Skip to main content
main-content
Erschienen in: Die Anaesthesiologie 4/2020

01.04.2020 | Anästhesiologisches Monitoring | CME

Grundlagen der Volumetrischen Kapnographie

Prinzipien der Überwachung von Stoffwechsel und Hämodynamik

verfasst von: Dr. S. H. Böhm, P. Kremeier, G. Tusman, D. A. Reuter, S. Pulletz

Erschienen in: Die Anaesthesiologie | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Zusammenfassung

Kapnographie ist die grafische Darstellung der Kohlenstoffdioxid(CO2)-Konzentration im Atemgemisch. Mithilfe dieses Monitoring-Verfahrens kann die CO2-Kinetik maschinell beatmeter Patienten auf nichtinvasive Art und in Echtzeit beurteilt werden. Der vorliegende Beitrag verdeutlicht die Bedeutung, insbesondere der volumetrischen Kapnographie (VCap), für das klinische Monitoring maschinell beatmeter Patienten. Das Verfahren bietet wichtige Informationen über die Atmung, Beatmung, den Stoffwechsel und die Hämodynamik von Patienten.
Literatur
1.
Zurück zum Zitat Anderson CT, Breen PH (2000) Carbon dioxide kinetics and capnography during critical care. Crit Care 4:207–215 PubMedPubMedCentral Anderson CT, Breen PH (2000) Carbon dioxide kinetics and capnography during critical care. Crit Care 4:207–215 PubMedPubMedCentral
2.
Zurück zum Zitat Folch N, Peronnet F, Pean M, Massicotte D, Lavoie C (2005) Labeled CO2 production and oxidative vs nonoxidative disposal of labeled carbohydrate administered at rest. Metabolism 54:1428–1434 PubMed Folch N, Peronnet F, Pean M, Massicotte D, Lavoie C (2005) Labeled CO2 production and oxidative vs nonoxidative disposal of labeled carbohydrate administered at rest. Metabolism 54:1428–1434 PubMed
3.
Zurück zum Zitat Cherniak NS, Longobardo GS (1970) Oxygen and carbon dioxide gas stores in the body. Physiol Rev 50:197–243 Cherniak NS, Longobardo GS (1970) Oxygen and carbon dioxide gas stores in the body. Physiol Rev 50:197–243
4.
Zurück zum Zitat Geers C, Gros G (2000) Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol Rev 80:681–715 PubMed Geers C, Gros G (2000) Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol Rev 80:681–715 PubMed
5.
Zurück zum Zitat Bidani A (1988) Velocity of CO 2 exchanges in the lungs. Am Rev Physiol 50:639–652 Bidani A (1988) Velocity of CO 2 exchanges in the lungs. Am Rev Physiol 50:639–652
6.
Zurück zum Zitat Weinberger SE, Schwartzstein RM, Weiss JW (1989) Hypercapnia. N Engl J Med 321:1123–1231 Weinberger SE, Schwartzstein RM, Weiss JW (1989) Hypercapnia. N Engl J Med 321:1123–1231
7.
Zurück zum Zitat Tusman G, Böhm SH, Suarez Sipmann F, Scandurra A, Hedenstierna G (2010) Lung recruitment and positive end-expiratory pressure have different effects on CO2 elimination in healthy and sick lungs. Anesth Analg 111:968–977 PubMed Tusman G, Böhm SH, Suarez Sipmann F, Scandurra A, Hedenstierna G (2010) Lung recruitment and positive end-expiratory pressure have different effects on CO2 elimination in healthy and sick lungs. Anesth Analg 111:968–977 PubMed
8.
Zurück zum Zitat Suarez Sipmann F, Böhm SH, Tusman G (2014) Volumetric capnography: the time has come. Curr Opin Crit Care 20:333–339 PubMed Suarez Sipmann F, Böhm SH, Tusman G (2014) Volumetric capnography: the time has come. Curr Opin Crit Care 20:333–339 PubMed
9.
Zurück zum Zitat Jaffe MB (2008) Infrared measurement of carbon dioxide in the human breath: “breathe-through” devices from Tyndall to the present day. Anesth Analg 107:890–904 PubMed Jaffe MB (2008) Infrared measurement of carbon dioxide in the human breath: “breathe-through” devices from Tyndall to the present day. Anesth Analg 107:890–904 PubMed
10.
Zurück zum Zitat Nunn JF (1993) Applied respiratory physiology, 4. Aufl. Butterworth-Heinemann, Oxford Nunn JF (1993) Applied respiratory physiology, 4. Aufl. Butterworth-Heinemann, Oxford
11.
Zurück zum Zitat Gravenstein JS, Jaffe MG, Gravestein N, Paulus DA (2011) Capnography. Chapter 40, 2. Aufl. Cambridge University Press, Cambridge Gravenstein JS, Jaffe MG, Gravestein N, Paulus DA (2011) Capnography. Chapter 40, 2. Aufl. Cambridge University Press, Cambridge
12.
Zurück zum Zitat Nunn JF (1960) Prediction of carbon dioxide tension during anaesthesia. Anaesthesia 15:123–133 PubMed Nunn JF (1960) Prediction of carbon dioxide tension during anaesthesia. Anaesthesia 15:123–133 PubMed
13.
Zurück zum Zitat Bartels J, Severinghaus JW, Forster RE, Briscoe WA, Bates DV (1954) The respiratory dead space measured by single breath analysis of oxygen, carbon dioxide, nitrogen or helium. J Clin Invest 33:41–48 PubMedPubMedCentral Bartels J, Severinghaus JW, Forster RE, Briscoe WA, Bates DV (1954) The respiratory dead space measured by single breath analysis of oxygen, carbon dioxide, nitrogen or helium. J Clin Invest 33:41–48 PubMedPubMedCentral
14.
Zurück zum Zitat Fletcher R, Jonson B (1981) The concept of deadspace with special reference to the single breath test for carbon dioxide. Br J Anaesth 53:77–88 PubMed Fletcher R, Jonson B (1981) The concept of deadspace with special reference to the single breath test for carbon dioxide. Br J Anaesth 53:77–88 PubMed
15.
Zurück zum Zitat Breen PH, Isserles SA, Harrison BA, Roizen MF (1992) Simple computer measurement of pulmonary VCO 2 per breath. J Appl Physiol 72:2029–2035 PubMed Breen PH, Isserles SA, Harrison BA, Roizen MF (1992) Simple computer measurement of pulmonary VCO 2 per breath. J Appl Physiol 72:2029–2035 PubMed
16.
Zurück zum Zitat Tusman G, Gogniat E, Böhm SH, Scandurra A, Suarez Sipmann F, Torroba A, Casella F, Giannasi S, San Román E (2013) Reference values for volumetric capnography-derived non-invasive parameters in healthy individuals. J Clin Monit Comput 27:281–288 PubMed Tusman G, Gogniat E, Böhm SH, Scandurra A, Suarez Sipmann F, Torroba A, Casella F, Giannasi S, San Román E (2013) Reference values for volumetric capnography-derived non-invasive parameters in healthy individuals. J Clin Monit Comput 27:281–288 PubMed
17.
Zurück zum Zitat Tusman G, Scandurra A, Bohm SH, Suarez Sipmann F, Clara F (2009) Model fitting of volumetric capnograms improves calculations of airway dead space and slope of phase III. J Clin Monit Comput 23:197–206 PubMed Tusman G, Scandurra A, Bohm SH, Suarez Sipmann F, Clara F (2009) Model fitting of volumetric capnograms improves calculations of airway dead space and slope of phase III. J Clin Monit Comput 23:197–206 PubMed
18.
Zurück zum Zitat Fowler WS (1948) Lung function studies II. The respiratory dead space. Am J Physiol 154:405–416 PubMed Fowler WS (1948) Lung function studies II. The respiratory dead space. Am J Physiol 154:405–416 PubMed
19.
Zurück zum Zitat McClave SA, Spain DA, Skolnick JL et al (2003) Achievement of a steady-state optimizes results when performing indirect calorimetry. J Parenter Enteral Nutr 27:16–20 McClave SA, Spain DA, Skolnick JL et al (2003) Achievement of a steady-state optimizes results when performing indirect calorimetry. J Parenter Enteral Nutr 27:16–20
20.
Zurück zum Zitat Reeves MM, Davies PS, Bauer J, Battistuta D (2004) Reducing the time period of steady-state does not affect the accuracy of energy expenditure measurements by indirect calorimetry. J Appl Physiol 97:130–134 PubMed Reeves MM, Davies PS, Bauer J, Battistuta D (2004) Reducing the time period of steady-state does not affect the accuracy of energy expenditure measurements by indirect calorimetry. J Appl Physiol 97:130–134 PubMed
21.
Zurück zum Zitat Taskar V, John J, Larsson A, Wetterberg T, Jonson B (1995) Dynamics of carbon dioxide elimination following ventilator resetting. Chest 108:196–202 PubMed Taskar V, John J, Larsson A, Wetterberg T, Jonson B (1995) Dynamics of carbon dioxide elimination following ventilator resetting. Chest 108:196–202 PubMed
22.
Zurück zum Zitat De las Alas V, Voorhees WP, Geddes LA (1990) End-tidal carbon dioxide concentration, carbon dioxide production, heart rate and blood pressure as indicators of induced hyperthermia. J Clin Monit 6:183–185 De las Alas V, Voorhees WP, Geddes LA (1990) End-tidal carbon dioxide concentration, carbon dioxide production, heart rate and blood pressure as indicators of induced hyperthermia. J Clin Monit 6:183–185
23.
Zurück zum Zitat Rodriguez JL, Weissman C, Damask MC et al (1983) Physiologic requeriments during rewarming: suppression of the shivering response. Crit Care Med 11:490–497 PubMed Rodriguez JL, Weissman C, Damask MC et al (1983) Physiologic requeriments during rewarming: suppression of the shivering response. Crit Care Med 11:490–497 PubMed
24.
Zurück zum Zitat Eyolfson DA, Tikuisis P, Xu X, Wessen G, Giesbrecht GG (2001) Measurement and prediction of peak shivering intensity in humans. Eur J Appl Physiol 84:100–106 PubMed Eyolfson DA, Tikuisis P, Xu X, Wessen G, Giesbrecht GG (2001) Measurement and prediction of peak shivering intensity in humans. Eur J Appl Physiol 84:100–106 PubMed
25.
Zurück zum Zitat Mizobe T, Nakajima Y, Ueno H, Sessler DI (2006) Fructose administration increases intraoperative core temperature by augmenting both metabolic rate and vasocontriction threshold. Anesthesiology 104:1124–1230 PubMedPubMedCentral Mizobe T, Nakajima Y, Ueno H, Sessler DI (2006) Fructose administration increases intraoperative core temperature by augmenting both metabolic rate and vasocontriction threshold. Anesthesiology 104:1124–1230 PubMedPubMedCentral
26.
Zurück zum Zitat Boschetti F, Perinatti G, Montevecchi FM (1998) Factors affecting the respiratory ratio during Cardiopulmonary bypass. Int J Artif Organs 21:802–808 PubMed Boschetti F, Perinatti G, Montevecchi FM (1998) Factors affecting the respiratory ratio during Cardiopulmonary bypass. Int J Artif Organs 21:802–808 PubMed
27.
Zurück zum Zitat Kirvela O, Kanto J (1991) Clinical and metabolic response to different types of premedication. Eur J Anaesthesiol 73:49–53 Kirvela O, Kanto J (1991) Clinical and metabolic response to different types of premedication. Eur J Anaesthesiol 73:49–53
28.
Zurück zum Zitat Lind L (1995) Metabolic gas exchange during different surgical procedures. Anesthesia 50:304–307 Lind L (1995) Metabolic gas exchange during different surgical procedures. Anesthesia 50:304–307
29.
Zurück zum Zitat Okamoto H, Hoka S, Kawasaki T, Okuyama T, Takahashi S (1995) Changes in end-tidal carbon dioxide tension following sodium bicarbonate administration: correlation with cardiac output and haemoglobin concentration. Acta Anaesthesiol Scand 39:74–84 Okamoto H, Hoka S, Kawasaki T, Okuyama T, Takahashi S (1995) Changes in end-tidal carbon dioxide tension following sodium bicarbonate administration: correlation with cardiac output and haemoglobin concentration. Acta Anaesthesiol Scand 39:74–84
30.
Zurück zum Zitat Sumpf E, Crozier TA, Ahrens D et al (2000) Carbon dioxide absorption during extraperitoneal and transperitoneal endoscopic hernioplasty. Anesth Analg 91:589–595 PubMed Sumpf E, Crozier TA, Ahrens D et al (2000) Carbon dioxide absorption during extraperitoneal and transperitoneal endoscopic hernioplasty. Anesth Analg 91:589–595 PubMed
31.
Zurück zum Zitat Girardis M, Milesi S, Donato S et al (2000) The hemodynamic and metabolic effects of tourniquet application during knee surgery. Anesth Analg 91:727–731 PubMed Girardis M, Milesi S, Donato S et al (2000) The hemodynamic and metabolic effects of tourniquet application during knee surgery. Anesth Analg 91:727–731 PubMed
32.
Zurück zum Zitat Ohm M, Gravestein N, Good ML (1991) Duration of carbon dioxide absorption by soda lime at low rates of fresh gas flow. J Clin Anesth 3:104–107 Ohm M, Gravestein N, Good ML (1991) Duration of carbon dioxide absorption by soda lime at low rates of fresh gas flow. J Clin Anesth 3:104–107
33.
Zurück zum Zitat Tusman G, Areta M, Climente C, Plit R, Suarez-Sipmann F, Rodríguez-Nieto MJ (2005) Effect of pulmonary perfusion on the slopes of single-breath test of CO 2. J Appl Physiol 99:650–655 PubMed Tusman G, Areta M, Climente C, Plit R, Suarez-Sipmann F, Rodríguez-Nieto MJ (2005) Effect of pulmonary perfusion on the slopes of single-breath test of CO 2. J Appl Physiol 99:650–655 PubMed
34.
Zurück zum Zitat Tusman G, Suarez-Sipmann F, Paez G, Alvarez J, Bohm SH (2012) States of low pulmonary blood flow can be detected non-invasively at the bedside measuring alveolar dead space. J Clin Monit Comput 26:183–190 PubMed Tusman G, Suarez-Sipmann F, Paez G, Alvarez J, Bohm SH (2012) States of low pulmonary blood flow can be detected non-invasively at the bedside measuring alveolar dead space. J Clin Monit Comput 26:183–190 PubMed
35.
Zurück zum Zitat Isserles SA, Breen PH (1991) Can changes in end-tidal PCO2 measure changes in cardiac output? Anesth Analg 73:808–814 PubMed Isserles SA, Breen PH (1991) Can changes in end-tidal PCO2 measure changes in cardiac output? Anesth Analg 73:808–814 PubMed
36.
Zurück zum Zitat Burki NK (1986) The dead space to tidal volume ratio in the diagnosis of pulmonary embolism. Am Rev Respir Dis 133:679–685 PubMed Burki NK (1986) The dead space to tidal volume ratio in the diagnosis of pulmonary embolism. Am Rev Respir Dis 133:679–685 PubMed
37.
Zurück zum Zitat Verschuren F, Listro G, Coffeng R, Thys F, Roeseler J, Zech F, Reynaert M (2004) Volumetric capnography as a screening test for pulmonary embolism in the emergency department. Chest 125:841–850 PubMed Verschuren F, Listro G, Coffeng R, Thys F, Roeseler J, Zech F, Reynaert M (2004) Volumetric capnography as a screening test for pulmonary embolism in the emergency department. Chest 125:841–850 PubMed
38.
Zurück zum Zitat Garnett AR, Ornato JP, Gonzalez ER, Johnson EB (1987) End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. JAMA 257:512–515 PubMed Garnett AR, Ornato JP, Gonzalez ER, Johnson EB (1987) End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. JAMA 257:512–515 PubMed
39.
Zurück zum Zitat Fick A (1855) Ueber Diffusion. Ann Phys 170:59–86 Fick A (1855) Ueber Diffusion. Ann Phys 170:59–86
40.
Zurück zum Zitat Capek JM, Roy RJ (1988) Noninvasive measurement of cardiac output using partial CO2 rebreathing. IEEE Trans Biomed Eng 35:653–661 PubMed Capek JM, Roy RJ (1988) Noninvasive measurement of cardiac output using partial CO2 rebreathing. IEEE Trans Biomed Eng 35:653–661 PubMed
41.
Zurück zum Zitat Cade WT, Nabar SR, Keyser RE (2004) Reproducibility of the exponential rise technique of CO2 rebreathing for measuring PvCO2 and CvCO2 to non-invasively estimate cardiac output during incremental, maximal treadmill exercise. Eur J Appl Physiol 91:669–676 PubMed Cade WT, Nabar SR, Keyser RE (2004) Reproducibility of the exponential rise technique of CO2 rebreathing for measuring PvCO2 and CvCO2 to non-invasively estimate cardiac output during incremental, maximal treadmill exercise. Eur J Appl Physiol 91:669–676 PubMed
42.
Zurück zum Zitat Haryadi DG, Orr JA, Kuck K et al (2000) Partial CO2 rebreathing indirect Fick technique for non-invasive measurement of cardiac output. J Clin Monit Comput 16:361–374 PubMed Haryadi DG, Orr JA, Kuck K et al (2000) Partial CO2 rebreathing indirect Fick technique for non-invasive measurement of cardiac output. J Clin Monit Comput 16:361–374 PubMed
43.
Zurück zum Zitat Kim TS, Rahn H, Farhi LE (1996) Estimation of true venous and arterial PCO2 by gas analysis of a single breath. J Appl Physiol 21:1338–1344 Kim TS, Rahn H, Farhi LE (1996) Estimation of true venous and arterial PCO2 by gas analysis of a single breath. J Appl Physiol 21:1338–1344
44.
Zurück zum Zitat Capek JMJ, Roy RJR (1988) Noninvasive measurement of cardiac output using partial CO2 rebreathing. IEEE Trans Biomed Eng 35:653–661 PubMed Capek JMJ, Roy RJR (1988) Noninvasive measurement of cardiac output using partial CO2 rebreathing. IEEE Trans Biomed Eng 35:653–661 PubMed
45.
Zurück zum Zitat Hällsjö Sander C, Hallback M, Wallin M et al (2014) Novel continuous capnodynamic method for cardiac output assessment during mechanical ventilation. Br J Anaesth 112:824–831 PubMed Hällsjö Sander C, Hallback M, Wallin M et al (2014) Novel continuous capnodynamic method for cardiac output assessment during mechanical ventilation. Br J Anaesth 112:824–831 PubMed
46.
Zurück zum Zitat Peyton PJ, Venkatesan Y, Hood SG, Junor P, May C (2006) Noninvasive, automated and continuous cardiac output monitoring by pulmonary capnodynamics: breath-by-breath comparison with ultrasonic flow probe. Anesthesiology 105:72–80 PubMed Peyton PJ, Venkatesan Y, Hood SG, Junor P, May C (2006) Noninvasive, automated and continuous cardiac output monitoring by pulmonary capnodynamics: breath-by-breath comparison with ultrasonic flow probe. Anesthesiology 105:72–80 PubMed
47.
Zurück zum Zitat Peyton PJ (2012) Continuous minimally invasive peri-operative monitoring of cardiac output by pulmonary capnotracking: comparison with thermodilution and transesophageal echocardiography. J Clin Monit Comput 26:121–132 PubMed Peyton PJ (2012) Continuous minimally invasive peri-operative monitoring of cardiac output by pulmonary capnotracking: comparison with thermodilution and transesophageal echocardiography. J Clin Monit Comput 26:121–132 PubMed
49.
Zurück zum Zitat Albu G, Wallin M, Hallbäck M et al (2013) Comparison of static end-expiratory and effective lung volumes for gas exchange in healthy and surfactant-depleted lungs. Anesthesiology 119:101–110 PubMed Albu G, Wallin M, Hallbäck M et al (2013) Comparison of static end-expiratory and effective lung volumes for gas exchange in healthy and surfactant-depleted lungs. Anesthesiology 119:101–110 PubMed
50.
Zurück zum Zitat Sander CH, Hallback M, Wallin M et al (2014) Novel continuous capnodynamic method for cardiac output assessment during mechanical ventilation. Br J Anaesth 112:824–831 Sander CH, Hallback M, Wallin M et al (2014) Novel continuous capnodynamic method for cardiac output assessment during mechanical ventilation. Br J Anaesth 112:824–831
51.
Zurück zum Zitat Hällsjö Sander C, Hallback M, Wallin M et al (2014) Novel continuous capnodynamic method for cardiac output assessment during mechanical ventilation. Br J Anaesth 112:824–831 PubMed Hällsjö Sander C, Hallback M, Wallin M et al (2014) Novel continuous capnodynamic method for cardiac output assessment during mechanical ventilation. Br J Anaesth 112:824–831 PubMed
52.
Zurück zum Zitat Hällsjö Sander C, Hallback M, Suarez-Sipmann F et al (2015) A novel continuous capnodynamic method for cardiac output assessment in a porcine model of lung lavage. Acta Anaesthesiol Scand 59:1022–1031 PubMed Hällsjö Sander C, Hallback M, Suarez-Sipmann F et al (2015) A novel continuous capnodynamic method for cardiac output assessment in a porcine model of lung lavage. Acta Anaesthesiol Scand 59:1022–1031 PubMed
Metadaten
Titel
Grundlagen der Volumetrischen Kapnographie
Prinzipien der Überwachung von Stoffwechsel und Hämodynamik
verfasst von
Dr. S. H. Böhm
P. Kremeier
G. Tusman
D. A. Reuter
S. Pulletz
Publikationsdatum
01.04.2020

Weitere Artikel der Ausgabe 4/2020

Die Anaesthesiologie 4/2020 Zur Ausgabe

Einführung zum Thema

Coronavirus disease 2019