes
1 (A0 B1)
2013
Hennessey [50]
eoSim
$750 (£449.37)
Yes
3 (A1 B2)
  
FLS simulator
$1680 (£1006.58)
Yes
5 (A3 B2)
Table 4
Comparison between commercial and non-commercial simulators
 
Non-commercial simulators
Commercial simulators
Unique simulators
60
13
Price range
£3.00–£215.70
£59.92–£1006.58
Subject to validation (%)
33 (55 %)
12 (92 %)
Average Face Validity Score
3 (A2 B2)
5 (A3 B2)

Abdominal cavity and wall

Materials used to simulate the abdominal cavity aimed to prevent direct vision of the laparoscopic instruments; 68 % (41) of non-commercial simulators utilised off-the-shelf components for the abdomen, whilst 32 % (19) required a custom-made box. The commonest off-the-shelf component was a plastic storage box for the abdominal cavity, with the box lid serving as the abdominal wall [1023]. Cardboard boxes were also commonly utilised [2431].

Laparoscopic port site

The majority of non-commercial simulators (97 %, 58) required creating a hole in the abdominal wall material (by cutting, drilling or piercing) for the laparoscopic port site. Instruments could then be inserted directly into the cavity or through a trocar. Use of a flexible covering material, such as neoprene [13, 18], and ring reinforcement around the port site [13, 3235] were also described as methods to increase simulator authenticity.

Primary light source

An adequate light source was required to visualise the interior of the abdominal cavity. External lighting was used for 38 % (23) of non-commercial simulators, particularly where boxes were made from a translucent material [11, 12, 17, 21] or had open sides [3638]. This was useful in cost reduction, as no additional equipment was required to provide lighting in these cases. The built-in light source from the laparoscope itself provided lighting for 17 % (10) of simulators, desk lamps for 13 % (8), and light-emitting diodes (LED) for 8 % (5). Other lighting methods described included fluorescent lights [18, 34, 39], webcam in-built [40, 41], fibre optics [42], and torchlight [30].

Visualisation and camera monitor

Visualisation for non-commercial simulators was most commonly achieved using a webcam (37 %, 22) or laparoscope (22 %, 13). Other cameras types described included video cameras [29, 34, 4345], digital cameras [24, 28, 46, 47], and tablet/smartphone cameras [30, 31, 37, 38]. Direct vision (full [10, 48] or unilaterally blinded [26]) and mirrors [23, 36] were non-electronic methods of visualisation described. Where electronic visualisation was used, a laptop computer, video monitor, tablet, or smartphone were prerequisite and not included in any cost estimates; this was true of both commercial and non-commercial simulators; 40 % (24) of models described use of a laptop/desktop computer screen and 38 % (23) described using a television or video monitor.

Cost

Forty-six percentage (26) of non-commercial and 54 % (6) of commercial simulators provided a figure for cost. For non-commercial, this was the cost of materials and assembly (e.g. custom-made parts); for commercial simulators, the cost represented the current or intended retail price. The cost ranged from £3 to £216 for non-commercial simulators and £60 to £1007 for commercial simulators. The cost of laparoscopic equipment (instruments and laparoscope) was not included in cost estimates for non-commercial simulators. However, a number of articles suggested that used or expired disposable instruments could be obtained from the operating department at no cost to the trainee [16, 2326, 39, 40, 44]. Alternatively, they could also be obtained by donation from laparoscopic equipment manufacturers [15, 20, 26]. Electronic devices for visualisation (video monitor, laptop computer, tablet/smartphone) were not included in cost estimates for non-commercial simulators. Laparoscopic equipment and visualisation monitors were also not consistently included for commercial simulator model packages [4952].

Face validity

Commercial simulators had better face validity than non-commercial simulators, with a median score of 5 compared to 3 (maximum 6). Commercial simulators tended to utilise higher-fidelity visualisation equipment, with a median visualisation score of B3 compared with B2 for non-commercial simulators. For the abdominal cavity, there was comparable face validity, with both groups having a median score of A2.

Discussion

Cost will undeniably be a key factor in the accessibility of a simulator model. Many articles omitted cost estimates, so there is difficulty in making a true cost comparison between commercial and non-commercial simulators available. Although there is an overlap in the price range, non-commercial models appear to be able to achieve a lower cost than commercial ones, with the lowest reported figure being $5 (£3) compared to $100 (£60) for a commercial model [37, 53]. This difference could be due to commercial models factoring in a profit margin and assembly fee in addition to the value of the raw materials. Moreover, commercial models will usually include expensive laparoscopic instruments in the cost, which could potentially be obtained cost-free when self-assembling [16, 2326, 44].
Non-commercial models commonly utilised off-the-shelf components—a potentially a cost-reductive strategy, as custom-made parts could incur a greater expense. In particular, the use of a translucent plastic box provided a sturdy frame and utilised external lighting, negating the need for an additional light source inside the box [11, 12, 17, 21]. Visualisation using a webcam and computer offered an inexpensive solution, as they can be obtained cheaply. With computer ownership being widespread [54], it can be assumed that most trainees have access to a computer at home. Many trainees may also own a tablet computer. Tablet-based simulation could provide a video feed more comparable in quality to a laparoscope than a budget webcam [31]. Using a tablet or smartphone, where the screen and camera are on the same device, may also be easier to assemble. However, adjustment of camera position would be more difficult.
Commercial simulators, although seemingly costlier in comparison, do have the advantage that they come assembled and ready to use, with more models having undergone some form of validation. However, the appropriateness of the validation methods undertaken are not easily assessed, and only models from established industry suppliers appear to have undergone more extensive validation [50, 55]. In terms of face validity, commercial simulators largely seem to have better face validity, particularly as laparoscopes are more frequently used for visualisation, allowing realistic image quality and camera motion. A laparoscope may be difficult to obtain at a reasonable cost; an alternative may be to use a small camera mounted on a plastic pipe, which also allows adjustment of the operative field view [11, 16, 17]. The ideal simulator would have a highly realistic user interface and allow development of both the technical and non-technical skills required for laparoscopic surgery. The simulators examined in this review chiefly aim to develop basic laparoscopic skills such as instrument handling and cutting; therefore, a highly realistic user interface, as in virtual reality simulators, may be superfluous to requirements. However, use of lower-fidelity simulators does not preclude the development of non-technical skills. For example, the simulator could be incorporated into an operating theatre environment with other team members present, where trainees could be observed and assessed on emergency or elective scenarios.
Of course, simply having access to a simulator does not equate to improvement in surgical skill. Regular use of the trainer with feedback from a supervisor would be ideal. Simulator training could take place during the normal working day with allocated practice time, or this could be done at leisure at home.

Conclusion

The models described provide simple and affordable options for self-assembly, although a significant proportion has not been subject to any validation. Whilst simulation cannot replace operating theatre experience, portable simulators may be the most equitable solution to allow regular basic skills practice (e.g. intra-corporeal suturing, knot-tying) for junior surgical trainees.

Compliance with ethical standards

Disclosures

Miss. Mimi M Li and Mr. Joseph George have no conflicts of interest or financial ties to disclose.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

Bis 30. April 2024 bestellen und im ersten Jahr nur 199 € zahlen!

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat Aggarwal R, Moorthy K, Darzi A (2004) Laparoscopic skills training and assessment. Br J Surg 91:1549–1558CrossRefPubMed Aggarwal R, Moorthy K, Darzi A (2004) Laparoscopic skills training and assessment. Br J Surg 91:1549–1558CrossRefPubMed
2.
Zurück zum Zitat Nagendran M, Gurusamy KS, Aggarwal R, Loizidou M, Davidson BR (2013) Virtual reality training for surgical trainees in laparoscopic surgery. Cochrane Database Syst Rev (8):CD006575. doi:10.1002/14651858.CD006575.pub3 Nagendran M, Gurusamy KS, Aggarwal R, Loizidou M, Davidson BR (2013) Virtual reality training for surgical trainees in laparoscopic surgery. Cochrane Database Syst Rev (8):CD006575. doi:10.​1002/​14651858.​CD006575.​pub3
6.
Zurück zum Zitat Dunkin B, Adrales G, Apelgren K, Mellinger J (2007) Surgical simulation: a current review. Surg Endosc 21:357–366CrossRefPubMed Dunkin B, Adrales G, Apelgren K, Mellinger J (2007) Surgical simulation: a current review. Surg Endosc 21:357–366CrossRefPubMed
7.
Zurück zum Zitat Schijven M, Jakimowicz J (2003) Virtual reality surgical laparoscopic simulators. Surg Endosc Other Interv Tech 17:1943–1950CrossRef Schijven M, Jakimowicz J (2003) Virtual reality surgical laparoscopic simulators. Surg Endosc Other Interv Tech 17:1943–1950CrossRef
8.
Zurück zum Zitat Fitzgerald J, Caesar B (2012) The European working time directive: a practical review for surgical trainees. Int J Surg 10:399–403CrossRefPubMed Fitzgerald J, Caesar B (2012) The European working time directive: a practical review for surgical trainees. Int J Surg 10:399–403CrossRefPubMed
11.
Zurück zum Zitat Pokorny MR, McLaren SL (2004) Inexpensive home-made laparoscopic trainer and camera. ANZ J Surg 74:691–693CrossRefPubMed Pokorny MR, McLaren SL (2004) Inexpensive home-made laparoscopic trainer and camera. ANZ J Surg 74:691–693CrossRefPubMed
12.
Zurück zum Zitat Beatty JD (2005) How to build an inexpensive laparoscopic webcam-based trainer. BJU Int 96:679–682CrossRefPubMed Beatty JD (2005) How to build an inexpensive laparoscopic webcam-based trainer. BJU Int 96:679–682CrossRefPubMed
13.
Zurück zum Zitat Ricchiuti D, Ralat DA, Evancho-Chapman M, Wyneski H, Cerone J, Wegryn JD (2005) A simple cost-effective design for construction of a laparoscopic trainer. J Endourol 19:1000–1005CrossRefPubMed Ricchiuti D, Ralat DA, Evancho-Chapman M, Wyneski H, Cerone J, Wegryn JD (2005) A simple cost-effective design for construction of a laparoscopic trainer. J Endourol 19:1000–1005CrossRefPubMed
14.
Zurück zum Zitat Bell R, Maseelall P, Fanning J, Fenton B, Flora R (2007) A laparoscopic simulator tool for objective measurement of residents’ laparoscopic ability. JSLS 11:470–473PubMedPubMedCentral Bell R, Maseelall P, Fanning J, Fenton B, Flora R (2007) A laparoscopic simulator tool for objective measurement of residents’ laparoscopic ability. JSLS 11:470–473PubMedPubMedCentral
15.
16.
17.
Zurück zum Zitat Rivas AM, Vilanova AC, Pereferrer FS, González MH, del Castillo Déjardin D (2010) Low cost simulator for acquiring basic laparoscopic skills. Cirugía Española (English Edition) 87:26–32CrossRef Rivas AM, Vilanova AC, Pereferrer FS, González MH, del Castillo Déjardin D (2010) Low cost simulator for acquiring basic laparoscopic skills. Cirugía Española (English Edition) 87:26–32CrossRef
18.
Zurück zum Zitat Khine M, Leung E, Morran C, Muthukumarasamy G (2011) Homemade laparoscopic simulators for surgical trainees. Clin Teach 8:118–121CrossRefPubMed Khine M, Leung E, Morran C, Muthukumarasamy G (2011) Homemade laparoscopic simulators for surgical trainees. Clin Teach 8:118–121CrossRefPubMed
20.
Zurück zum Zitat Kobayashi SA, Jamshidi R, O’Sullivan P, Palmer B, Hirose S, Stewart L, Kim EH (2011) Bringing the skills laboratory home: an affordable webcam-based personal trainer for developing laparoscopic skills. J Surg Educ 68:105–109CrossRefPubMed Kobayashi SA, Jamshidi R, O’Sullivan P, Palmer B, Hirose S, Stewart L, Kim EH (2011) Bringing the skills laboratory home: an affordable webcam-based personal trainer for developing laparoscopic skills. J Surg Educ 68:105–109CrossRefPubMed
22.
Zurück zum Zitat Beard JH, Akoko L, Mwanga A, Mkony C, O’Sullivan P (2014) Manual laparoscopic skills development using a low-cost trainer box in Tanzania. J Surg Educ 71:85–90CrossRefPubMed Beard JH, Akoko L, Mwanga A, Mkony C, O’Sullivan P (2014) Manual laparoscopic skills development using a low-cost trainer box in Tanzania. J Surg Educ 71:85–90CrossRefPubMed
24.
25.
Zurück zum Zitat Chung SY, Landsittel D, Chon CH, Ng CS, Fuchs GJ (2005) Laparoscopic skills training using a webcam trainer. J Urol 173:180–183CrossRefPubMed Chung SY, Landsittel D, Chon CH, Ng CS, Fuchs GJ (2005) Laparoscopic skills training using a webcam trainer. J Urol 173:180–183CrossRefPubMed
26.
Zurück zum Zitat Chandrasekera SK, Donohue JF, Orley D, Barber NJ, Shah N, Bishai PM, Muir GH (2006) Basic laparoscopic surgical training: examination of a low-cost alternative. Eur Urol 50:1285–1291CrossRefPubMed Chandrasekera SK, Donohue JF, Orley D, Barber NJ, Shah N, Bishai PM, Muir GH (2006) Basic laparoscopic surgical training: examination of a low-cost alternative. Eur Urol 50:1285–1291CrossRefPubMed
27.
29.
Zurück zum Zitat Rabie M (2010) Acquiring laparoscopic suturing skills using a homemade trainer. Eur Surg 42:149–151CrossRef Rabie M (2010) Acquiring laparoscopic suturing skills using a homemade trainer. Eur Surg 42:149–151CrossRef
31.
Zurück zum Zitat Bahsoun AN, Malik MM, Ahmed K, El-Hage O, Jaye P, Dasgupta P (2013) Tablet based simulation provides a new solution to accessing laparoscopic skills training. J Surg Educ 70:161–163CrossRefPubMed Bahsoun AN, Malik MM, Ahmed K, El-Hage O, Jaye P, Dasgupta P (2013) Tablet based simulation provides a new solution to accessing laparoscopic skills training. J Surg Educ 70:161–163CrossRefPubMed
32.
Zurück zum Zitat Sackier JM, Berci G, Paz-Partlow M (1991) A new training device for laparoscopic cholecystectomy. Surg Endosc 5:158–159CrossRefPubMed Sackier JM, Berci G, Paz-Partlow M (1991) A new training device for laparoscopic cholecystectomy. Surg Endosc 5:158–159CrossRefPubMed
33.
36.
Zurück zum Zitat Robinson JK, Kushner DM (2006) Development and validation of a home-based, mirrored, gynecologic laparoscopy trainer. J Minim Invasive Gynecol 13:102–107CrossRefPubMed Robinson JK, Kushner DM (2006) Development and validation of a home-based, mirrored, gynecologic laparoscopy trainer. J Minim Invasive Gynecol 13:102–107CrossRefPubMed
37.
Zurück zum Zitat Ruparel RK, Brahmbhatt RD, Dove JC, Hutchinson RC, Stauffer JA, Bowers SP, Richie E, Lannen AM, Thiel DD (2014) “iTrainers”–novel and inexpensive alternatives to traditional laparoscopic box trainers. Urology 83:116–120CrossRefPubMed Ruparel RK, Brahmbhatt RD, Dove JC, Hutchinson RC, Stauffer JA, Bowers SP, Richie E, Lannen AM, Thiel DD (2014) “iTrainers”–novel and inexpensive alternatives to traditional laparoscopic box trainers. Urology 83:116–120CrossRefPubMed
38.
Zurück zum Zitat Escamirosa Fernando P, Flores Ricardo O, Martínez Arturo M (2014) How to build a portable laparoscopic trainer for smartphones and tablets. J Laparoendosc Adv Surg Tech B. doi:10.1089/vor.2014.0200 Escamirosa Fernando P, Flores Ricardo O, Martínez Arturo M (2014) How to build a portable laparoscopic trainer for smartphones and tablets. J Laparoendosc Adv Surg Tech B. doi:10.​1089/​vor.​2014.​0200
39.
Zurück zum Zitat Sparks D, Chase D, Lee W (2008) An inexpensive solution for laparoscopic simulation. OPUS 12:1–3 Sparks D, Chase D, Lee W (2008) An inexpensive solution for laparoscopic simulation. OPUS 12:1–3
40.
Zurück zum Zitat Helmy S, El-Shenoufy A (2009) Development of laparoscopic skills using a new inexpensive webcam trainer. J Biol Sci 9:766–771CrossRef Helmy S, El-Shenoufy A (2009) Development of laparoscopic skills using a new inexpensive webcam trainer. J Biol Sci 9:766–771CrossRef
41.
Zurück zum Zitat Omokanye L, Olatinwo A, Salaudeen A, Balogun O, Saidu R (2013) An improvised endotrainer for low resource settings. Res J Health Sci 1:2360–7793 Omokanye L, Olatinwo A, Salaudeen A, Balogun O, Saidu R (2013) An improvised endotrainer for low resource settings. Res J Health Sci 1:2360–7793
43.
Zurück zum Zitat Gue S (1995) Home-made videoscopic trainer for operative laparoscopic surgery. Aust N Z J Surg 65:820–821CrossRefPubMed Gue S (1995) Home-made videoscopic trainer for operative laparoscopic surgery. Aust N Z J Surg 65:820–821CrossRefPubMed
44.
Zurück zum Zitat Lee AC (2003) A homemade minimal access surgical skills station. Pediatric Endosurg Innov Tech 7:273–277CrossRef Lee AC (2003) A homemade minimal access surgical skills station. Pediatric Endosurg Innov Tech 7:273–277CrossRef
45.
Zurück zum Zitat Griffin S, Kumar A, Burgess N, Donaldson P (2006) Development of laparoscopic suturing skills: a prospective trial. J Endourol 20:144–148CrossRefPubMed Griffin S, Kumar A, Burgess N, Donaldson P (2006) Development of laparoscopic suturing skills: a prospective trial. J Endourol 20:144–148CrossRefPubMed
46.
Zurück zum Zitat Haveran LA, Novitsky YW, Czerniach DR, Kaban GK, Taylor M, Gallagher-Dorval K, Schmidt R, Kelly JJ, Litwin DE (2007) Optimizing laparoscopic task efficiency: the role of camera and monitor positions. Surg Endosc 21:980–984CrossRefPubMed Haveran LA, Novitsky YW, Czerniach DR, Kaban GK, Taylor M, Gallagher-Dorval K, Schmidt R, Kelly JJ, Litwin DE (2007) Optimizing laparoscopic task efficiency: the role of camera and monitor positions. Surg Endosc 21:980–984CrossRefPubMed
47.
Zurück zum Zitat Pawar DS, Singh SK, Benjwal S, Kumari I (2010) A novel idea of using digital camera for laparoscopy training in urology. Urol J 7:56–58PubMed Pawar DS, Singh SK, Benjwal S, Kumari I (2010) A novel idea of using digital camera for laparoscopy training in urology. Urol J 7:56–58PubMed
48.
Zurück zum Zitat Sharpe BA, MacHaidze Z, Ogan K (2005) Randomized comparison of standard laparoscopic trainer to novel, at-home, low-cost, camera-less laparoscopic trainer. Urology 66:50–54CrossRefPubMed Sharpe BA, MacHaidze Z, Ogan K (2005) Randomized comparison of standard laparoscopic trainer to novel, at-home, low-cost, camera-less laparoscopic trainer. Urology 66:50–54CrossRefPubMed
49.
Zurück zum Zitat Hruby GW, Sprenkle PC, Abdelshehid C, Clayman RV, McDougall EM, Landman J (2008) The EZ Trainer: validation of a portable and inexpensive simulator for training basic laparoscopic skills. J Urol 179:662–666CrossRefPubMed Hruby GW, Sprenkle PC, Abdelshehid C, Clayman RV, McDougall EM, Landman J (2008) The EZ Trainer: validation of a portable and inexpensive simulator for training basic laparoscopic skills. J Urol 179:662–666CrossRefPubMed
50.
Zurück zum Zitat Hennessey IA, Hewett P (2013) Construct, concurrent, and content validity of the eoSim laparoscopic simulator. J Laparoendosc Adv Surg Tech 23:855–860CrossRef Hennessey IA, Hewett P (2013) Construct, concurrent, and content validity of the eoSim laparoscopic simulator. J Laparoendosc Adv Surg Tech 23:855–860CrossRef
51.
Zurück zum Zitat Xiao DJ, Albayrak A, Buzink SN, Jakimowicz J, Goossens RHM (2013) A newly designed portable laparoscopic trainer based on ergonomic guidelines. Surg Endosc Other Interv Tech 27:S5 Xiao DJ, Albayrak A, Buzink SN, Jakimowicz J, Goossens RHM (2013) A newly designed portable laparoscopic trainer based on ergonomic guidelines. Surg Endosc Other Interv Tech 27:S5
52.
Zurück zum Zitat Xiao D, Jakimowicz JJ, Albayrak A, Buzink SN, Botden SM, Goossens RH (2014) Face, content, and construct validity of a novel portable ergonomic simulator for basic laparoscopic skills. J Surg Educ 71:65–72CrossRefPubMed Xiao D, Jakimowicz JJ, Albayrak A, Buzink SN, Botden SM, Goossens RH (2014) Face, content, and construct validity of a novel portable ergonomic simulator for basic laparoscopic skills. J Surg Educ 71:65–72CrossRefPubMed
53.
Zurück zum Zitat Yoon R, del Junco M, Kaplan A, Okhunov Z, Bucur P, Hofmann M, Alipanah R, McDougall EM, Landman J (2015) Development of a novel iPad-based laparoscopic trainer and comparison with a standard laparoscopic trainer for basic laparoscopic skills testing. J Surg Educ 72:41–46CrossRefPubMed Yoon R, del Junco M, Kaplan A, Okhunov Z, Bucur P, Hofmann M, Alipanah R, McDougall EM, Landman J (2015) Development of a novel iPad-based laparoscopic trainer and comparison with a standard laparoscopic trainer for basic laparoscopic skills testing. J Surg Educ 72:41–46CrossRefPubMed
55.
Zurück zum Zitat Nakamura LY, Martin GL, Fox JC, Andrews PE, Humphreys M, Castle EP (2012) Comparing the portable laparoscopic trainer with a standardized trainer in surgically naive subjects. J Endourol 26:67–72CrossRefPubMed Nakamura LY, Martin GL, Fox JC, Andrews PE, Humphreys M, Castle EP (2012) Comparing the portable laparoscopic trainer with a standardized trainer in surgically naive subjects. J Endourol 26:67–72CrossRefPubMed
56.
Zurück zum Zitat Chung J, Sackier J (1998) A method of objectively evaluating improvements in laparoscopic skills. Surg Endosc 12:1111–1116CrossRefPubMed Chung J, Sackier J (1998) A method of objectively evaluating improvements in laparoscopic skills. Surg Endosc 12:1111–1116CrossRefPubMed
57.
Zurück zum Zitat Shapiro S, Paz-Partlow M, Daykhovsky L, Gordon L (1996) The use of a modular skills center for the maintenance of laparoscopic skills. Surg Endosc 10:816–819CrossRefPubMed Shapiro S, Paz-Partlow M, Daykhovsky L, Gordon L (1996) The use of a modular skills center for the maintenance of laparoscopic skills. Surg Endosc 10:816–819CrossRefPubMed
58.
Zurück zum Zitat Hasson HM, Aruna Kumari NV, Eekhout J (2001) Training simulator for developing laparoscopic skills. JSLS 5:255–265PubMedPubMedCentral Hasson HM, Aruna Kumari NV, Eekhout J (2001) Training simulator for developing laparoscopic skills. JSLS 5:255–265PubMedPubMedCentral
59.
Zurück zum Zitat Do AT, Cabbad MF, Kerr A, Serur E, Robertazzi RR, Stankovic MR (2006) A warm-up laparoscopic exercise improves the subsequent laparoscopic performance of Ob-Gyn residents: a low-cost laparoscopic trainer. JSLS 10:297–301PubMedPubMedCentral Do AT, Cabbad MF, Kerr A, Serur E, Robertazzi RR, Stankovic MR (2006) A warm-up laparoscopic exercise improves the subsequent laparoscopic performance of Ob-Gyn residents: a low-cost laparoscopic trainer. JSLS 10:297–301PubMedPubMedCentral
60.
Zurück zum Zitat Nataraja R, Ade-Ajayi N, Holak K, Arbell D, Curry J (2006) Pilot study of new training model for laparoscopic surgery. Pediatr Surg Int 22:546–550CrossRefPubMed Nataraja R, Ade-Ajayi N, Holak K, Arbell D, Curry J (2006) Pilot study of new training model for laparoscopic surgery. Pediatr Surg Int 22:546–550CrossRefPubMed
61.
Zurück zum Zitat Nataraja R, Ade-Ajayi N, Curry J (2006) Surgical skills training in the laparoscopic era: the use of a helping hand. Pediatr Surg Int 22:1015–1020CrossRefPubMed Nataraja R, Ade-Ajayi N, Curry J (2006) Surgical skills training in the laparoscopic era: the use of a helping hand. Pediatr Surg Int 22:1015–1020CrossRefPubMed
62.
Zurück zum Zitat Clevin L, Grantcharov TP (2008) Does box model training improve surgical dexterity and economy of movement during virtual reality laparoscopy? A randomised trial. Acta Obstet Gynecol Scand 87:99–103CrossRefPubMed Clevin L, Grantcharov TP (2008) Does box model training improve surgical dexterity and economy of movement during virtual reality laparoscopy? A randomised trial. Acta Obstet Gynecol Scand 87:99–103CrossRefPubMed
63.
Zurück zum Zitat Jain M, Tantia O, Khanna S, Sen B, Kumar Sasmal P (2009) Hernia endotrainer: results of training on self-designed hernia trainer box. J Laparoendosc Adv Surg Tech 19:535–540CrossRef Jain M, Tantia O, Khanna S, Sen B, Kumar Sasmal P (2009) Hernia endotrainer: results of training on self-designed hernia trainer box. J Laparoendosc Adv Surg Tech 19:535–540CrossRef
65.
Zurück zum Zitat Oliver J, Carty N, Wakefield C (2010) Low-cost model for laparoscopic appendicectomy in a webcam simulator. Bull R Coll Surg Engl 92:122–125CrossRef Oliver J, Carty N, Wakefield C (2010) Low-cost model for laparoscopic appendicectomy in a webcam simulator. Bull R Coll Surg Engl 92:122–125CrossRef
67.
Zurück zum Zitat Afuwape O (2012) An affordable laparoscopic surgery trainer for trainees in poor resource settings. West Afr J Med 31(1):63–65PubMed Afuwape O (2012) An affordable laparoscopic surgery trainer for trainees in poor resource settings. West Afr J Med 31(1):63–65PubMed
68.
Zurück zum Zitat Akdemir A, Şendağ F, Öztekin MK (2014) Laparoscopic virtual reality simulator and box trainer in gynecology. Int J Gynecol Obstet 125:181–185CrossRef Akdemir A, Şendağ F, Öztekin MK (2014) Laparoscopic virtual reality simulator and box trainer in gynecology. Int J Gynecol Obstet 125:181–185CrossRef
69.
Zurück zum Zitat Hennessey IA (2012) How to make a portable laparoscopic simulator. J Laparoendosc Adv Surg Tech 22 Hennessey IA (2012) How to make a portable laparoscopic simulator. J Laparoendosc Adv Surg Tech 22
70.
Zurück zum Zitat Smith MD, Norris JM, Kishikova L, Smith DP (2013) Laparoscopic simulation for all: two affordable, upgradable, and easy-to-build laparoscopic trainers. J Surg Educ 70:217–223CrossRefPubMed Smith MD, Norris JM, Kishikova L, Smith DP (2013) Laparoscopic simulation for all: two affordable, upgradable, and easy-to-build laparoscopic trainers. J Surg Educ 70:217–223CrossRefPubMed
71.
Zurück zum Zitat Wong J, Bhattacharya G, Vance SJ, Bistolarides P, Merchant AM (2013) Construction and validation of a low-cost laparoscopic simulator for surgical education. J Surg Educ 70:443–450CrossRefPubMed Wong J, Bhattacharya G, Vance SJ, Bistolarides P, Merchant AM (2013) Construction and validation of a low-cost laparoscopic simulator for surgical education. J Surg Educ 70:443–450CrossRefPubMed
72.
Zurück zum Zitat Derossis AM, Fried GM, Abrahamowicz M, Sigman HH, Barkun JS, Meakins JL (1998) Development of a model for training and evaluation of laparoscopic skills. Am J Surg 175:482–487CrossRefPubMed Derossis AM, Fried GM, Abrahamowicz M, Sigman HH, Barkun JS, Meakins JL (1998) Development of a model for training and evaluation of laparoscopic skills. Am J Surg 175:482–487CrossRefPubMed
73.
Zurück zum Zitat Keyser EJ, Derossis AM, Antoniuk M, Sigman HH, Fried GM (2000) A simplified simulator for the training and evaluation of laparoscopic skills. Surg Endosc 14:149–153CrossRefPubMed Keyser EJ, Derossis AM, Antoniuk M, Sigman HH, Fried GM (2000) A simplified simulator for the training and evaluation of laparoscopic skills. Surg Endosc 14:149–153CrossRefPubMed
74.
Zurück zum Zitat Scott DJ, Bergen PC, Rege RV, Laycock R, Tesfay ST, Valentine RJ, Euhus DM, Jeyarajah DR, Thompson WM, Jones DB (2000) Laparoscopic training on bench models: better and more cost effective than operating room experience? J Am Coll Surg 191:272–283CrossRefPubMed Scott DJ, Bergen PC, Rege RV, Laycock R, Tesfay ST, Valentine RJ, Euhus DM, Jeyarajah DR, Thompson WM, Jones DB (2000) Laparoscopic training on bench models: better and more cost effective than operating room experience? J Am Coll Surg 191:272–283CrossRefPubMed
75.
Zurück zum Zitat Adrales G, Chu U, Witzke D, Donnelly M, Hoskins D, Mastrangelo M, Gandsas A, Park A (2003) Evaluating minimally invasive surgery training using low-cost mechanical simulations. Surg Endosc Other Interv Tech 17:580–585CrossRef Adrales G, Chu U, Witzke D, Donnelly M, Hoskins D, Mastrangelo M, Gandsas A, Park A (2003) Evaluating minimally invasive surgery training using low-cost mechanical simulations. Surg Endosc Other Interv Tech 17:580–585CrossRef
76.
Zurück zum Zitat Adrales G, Chu U, Hoskins J, Witzke D, Park A (2004) Development of a valid, cost-effective laparoscopic training program. Am J Surg 187:157–163CrossRefPubMed Adrales G, Chu U, Hoskins J, Witzke D, Park A (2004) Development of a valid, cost-effective laparoscopic training program. Am J Surg 187:157–163CrossRefPubMed
77.
Zurück zum Zitat Waseda M, Inaki N, Mailaender L, Buess G (2005) An innovative trainer for surgical procedures using animal organs. Minim Invasive Ther Allied Technol 14:262–266CrossRefPubMed Waseda M, Inaki N, Mailaender L, Buess G (2005) An innovative trainer for surgical procedures using animal organs. Minim Invasive Ther Allied Technol 14:262–266CrossRefPubMed
78.
Zurück zum Zitat Dayan AB, Ziv A, Berkenstadt H, Munz Y (2008) A simple, low-cost platform for basic laparoscopic skills training. Surg Innov 15:136–142CrossRefPubMed Dayan AB, Ziv A, Berkenstadt H, Munz Y (2008) A simple, low-cost platform for basic laparoscopic skills training. Surg Innov 15:136–142CrossRefPubMed
79.
Zurück zum Zitat Boon JR, Salas N, Avila D, Boone TB, Lipshultz LI, Link RE (2008) Construct validity of the pig intestine model in the simulation of laparoscopic urethrovesical anastomosis: tools for objective evaluation. J Endourol 22:2713–2716CrossRefPubMed Boon JR, Salas N, Avila D, Boone TB, Lipshultz LI, Link RE (2008) Construct validity of the pig intestine model in the simulation of laparoscopic urethrovesical anastomosis: tools for objective evaluation. J Endourol 22:2713–2716CrossRefPubMed
80.
Zurück zum Zitat Singh PB, Saw NK, Mokete M, Martin FL, Matanhelia SS (2008) An integrated laparoscopic simulator (i-Sim™) to develop surgical skills outside the operating theatre: a novel means to improve training facilities in the UK. Int J Surg 6:64–70CrossRefPubMed Singh PB, Saw NK, Mokete M, Martin FL, Matanhelia SS (2008) An integrated laparoscopic simulator (i-Sim™) to develop surgical skills outside the operating theatre: a novel means to improve training facilities in the UK. Int J Surg 6:64–70CrossRefPubMed
81.
Zurück zum Zitat Hull L, Kassab E, Arora S, Kneebone R (2010) Increasing the realism of a laparoscopic box trainer: a simple, inexpensive method. J Laparoendosc Adv Surg Tech Part A 20:559–562CrossRef Hull L, Kassab E, Arora S, Kneebone R (2010) Increasing the realism of a laparoscopic box trainer: a simple, inexpensive method. J Laparoendosc Adv Surg Tech Part A 20:559–562CrossRef
Metadaten
Titel
A systematic review of low-cost laparoscopic simulators
verfasst von
Mimi M. Li
Joseph George
Publikationsdatum
18.05.2016
Verlag
Springer US
Erschienen in
Surgical Endoscopy / Ausgabe 1/2017
Print ISSN: 0930-2794
Elektronische ISSN: 1432-2218
DOI
https://doi.org/10.1007/s00464-016-4953-3

Weitere Artikel der Ausgabe 1/2017

Surgical Endoscopy 1/2017 Zur Ausgabe

Wie erfolgreich ist eine Re-Ablation nach Rezidiv?

23.04.2024 Ablationstherapie Nachrichten

Nach der Katheterablation von Vorhofflimmern kommt es bei etwa einem Drittel der Patienten zu Rezidiven, meist binnen eines Jahres. Wie sich spätere Rückfälle auf die Erfolgschancen einer erneuten Ablation auswirken, haben Schweizer Kardiologen erforscht.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 EAU 2024 Kongressbericht

Die Ureterstriktur ist eine relativ seltene Komplikation, trotzdem bedarf sie einer differenzierten Versorgung. In komplexen Fällen wird dies durch die roboterassistierte OP-Technik gewährleistet. Erste Resultate ermutigen.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.