Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 3/2018

01.06.2018 | Research Article

Arterial input function in a dedicated slice for cerebral perfusion measurements in humans

verfasst von: Elias Kellner, Irina Mader, Marco Reisert, Horst Urbach, Valerij Gennadevic Kiselev

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Object

We aimed to modify our previously published method for arterial input function measurements for evaluation of cerebral perfusion (dynamic susceptibility contrast MRI) such that it can be applied in humans in a clinical setting.

Materials and methods

Similarly to our previous work, a conventional measurement sequence for dynamic susceptibility contrast MRI is extended with an additional measurement slice at the neck. Measurement parameters at this slice were optimized for the blood signal (short echo time, background suppression, magnitude and phase images). Phase-based evaluation of the signal in the carotid arteries is used to obtain quantitative arterial input functions.

Results

In all pilot measurements, quantitative arterial input functions were obtained. The resulting absolute perfusion parameters agree well with literature values (gray and white matter mean values of 46 and 24 mL/100 g/min, respectively, for cerebral blood flow and 3.0% and 1.6%, respectively, for cerebral blood volume).

Conclusions

The proposed method has the potential to quantify arterial input functions in the carotid arteries from a direct measurement without any additional normalization.
Literatur
1.
Zurück zum Zitat Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36(5):715–725CrossRefPubMed Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36(5):715–725CrossRefPubMed
1.
Zurück zum Zitat Østergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Reson Med 36:726–735 Østergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Reson Med 36:726–735
3.
Zurück zum Zitat Conturo TE, Barker PB, Mathews VP, Monsein LH, Bryan RN (1992) MR imaging of cerebral perfusion by phase-angle reconstruction of bolus paramagnetic-induced frequency shifts. Magn Reson Med 27(2):375–390CrossRefPubMed Conturo TE, Barker PB, Mathews VP, Monsein LH, Bryan RN (1992) MR imaging of cerebral perfusion by phase-angle reconstruction of bolus paramagnetic-induced frequency shifts. Magn Reson Med 27(2):375–390CrossRefPubMed
4.
Zurück zum Zitat Akbudak E, Conturo TE (1996) Arterial input functions from MR phase imaging. Magn Reson Med 36(6):809–815CrossRefPubMed Akbudak E, Conturo TE (1996) Arterial input functions from MR phase imaging. Magn Reson Med 36(6):809–815CrossRefPubMed
5.
Zurück zum Zitat van Osch MJ, Vonken EJ, Viergever MA, van der Grond J, Bakker CJ (2003) Measuring the arterial input function with gradient echo sequences. Magn Reson Med 49:1067–1076CrossRefPubMed van Osch MJ, Vonken EJ, Viergever MA, van der Grond J, Bakker CJ (2003) Measuring the arterial input function with gradient echo sequences. Magn Reson Med 49:1067–1076CrossRefPubMed
6.
Zurück zum Zitat Calamante F, Morup M, Hansen LK (2004) Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 52(4):789–797CrossRefPubMed Calamante F, Morup M, Hansen LK (2004) Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 52(4):789–797CrossRefPubMed
7.
Zurück zum Zitat Mouridsen K, Christensen S, Gyldensted L, Ostergaard L (2006) Automatic selection of arterial input function using cluster analysis. Magn Reson Med 55(3):524–531CrossRefPubMed Mouridsen K, Christensen S, Gyldensted L, Ostergaard L (2006) Automatic selection of arterial input function using cluster analysis. Magn Reson Med 55(3):524–531CrossRefPubMed
8.
Zurück zum Zitat Kotys MS, Akbudak E, Markham J, Conturo TE (2007) Precision, signal-to-noise ratio, and dose optimization of magnitude and phase arterial input functions in dynamic susceptibility contrast MRI. J Magn Reson Imaging 25(3):598–611CrossRefPubMed Kotys MS, Akbudak E, Markham J, Conturo TE (2007) Precision, signal-to-noise ratio, and dose optimization of magnitude and phase arterial input functions in dynamic susceptibility contrast MRI. J Magn Reson Imaging 25(3):598–611CrossRefPubMed
9.
Zurück zum Zitat Bleeker EJW, van Buchem MA, van Osch MJP (2009) Optimal location for arterial input function measurements near the middle cerebral artery in first-pass perfusion MRI. J Cereb Blood Flow Metab 29(4):840–852CrossRefPubMed Bleeker EJW, van Buchem MA, van Osch MJP (2009) Optimal location for arterial input function measurements near the middle cerebral artery in first-pass perfusion MRI. J Cereb Blood Flow Metab 29(4):840–852CrossRefPubMed
10.
Zurück zum Zitat Kellner E, Mader I, Mix M, Splitthoff DN, Reisert M, Foerster K, Nguyen-Thanh T, Gall P, Kiselev VG (2013) Arterial input function measurements for bolus tracking perfusion imaging in the brain. Magn Reson Med 69(3):771–780CrossRefPubMed Kellner E, Mader I, Mix M, Splitthoff DN, Reisert M, Foerster K, Nguyen-Thanh T, Gall P, Kiselev VG (2013) Arterial input function measurements for bolus tracking perfusion imaging in the brain. Magn Reson Med 69(3):771–780CrossRefPubMed
11.
Zurück zum Zitat Bleeker EJW, van Buchem MA, Webb AG, van Osch MJP (2010) Phase-based arterial input function measurements for dynamic susceptibility contrast MRI. Magn Reson Med 64(2):358–368CrossRefPubMed Bleeker EJW, van Buchem MA, Webb AG, van Osch MJP (2010) Phase-based arterial input function measurements for dynamic susceptibility contrast MRI. Magn Reson Med 64(2):358–368CrossRefPubMed
12.
Zurück zum Zitat Bernstein MA, King KF, Zhou XJ (2004) Handbook of MRI pulse sequences. Elsevier, Amsterdam Bernstein MA, King KF, Zhou XJ (2004) Handbook of MRI pulse sequences. Elsevier, Amsterdam
13.
Zurück zum Zitat Bruder H, Fischer H, Reinfelder HE, Schmitt F (1992) Image reconstruction for echo planar imaging with nonequidistant k-space sampling. Magn Reson Med 23(2):311–323CrossRefPubMed Bruder H, Fischer H, Reinfelder HE, Schmitt F (1992) Image reconstruction for echo planar imaging with nonequidistant k-space sampling. Magn Reson Med 23(2):311–323CrossRefPubMed
14.
Zurück zum Zitat van Osch MJP, van der Grond J, Bakker CJG (2005) Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. J Magn Reson Imaging 22(6):704–709CrossRefPubMed van Osch MJP, van der Grond J, Bakker CJG (2005) Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. J Magn Reson Imaging 22(6):704–709CrossRefPubMed
15.
Zurück zum Zitat Kellner E, Mix M, Reisert M, Förster K, Nguyen-Thanh T, Splitthoff DN, Gall P, Kiselev VG, Mader I (2014) Quantitative cerebral blood flow with bolus tracking perfusion MRI: measurements in porcine model and comparison with \({{\rm H}}_2{^{15}O}\) PET. Magn Reson Med 72(6):1723–1734CrossRefPubMed Kellner E, Mix M, Reisert M, Förster K, Nguyen-Thanh T, Splitthoff DN, Gall P, Kiselev VG, Mader I (2014) Quantitative cerebral blood flow with bolus tracking perfusion MRI: measurements in porcine model and comparison with \({{\rm H}}_2{^{15}O}\) PET. Magn Reson Med 72(6):1723–1734CrossRefPubMed
16.
Zurück zum Zitat Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32(6):749–763CrossRefPubMed Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32(6):749–763CrossRefPubMed
17.
Zurück zum Zitat Calamante F, Gadian D, Connelly A (2002) Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 33(4):1146–51CrossRefPubMed Calamante F, Gadian D, Connelly A (2002) Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 33(4):1146–51CrossRefPubMed
18.
Zurück zum Zitat Lin W, Celik A, Derdeyn C, An H, Lee Y, Videen T, Oestergaard L, Powers WJ (2001) Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: a PET and MR study. J Magn Reson Imaging 14(6):659–67CrossRefPubMedPubMedCentral Lin W, Celik A, Derdeyn C, An H, Lee Y, Videen T, Oestergaard L, Powers WJ (2001) Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: a PET and MR study. J Magn Reson Imaging 14(6):659–67CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Zaharchuk G, Bammer R, Straka M, Newbould RD, Rosenberg J, Olivot JM, Mlynash M, Lansberg MG, Schwartz NE, Marks MM et al (2009) Improving dynamic susceptibility contrast MRI measurement of quantitative cerebral blood flow using corrections for partial volume and nonlinear contrast relaxivity: a xenon computed tomographic comparative study. J Magn Reson Imaging 30(4):743–752CrossRefPubMedPubMedCentral Zaharchuk G, Bammer R, Straka M, Newbould RD, Rosenberg J, Olivot JM, Mlynash M, Lansberg MG, Schwartz NE, Marks MM et al (2009) Improving dynamic susceptibility contrast MRI measurement of quantitative cerebral blood flow using corrections for partial volume and nonlinear contrast relaxivity: a xenon computed tomographic comparative study. J Magn Reson Imaging 30(4):743–752CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Knutsson L, van Westen D, Petersen ET, Bloch KM, Holtås S, Ståhlberg F, Wirestam R (2010) Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and model-free arterial spin labeling. Magn Reson Med 28(1):1–7 Knutsson L, van Westen D, Petersen ET, Bloch KM, Holtås S, Ståhlberg F, Wirestam R (2010) Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and model-free arterial spin labeling. Magn Reson Med 28(1):1–7
21.
Zurück zum Zitat Østergaard L, Johannsen P, Høst-Poulsen P, Vestergaard-Poulsen P, Asboe H, Gee AD, Hansen SB, Cold GE, Gjedde A, Gyldensted C (1998) Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with \([{}^{15}{{\rm O}}]{{\rm H}}_{2}{{\rm O}}\) positron emission tomography in humans. J Cereb Blood Flow Metab 18(9):935–940CrossRefPubMed Østergaard L, Johannsen P, Høst-Poulsen P, Vestergaard-Poulsen P, Asboe H, Gee AD, Hansen SB, Cold GE, Gjedde A, Gyldensted C (1998) Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with \([{}^{15}{{\rm O}}]{{\rm H}}_{2}{{\rm O}}\) positron emission tomography in humans. J Cereb Blood Flow Metab 18(9):935–940CrossRefPubMed
22.
Zurück zum Zitat van Osch MJP, Vonken EJPA, Wu O, Viergever MA, van der Grond J, Bakker CJG (2003) Model of the human vasculature for studying the influence of contrast injection speed on cerebral perfusion MRI. Magn Reson Med 50(3):614–622CrossRefPubMed van Osch MJP, Vonken EJPA, Wu O, Viergever MA, van der Grond J, Bakker CJG (2003) Model of the human vasculature for studying the influence of contrast injection speed on cerebral perfusion MRI. Magn Reson Med 50(3):614–622CrossRefPubMed
23.
Zurück zum Zitat Calamante F (2005) Bolus dispersion issues related to the quantification of perfusion MRI data. J Magn Reson Imaging 22(6):718–722CrossRefPubMed Calamante F (2005) Bolus dispersion issues related to the quantification of perfusion MRI data. J Magn Reson Imaging 22(6):718–722CrossRefPubMed
24.
Zurück zum Zitat Mouannes-Srour JJ, Shin W, Ansari SA, Hurley MC, Vakil P, Bendok BR, Lee JL, Derdeyn CP, Carroll TJ (2012) Correction for arterial-tissue delay and dispersion in absolute quantitative cerebral perfusion DSC MR imaging. Magn Reson Med 68(2):495–506CrossRefPubMed Mouannes-Srour JJ, Shin W, Ansari SA, Hurley MC, Vakil P, Bendok BR, Lee JL, Derdeyn CP, Carroll TJ (2012) Correction for arterial-tissue delay and dispersion in absolute quantitative cerebral perfusion DSC MR imaging. Magn Reson Med 68(2):495–506CrossRefPubMed
25.
Zurück zum Zitat Kellner E, Gall P, Günther M, Reisert M, Mader I, Fleysher R, Kiselev VG (2014) Blood tracer kinetics in the arterial tree. PLoS One 9(10):e109230CrossRefPubMedPubMedCentral Kellner E, Gall P, Günther M, Reisert M, Mader I, Fleysher R, Kiselev VG (2014) Blood tracer kinetics in the arterial tree. PLoS One 9(10):e109230CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Willats L, Connelly A, Calamante F (2006) Improved deconvolution of perfusion MRI data in the presence of bolus delay and dispersion. Magn Reson Med 56(1):146–156CrossRefPubMed Willats L, Connelly A, Calamante F (2006) Improved deconvolution of perfusion MRI data in the presence of bolus delay and dispersion. Magn Reson Med 56(1):146–156CrossRefPubMed
27.
Zurück zum Zitat Frackowiak RS, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Cardiovasc Comput Tomogr 4(6):727–736CrossRef Frackowiak RS, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Cardiovasc Comput Tomogr 4(6):727–736CrossRef
28.
Zurück zum Zitat Yamaguchi T, Kanno I, Uemura K, Shishido F, Inugami A, Ogawa T, Murakami M, Suzuki K (1986) Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 17(6):1220–1228CrossRefPubMed Yamaguchi T, Kanno I, Uemura K, Shishido F, Inugami A, Ogawa T, Murakami M, Suzuki K (1986) Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 17(6):1220–1228CrossRefPubMed
29.
Zurück zum Zitat Leenders K, Perani D, Lammertsma A, Heather J, Buckingham P, Jones T, Healy M, Gibbs J, Wise R, Hatazawa J et al (1990) Cerebral blood flow, blood volume and oxygen utilization normal values and effect of age. Brain 113(1):27–47CrossRefPubMed Leenders K, Perani D, Lammertsma A, Heather J, Buckingham P, Jones T, Healy M, Gibbs J, Wise R, Hatazawa J et al (1990) Cerebral blood flow, blood volume and oxygen utilization normal values and effect of age. Brain 113(1):27–47CrossRefPubMed
30.
Zurück zum Zitat Ito H, Kanno I, Kato C, Sasaki T, Ishii K, Ouchi Y, Iida A, Okazawa H, Hayashida K, Tsuyuguchi N et al (2004) Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan. Eur J Nucl Med Mol Imaging 31(5):635–643CrossRefPubMed Ito H, Kanno I, Kato C, Sasaki T, Ishii K, Ouchi Y, Iida A, Okazawa H, Hayashida K, Tsuyuguchi N et al (2004) Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan. Eur J Nucl Med Mol Imaging 31(5):635–643CrossRefPubMed
31.
Zurück zum Zitat Grandin CB, Bol A, Smith AM, Michel C, Cosnard G (2005) Absolute CBF and CBV measurements by MRI bolus tracking before and after acetazolamide challenge: repeatabilily and comparison with PET in humans. Neuroimage 26(2):525–535PubMed Grandin CB, Bol A, Smith AM, Michel C, Cosnard G (2005) Absolute CBF and CBV measurements by MRI bolus tracking before and after acetazolamide challenge: repeatabilily and comparison with PET in humans. Neuroimage 26(2):525–535PubMed
32.
Zurück zum Zitat Ibaraki M, Ito H, Shimosegawa E, Toyoshima H, Ishigame K, Takahashi K, Kanno I, Miura S (2006) Cerebral vascular mean transit time in healthy humans: a comparative study with PET and dynamic susceptibility contrast-enhanced MRI. J Cereb Blood Flow Metab 27(2):404–413CrossRefPubMed Ibaraki M, Ito H, Shimosegawa E, Toyoshima H, Ishigame K, Takahashi K, Kanno I, Miura S (2006) Cerebral vascular mean transit time in healthy humans: a comparative study with PET and dynamic susceptibility contrast-enhanced MRI. J Cereb Blood Flow Metab 27(2):404–413CrossRefPubMed
33.
Zurück zum Zitat Sakaie KE, Shin W, Curtin KR, McCarthy RM, Cashen TA, Carroll TJ (2005) Method for improving the accuracy of quantitative cerebral perfusion imaging. J Magn Reson Imaging 21(5):512–519CrossRefPubMed Sakaie KE, Shin W, Curtin KR, McCarthy RM, Cashen TA, Carroll TJ (2005) Method for improving the accuracy of quantitative cerebral perfusion imaging. J Magn Reson Imaging 21(5):512–519CrossRefPubMed
34.
Zurück zum Zitat Shin W, Horowitz S, Ragin A, Chen Y, Walker M, Carroll TJ (2007) Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm. Magn Reson Med 58(6):1232–1241CrossRefPubMed Shin W, Horowitz S, Ragin A, Chen Y, Walker M, Carroll TJ (2007) Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm. Magn Reson Med 58(6):1232–1241CrossRefPubMed
35.
Zurück zum Zitat Mouannes Srour J, Shin W, Shah S, Sen A, Carroll TJ (2010) SCALE-PWI: a pulse sequence for absolute quantitative cerebral perfusion imaging. J Cereb Blood Flow Metab 31(5):1272–1282CrossRef Mouannes Srour J, Shin W, Shah S, Sen A, Carroll TJ (2010) SCALE-PWI: a pulse sequence for absolute quantitative cerebral perfusion imaging. J Cereb Blood Flow Metab 31(5):1272–1282CrossRef
36.
Zurück zum Zitat Petersen ET, Mouridsen K, Golay X (2010) The QUASAR reproducibility study, part II: results from a multi-center arterial spin labeling test-retest study. Neuroimage 49(1):104–113CrossRefPubMed Petersen ET, Mouridsen K, Golay X (2010) The QUASAR reproducibility study, part II: results from a multi-center arterial spin labeling test-retest study. Neuroimage 49(1):104–113CrossRefPubMed
Metadaten
Titel
Arterial input function in a dedicated slice for cerebral perfusion measurements in humans
verfasst von
Elias Kellner
Irina Mader
Marco Reisert
Horst Urbach
Valerij Gennadevic Kiselev
Publikationsdatum
01.06.2018
Verlag
Springer International Publishing
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 3/2018
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-017-0663-7

Weitere Artikel der Ausgabe 3/2018

Magnetic Resonance Materials in Physics, Biology and Medicine 3/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.