Skip to main content
Erschienen in: Journal of Orthopaedic Surgery and Research 1/2020

Open Access 01.12.2020 | Research article

Association between metabolic syndrome and venous thromboembolism after total joint arthroplasty: a meta-analysis of cohort studies

verfasst von: Yipei Yang, Ziyue Li, Haifeng Liang, Jing Tian

Erschienen in: Journal of Orthopaedic Surgery and Research | Ausgabe 1/2020

Abstract

Objective

Metabolic syndrome (MetS) has been associated with hypercoagulative status. However, previous studies evaluating the association between MetS and incidence of venous thromboembolism (VTE) after total joint arthroplasty (TJA) showed inconsistent results. We performed a meta-analysis to evaluate the influence of MetS on the risk of VTE following TJA.

Methods

Cohort studies were identified by the search of PubMed, Embase, and the Cochrane’s Library databases. A random-effect model was used if considerable heterogeneity was detected; otherwise, a fixed-effect model was used. Subgroup analyses according to the category of VTE, definition of MetS, category of procedure, and follow-up durations were performed.

Results

Seven cohort studies with 1,341,457 patients that underwent TJA were included, with 118,060 MetS patients (8.8%) at baseline. With a follow-up duration up to 3 months after surgery, 9788 patients had VTE. Pooled results with a random-effect model showed that MetS was not associated with increased overall VTE after TJA (adjusted risk ratio [RR] = 1.24, 95% confidence interval [CI] 0.89 ~ 1.72, p = 0.20; I2 = 69%). The results were not significantly affected by the diagnostic criteria of MetS, category of the procedure, and follow-up durations. Subgroup analyses showed that MetS was not associated with an increased the risk of pulmonary embolism ([PE], RR 1.06, 95% CI 0.37 ~ 3.02, p = 0.91), but an increased risk of deep vein thrombosis (DVT) after TJA (RR 3.38, 95% CI 1.83 ~ 6.24, p < 0.001).

Conclusions

Current evidence from observational studies suggests MetS might be associated with an increased risk of DVT but not PE after TJA.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
MetS
Metabolic syndrome
VTE
Venous thromboembolism
DVT
Deep vein thrombosis
PE
Pulmonary embolism
TJA
Total joint arthroplasty
TKA
Total knee arthroplasty
THA
Total hip arthroplasty
WHO
World Health Organization
NCEP-ATP III
Revised National Cholesterol Education Program’s Adults Treatment Panel III
MOOSE
Meta-analysis of Observational Studies in Epidemiology
RRs
Risk ratios
SE
Stand error

Introduction

Patients undergoing total joint arthroplasty (TJA), including total knee arthroplasty (TKA) and total hip arthroplasty (THA), are at a higher risk for the development of venous thromboembolism (VTE) [13]. Despite the routine use of prophylactic measures against thrombosis in these patients, the incidences of VTE, including pulmonary embolism (PE) and deep vein thrombosis (DVT) remains high [4]. A previous systematic review including 44,844 cases from 47 studies showed that in patients receiving recommended prophylaxis, the pooled rates of symptomatic postoperative VTE before hospital discharge were 1.09% for patients undergoing TKA and 0.53% for those undergoing THA [5]. Moreover, VTE has become an important cause of morbidity and mortality in patients after TJA [6]. Identification of risk factors for VTE in patients that received TJA is clinically important [6].
Metabolic syndrome (MetS) refers to a cluster of metabolic abnormalities including abdominal adiposity, insulin resistance, hyperglycemia, hypertension, and dyslipidemia [7, 8]. Accumulating evidence suggests that patients MetS are characterized by hypercoagulative status [913]. Indeed, MetS has been associated with a 2-fold increase in arterial thrombotic diseases, such as coronary artery disease and stroke [14]. Moreover, a previous individual-patient data-based meta-analysis showed that MetS is associated with an increased risk of unprovoked VTE in general population [15]. Since MetS is prevalent in patients undergoing TJA, accumulating studies have evaluated the association between MetS and risk of VTE in these patients [1622]. However, the results of these studies are inconsistent. Some of them suggested that MetS may be a risk factor for VTE after TJA [16, 19, 21], while other studies did not [17, 18, 20, 22]. Therefore, we aimed to perform a meta-analysis to evaluate the association between MetS and risk of VTE in patients after TJA. The influences of categories of VTE, definitions of MetS, and types of procedures on the association were also analyzed.

Methods

The meta-analysis was designed and performed in accordance with the MOOSE (Meta-analysis of Observational Studies in Epidemiology) [23] and Cochrane’s Handbook [24] guidelines.
Electronic databases of PubMed, Embase, and the Cochrane’s Library were systematically searched using the combination of the following terms: [1] “metabolic syndrome” OR “insulin resistance syndrome” OR “syndrome X” [2]; “hip” OR “knee”; and [3] “arthroplasty” OR “replacement” OR “surgery” OR “operation”. We used this extensive search strategy to avoid missing potential studies. The search was limited to human studies published in English or Chinese. The reference lists of original and review articles were also analyzed manually. The final literature search was performed on April 2, 2020.

Study selection

Studies were included if they met the following criteria: [1] published as full-length article, [2] designed as cohort studies, [3] included patients that received TKA or THA, [4] MetS was identified as exposure of interest at baseline, [5] documented the incidence of any VTE events (overall VTE, PE, or DVT) in patients with and without MetS, and [6] reported the adjusted risk ratios (RRs, at least adjusted for age and sex) and their corresponding 95% confidence intervals (CIs) for the incidence of VTE in patients with and without MetS. Definitions of MetS were consistent with what was applied in the original studies. Reviews, editorials, preclinical studies, and non-cohort studies were excluded.

Data extracting and quality evaluation

Literature search, data extraction, and study quality assessment were independently performed by two authors according to the predefined inclusion criteria. If inconsistencies occurred, discussion with the corresponding author was suggested to resolve the disagreement. The following data were extracted: [1] name of the first author, publication year, study location, and study design [2]; characteristics and numbers of patients that received TKA or THA, criteria for the diagnosis of MetS, prevalence of MetS, and follow-up period; and [3] number of cases with any VTE events during follow-up, VTE prophylactic strategies, methods for the validation of the outcome, and variables adjusted. The quality of each study was evaluated using the Newcastle-Ottawa Scale (NOS) [25]. This scale ranges from 1 to 9 stars and judges the quality of each study regarding three aspects: the selection of the study groups, the comparability of the groups, and the ascertainment of the outcome of interest.

Statistical analyses

The association between MetS and VTE in patients after TKA or THA was measured by RRs. To stabilize its variance and normalized the distribution, RR data and its corresponding stand error (SE) from each study was logarithmically transformed [24]. The Cochrane’s Q test was performed to evaluate the heterogeneity among the include cohort studies [24, 26], and the I2 statistic was also calculated. A significant heterogeneity was considered if I2 > 50%. A random effect model was used to pool the results if significant heterogeneity was detected; otherwise, a fixed-effect model was used. Sensitivity analysis by omitting one study at a time was performed to evaluate the stability of the results [24]. To evaluate the influences of categories of VTE, definitions of MetS, types of procedures, and follow-up durations on the association, subgroup analyses were performed. Potential publication bias was assessed by visual inspection of the symmetry of the funnel plots, complemented with the Egger regression test [27]. P < 0.05 was considered as statistically significant. The RevMan (Version 5.1; Cochrane Collaboration, Oxford, UK) and STATA software were used for the statistics.

Results

The flowchart of the database search was shown in Fig. 1. Briefly, 788 studies were obtained from the database search, and 768 of them were excluded primarily due to the irrelevance to the purpose of the study. For the remaining 20 potential relevant studies that underwent full-text review, 13 were further excluded for the reasons listed in Fig. 1. Finally, seven cohort studies were included [1622].

Study characteristics and quality

Characteristics of the included studies were summarized in Table 1. Overall, seven cohort studies with 1,341,457 patients that underwent TJA were included [1622]. These studies were performed in the USA, Canada, and China and published between 2009 and 2018. One of them was a prospective cohort study [16], and the others were retrospective cohorts [1722]. Since two studies reported the incidence of VTE events in patients received TKA and THA separately, these datasets were independently included. Therefore, nine datasets were available for the meta-analysis, and 118,060 patients (8.8%) were diagnosed as MetS at baseline according to the World Health Organization (WHO) [16, 20, 21] or the National Cholesterol Education Program Expert Panel and Adult Treatment Panel III (NCEP-ATP III) criteria [1719, 22]. The follow-up duration varied between within hospitalization and 3 months after surgeries, and 9788 patients had VTE during follow-up. Strategies for VTE prophylaxis were reported in three studies [16, 19, 21], and anticoagulants of warfarin, rivaroxaban, or low-molecular-weight heparin were used. The methods for VTE assessment were also reported in three studies [16, 19, 21], which involved the application of Doppler ultrasonography, venography, and CT and/or lung VQ scan. Potential confounding factors, including age, sex, body mass index (BMI), smoking, and comorbidities, were adjusted to a varying degree in the included studies. The qualities of the included follow-up studies were generally good, with the NOS ranging from 6 ~ 8 (Table 2).
Table 1
Characteristics of the included cohort studies
Study
Country
Design
Patient characteristics
Sample size
Mean age years
Male (%)
MetS diagnosis
MetS at baseline, n (%)
Follow-up duration
Prophylactic methods
Outcomes reported
Outcome validation
Variables adjusted
Gandhi 2009 [16]
Canada
PC
Patients received unilateral TKA
1460
66.5
35.9
WHO
135 (9.2)
3 months
LMWH
Symptomatic DVT (65)
DUS in systematic patients
Age, sex, education, BMI, and CCI
Dy 2011 [17]
The US
RC
Patients received TKA or THA
16317
64.8
39.9
NCEP-ATP III
1093 (6.7)
3 months
NR
VTE (148)
ICD-9 codes
Age, sex, procedure type, and BMI
Valle 2012-TKA [18]
The US
RC
Patients received TKA
806672
66.9
36.1
NCEP-ATP III
82852 (10.3)
In-hospital
NR
VTE (6476)
ICD-9 codes
Age, sex, race, admission type, comorbidities, and hospital level
Valle 2012-THA [18]
The US
RC
Patients received THA
406265
65.6
42.5
NCEP-ATP III
24269 (6.0)
In-hospital
NR
VTE (1986)
ICD-9 codes
Age, sex, race, admission type, comorbidities, and hospital level
Mraovic 2013 [19]
The US
RC
Patients received TKA or THA
7282
70.2
44.0
NCEP-ATP III
958 (13.2)
In-hospital
Warfarin to achieve INR: 1.5 ~ 2.0
Symptomatic PE (107)
CT and/or lung VQ scan in systematic patients
Age, sex, procedure type, BMI, and comorbidities
Song 2016-TKA [21]
China
RC
Patients received TKA
560
67.2
18.0
WHO
45 (8.0)
1 month
Rivaroxaban or LMWH
Symptomatic DVT (25)
Routine venography
Age, sex, comorbidities, and smoking
Song 2016-THA [21]
China
RC
Patients received THA
993
63.4
37.3
WHO
34 (3.4)
1 month
Rivaroxaban or LMWH
Symptomatic DVT (53)
Routine venography
Age, sex, comorbidities, and smoking
Edelstein 2016 [20]
The US
RC
Patients received TKA or THA
1462
NR
36.5
WHO
237 (16.2)
1 month
NR
PE (33)
Medical insurance data
Age, sex, BMI, and comorbidities
Cichos 2018 [22]
The US
RC
Patients with hip fracture received THA
100446
77.6
31.2
NCEP-ATP III
8437 (8.4)
In-hospital
NR
VTE (904)
ICD-9 codes
Age, sex, race, payer status and comorbidities
MetS metabolic syndrome, TKA total knee arthroplasty, THA total hip arthroplasty, US United States, PC prospective cohort, RC retrospective cohort, WHO World Health Organization, NCEP-ATP III the National Cholesterol Education Program Expert Panel and Adult Treatment Panel III, PE pulmonary embolism, DVT deep vein thrombosis, VTE venous thromboembolism, DUS Doppler ultrasonography, ICD-9 the 9th revision of International Classification of Diseases, CT computed tomography, VQ ventilation/perfusion, BMI body mass index, CCI Charlson Comorbidity Index, NR not reported, INR international normalized ratio, LMWH low-molecular-weight heparin
Table 2
Details of the study quality evaluation via the Newcastle-Ottawa Scale
Study
Representativeness of the exposed cohort
Selection of the non-exposed cohort
Ascertainment of exposure
Outcome not present at baseline
Control for age and sex
Control for other confounding factors
Assessment of outcome
Enough long follow-up duration
Adequacy of follow-up of cohorts
Total
Gandhi 2009 [16]
1
1
1
0
1
1
1
1
1
8
Dy 2011 [17]
0
1
1
0
1
0
1
1
1
6
Valle 2012-TKA [18]
0
1
1
0
1
1
1
0
1
6
Valle 2012-THA [18]
0
1
1
0
1
1
1
0
1
6
Mraovic 2013 [19]
0
1
1
0
1
1
1
0
1
6
Song 2016-TKA [21]
0
1
1
1
1
1
1
1
1
8
Song 2016-THA [21]
0
1
1
1
1
1
1
1
1
8
Edelstein 2016 [20]
0
1
1
0
1
1
1
1
1
7
Cichos 2018 [22]
0
1
1
0
1
1
1
0
1
6
This Newcastle-Ottawa Scale ranges from 1 to 9 stars and judges the quality of each study regarding the nine domains as listed in the table, with higher scores indicating better study quality

Association between MetS and VTE after TJA

Significant heterogeneity was detected among the studies that evaluated the association between MetS and VTE risk after TJA (P for Cochrane’s Q test = 0.001, I2 = 69%). Pooled results with a random-effect model showed that MetS was not associated with increased overall VTE after TJA (adjusted RR = 1.24, 95% CI 0.89 ~ 1.72, p = 0.20; I2 = 69%; Fig. 2a). Sensitivity analysis by excluding one study at a time did not significantly affect the results (Table 3). Subgroup analyses showed that MetS was not associated with an increased the risk of PE (RR 1.06, 95% CI 0.37 ~ 3.02, p = 0.91) or VTE (RR 0.91, 95% CI 0.80 ~ 1.04, p = 0.16), but with an increased risk of DVT after TJA (RR 3.38, 95% CI 1.83 ~ 6.24, p < 0.001; p for subgroup difference < 0.001; Fig. 2b). Further studies showed that MetS was not significantly associated with an increased risk of VTE after TJA in studies with MetS diagnosed with WHO (RR = 2.18, 95% CI 0.91 ~ 5.22, p = 0.08) or NCEP-ATP III criteria (RR = 0.99, 95% CI 0.77 ~ 1.27, p = 0.95; Fig. 3a), in studies of patients received TKA (RR = 2.04, 95% CI 0.66 ~ 6.34, p = 0.22), THA (RR = 1.05, 95% CI 0.52 ~ 2.10, p = 0.90), or both (RR = 1.29, 95% CI 0.71 ~ 2.34, p = 0.41; Fig. 3b), and in studies of follow-up within hospitalization (RR = 0.97, 95% CI 0.75 ~ 1.26, p = 0.83), 1 month (RR = 1.95, 95% CI 0.60 ~ 6.34, p = 0.27), and 3 months (RR = 2.16, 95% CI 0.94 ~ 4.98, p = 0.07; Fig. 4) after JTA.
Table 3
Results of sensitivity analysis
Studies omitted
RR
95% CI
I2
P for effect
Gandhi 2009 [16]
1.17
0.84 to 1.62
69%
0.35
Dy 2011 [17]
1.22
0.86 to 1.72
72%
0.26
Valle 2012-TKA [18]
1.40
0.89 to 2.22
68%
0.15
Valle 2012-THA [18]
1.38
0.87 to 2.17
73%
0.17
Mraovic 2013 [19]
1.18
0.82 to 1.68
67%
0.37
Song 2016-TKA [21]
1.10
0.82 to 1.48
61%
0.53
Song 2016-THA [21]
1.14
0.83 to 1.58
67%
0.41
Edelstein 2016 [20]
1.31
0.93 to 1.84
72%
0.13
Cichos 2018 [22]
1.37
0.95 to 1.98
70%
0.10
RR risk ratio, CI confidence interval

Publication bias

The funnel plots for the association between MetS and VTE after TKA or THA were shown in Fig. 5. The plots were symmetrical on visual inspection, suggesting low risks of publication biases. Results of Egger’s regression tests also showed similar results (p = 0.389).

Discussion

In this meta-analysis of cohort study, we found that MetS at baseline was not associated with an increased risk of overall VTE events in patients after TJA. Subgroup analysis showed that MetS was independently associated with an increased risk of DVT, but not PE in patients after TJA. Moreover, the results were not significantly affected by the diagnostic criteria of MetS, the types of surgical procedures, and the follow-up durations. Taken together, current evidence from observational studies suggests that MetS might be associated with an increased risk of DVT, but not PE in patients after TJA.
To the best of our knowledge, our study is the first meta-analysis to evaluate the potential association between MetS and VTE risk in patients after TJA. Although we did not show that MetS was independently associated with an increased incidence of overall VTE, subgroup analysis suggests that MetS was associated with an increased risk of DVT but not PE in these patients. The potential reasons for the findings remain unknown. Generally, PE was resulted by thrombi from the lower extremities of patients with DVT. Due to the routine use of prophylactic measures against VTE in patients after TJA, the incidence of PE in these patients is lower than the incidence of DVT [28]. In our study, the pooled incidence of DVT was 4.7% and compared to 1.6% for PE. It could be hypothesized that potential differences in patient characteristics or diagnostic strategies may be responsible for the observed different associations between MetS with DVT and PE. However, limited datasets included in the subgroup analysis prevented further analysis. Moreover, we found that the results were not significantly affected by the diagnostic criteria of MetS or the types of surgical procedures. Previous studies showed that patients after TKA seem to have a higher incidence of VTE events than those after THA [5, 28]. Although the overall meta-analysis did not show a significant association between MetS and VTE after TJA, subgroup analysis suggested that MetS was associated with increased DVT after TJA. Since only three datasets were included in the subgroup analysis of DVT events, the findings should be validated in large-scale prospective studies. A previous case-control study showed that patients with uncontrolled MetS had a significantly higher incidence of VTE after TJA compared to patients without MetS, while those with controlled MetS had a similar risk of VTE compared to patients without MetS [29], and the VTE events occurred were mainly DVT. These findings may suggest the importance of MetS control for the reducing the risk of DVT after TJA.
The potential pathophysiological mechanisms underlying the association between MetS and increased risk of DVT after TJA may be multifactorial. Patients with MetS are characterized by a persistent activated chronic inflammatory response. Since inflammation is a major activator of coagulation, these patients are generally at hypercoagulative status, thereby vulnerable to venous thrombosis [10, 11]. Moreover, it has been shown that patients with MetS have impaired spontaneous thrombolytic activity as reflected by an impaired expression of tissue-type plasminogen activator [30], which may also be involved in their vulnerability to thrombotic events. Besides, patients with MetS tend to be overnutrition and are more likely to be exposed to high-fat diet. Previous studies showed that high-fat diet maintains high endogenous thrombin potential, which is associated with venous and arterial thrombosis independently of obesity and insulin resistance [31]. However, the correlation of nutritional status and VTE risk could be complex, since recent studies showed that the poor nutrition status was also associated with a high risk of developing DVT, particularly for those who underwent major surgeries [32, 33]. Further studies are needed to elucidate the mechanisms underlying the association between MetS and DVT.
Our study has limitations, which should be considered when interpreting the results. Firstly, as a meta-analysis of observational studies, although we combined RR data after adjustment of potential confounding factors, we could not exclude other residual factors that may confound the association between MetS and DVT after TJA, such as the comorbidities of the patients and concurrent medications [34]. Secondly, due to the limited number of the included studies, the result of the subgroup analysis should be interpreted with caution. In addition, most of the included studies were retrospective, which may be limited by the recall bias compared to prospective studies. Moreover, the lengths of follow-up varied among the included studies. However, subgroup analysis showed that MetS was not associated with increased VTE risk after TJA in studies of follow-up within hospitalization, 1 month, and 3 months after JTA. Besides, the long-term (> 3 months) association between MetS and VTE risk after TJA remains to be determined in future studies. Finally, a causative relationship between MetS and increased DVT after TJA should not be retrieved from our results since it is a meta-analysis of observational studies.

Conclusions

In conclusion, our meta-analysis showed that current evidence from observational studies suggests MetS might increase the risk of DVT but not PE in patients that received TJA. Although these findings should be validated in prospective studies, the results of this meta-analysis may suggest the importance of MetS control for reducing the risk of DVT after TJA.

Acknowledgements

Not applicable.
All analyses were based on previous published studies; thus, no ethical approval and patient consent are required. All previous published studies were approved by the ethics committee respectively.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Trivedi NN, Fitzgerald SJ, Schmaier AH, Wera GD. Venous thromboembolism chemoprophylaxis in total hip and knee arthroplasty: a critical analysis review. JBJS Rev. 2019;7(1):e2.CrossRef Trivedi NN, Fitzgerald SJ, Schmaier AH, Wera GD. Venous thromboembolism chemoprophylaxis in total hip and knee arthroplasty: a critical analysis review. JBJS Rev. 2019;7(1):e2.CrossRef
2.
Zurück zum Zitat Mula V, Parikh S, Suresh S, Bottle A, Loeffler M, Alam M. Venous thromboembolism rates after hip and knee arthroplasty and hip fractures. BMC Musculoskelet Disord. 2020;21(1):95.CrossRef Mula V, Parikh S, Suresh S, Bottle A, Loeffler M, Alam M. Venous thromboembolism rates after hip and knee arthroplasty and hip fractures. BMC Musculoskelet Disord. 2020;21(1):95.CrossRef
3.
Zurück zum Zitat Warren JA, Sundaram K, Kamath AF, Molloy RM, Krebs VE, Mont MA, et al. Venous thromboembolism rates did not decrease in lower extremity revision total joint arthroplasty from 2008 to 2016. J Arthroplasty. 2019;34(11):2774–9.CrossRef Warren JA, Sundaram K, Kamath AF, Molloy RM, Krebs VE, Mont MA, et al. Venous thromboembolism rates did not decrease in lower extremity revision total joint arthroplasty from 2008 to 2016. J Arthroplasty. 2019;34(11):2774–9.CrossRef
4.
Zurück zum Zitat Lieberman JR, Heckmann N. Venous thromboembolism prophylaxis in total hip arthroplasty and total knee arthroplasty patients: from guidelines to practice. J Am Acad Orthop Surg. 2017;25(12):789–98.CrossRef Lieberman JR, Heckmann N. Venous thromboembolism prophylaxis in total hip arthroplasty and total knee arthroplasty patients: from guidelines to practice. J Am Acad Orthop Surg. 2017;25(12):789–98.CrossRef
5.
Zurück zum Zitat Januel JM, Chen G, Ruffieux C, Quan H, Douketis JD, Crowther MA, et al. Symptomatic in-hospital deep vein thrombosis and pulmonary embolism following hip and knee arthroplasty among patients receiving recommended prophylaxis: a systematic review. JAMA. 2012;307(3):294–303.CrossRef Januel JM, Chen G, Ruffieux C, Quan H, Douketis JD, Crowther MA, et al. Symptomatic in-hospital deep vein thrombosis and pulmonary embolism following hip and knee arthroplasty among patients receiving recommended prophylaxis: a systematic review. JAMA. 2012;307(3):294–303.CrossRef
6.
Zurück zum Zitat Shahi A, Bradbury TL, Guild GN 3rd, Saleh UH, Ghanem E, Oliashirazi A. What are the incidence and risk factors of in-hospital mortality after venous thromboembolism events in total hip and knee arthroplasty patients? Arthroplast Today. 2018;4(3):343–7.CrossRef Shahi A, Bradbury TL, Guild GN 3rd, Saleh UH, Ghanem E, Oliashirazi A. What are the incidence and risk factors of in-hospital mortality after venous thromboembolism events in total hip and knee arthroplasty patients? Arthroplast Today. 2018;4(3):343–7.CrossRef
7.
Zurück zum Zitat Weihe P, Weihrauch-Bluher S. Metabolic syndrome in children and adolescents: diagnostic criteria, therapeutic options and perspectives. Curr Obes Rep. 2019;8(4):472–9.CrossRef Weihe P, Weihrauch-Bluher S. Metabolic syndrome in children and adolescents: diagnostic criteria, therapeutic options and perspectives. Curr Obes Rep. 2019;8(4):472–9.CrossRef
8.
Zurück zum Zitat Engin A. The definition and prevalence of obesity and metabolic syndrome. Adv Exp Med Biol. 2017;960:1–17.CrossRef Engin A. The definition and prevalence of obesity and metabolic syndrome. Adv Exp Med Biol. 2017;960:1–17.CrossRef
9.
Zurück zum Zitat Santilli F, Vazzana N, Liani R, Guagnano MT, Davi G. Platelet activation in obesity and metabolic syndrome. Obes Rev. 2012;13(1):27–42.CrossRef Santilli F, Vazzana N, Liani R, Guagnano MT, Davi G. Platelet activation in obesity and metabolic syndrome. Obes Rev. 2012;13(1):27–42.CrossRef
10.
Zurück zum Zitat Mao X, Ait-Aissa K, Lagrange J, Youcef G, Louis H. Hypertension, hypercoagulability and the metabolic syndrome: a cluster of risk factors for cardiovascular disease. Biomed Mater Eng. 2012;22(1-3):35–48.PubMed Mao X, Ait-Aissa K, Lagrange J, Youcef G, Louis H. Hypertension, hypercoagulability and the metabolic syndrome: a cluster of risk factors for cardiovascular disease. Biomed Mater Eng. 2012;22(1-3):35–48.PubMed
11.
Zurück zum Zitat Morange PE, Alessi MC. Thrombosis in central obesity and metabolic syndrome: mechanisms and epidemiology. Thromb Haemost. 2013;110(4):669–80.CrossRef Morange PE, Alessi MC. Thrombosis in central obesity and metabolic syndrome: mechanisms and epidemiology. Thromb Haemost. 2013;110(4):669–80.CrossRef
12.
Zurück zum Zitat Gil JS, Drager LF, Guerra-Riccio GM, Mostarda C, Irigoyen MC, Costa-Hong V, et al. The impact of metabolic syndrome on metabolic, pro-inflammatory and prothrombotic markers according to the presence of high blood pressure criterion. Clinics (Sao Paulo). 2013;68(12):1495–501.CrossRef Gil JS, Drager LF, Guerra-Riccio GM, Mostarda C, Irigoyen MC, Costa-Hong V, et al. The impact of metabolic syndrome on metabolic, pro-inflammatory and prothrombotic markers according to the presence of high blood pressure criterion. Clinics (Sao Paulo). 2013;68(12):1495–501.CrossRef
13.
Zurück zum Zitat Basurto L, Diaz A, Rodriguez A, Robledo A, Vega S, Garcia-Vega J, et al. Circulating levels of plasminogen activator inhibitor-1 are associated with metabolic syndrome rather than with menopause. Gynecol Endocrinol. 2019:1–4. Basurto L, Diaz A, Rodriguez A, Robledo A, Vega S, Garcia-Vega J, et al. Circulating levels of plasminogen activator inhibitor-1 are associated with metabolic syndrome rather than with menopause. Gynecol Endocrinol. 2019:1–4.
14.
Zurück zum Zitat Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56(14):1113–32.CrossRef Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56(14):1113–32.CrossRef
15.
Zurück zum Zitat Ageno W, Di Minno MN, Ay C, Jang MJ, Hansen JB, Steffen LM, et al. Association between the metabolic syndrome, its individual components, and unprovoked venous thromboembolism: results of a patient-level meta-analysis. Arterioscler Thromb Vasc Biol. 2014;34(11):2478–85.CrossRef Ageno W, Di Minno MN, Ay C, Jang MJ, Hansen JB, Steffen LM, et al. Association between the metabolic syndrome, its individual components, and unprovoked venous thromboembolism: results of a patient-level meta-analysis. Arterioscler Thromb Vasc Biol. 2014;34(11):2478–85.CrossRef
16.
Zurück zum Zitat Gandhi R, Razak F, Tso P, Davey JR, Mahomed NN. Metabolic syndrome and the incidence of symptomatic deep vein thrombosis following total knee arthroplasty. J Rheumatol. 2009;36(10):2298–301. Gandhi R, Razak F, Tso P, Davey JR, Mahomed NN. Metabolic syndrome and the incidence of symptomatic deep vein thrombosis following total knee arthroplasty. J Rheumatol. 2009;36(10):2298–301.
17.
Zurück zum Zitat Dy CJ, Wilkinson JD, Tamariz L, Scully SP. Influence of preoperative cardiovascular risk factor clusters on complications of total joint arthroplasty. Am J Orthop (Belle Mead NJ). 2011;40(11):560–5.PubMed Dy CJ, Wilkinson JD, Tamariz L, Scully SP. Influence of preoperative cardiovascular risk factor clusters on complications of total joint arthroplasty. Am J Orthop (Belle Mead NJ). 2011;40(11):560–5.PubMed
18.
Zurück zum Zitat Gonzalez Della Valle A, Chiu YL, Ma Y, Mazumdar M, Memtsoudis SG. The metabolic syndrome in patients undergoing knee and hip arthroplasty: trends and in-hospital outcomes in the United States. J Arthroplasty. 2012;27(10):1743–9 e1.CrossRef Gonzalez Della Valle A, Chiu YL, Ma Y, Mazumdar M, Memtsoudis SG. The metabolic syndrome in patients undergoing knee and hip arthroplasty: trends and in-hospital outcomes in the United States. J Arthroplasty. 2012;27(10):1743–9 e1.CrossRef
19.
Zurück zum Zitat Mraovic B, Hipszer BR, Epstein RH, Parvizi J, Pequignot EC, Chervoneva I, et al. Metabolic syndrome increases risk for pulmonary embolism after hip and knee arthroplasty. Croat Med J. 2013;54(4):355–61.CrossRef Mraovic B, Hipszer BR, Epstein RH, Parvizi J, Pequignot EC, Chervoneva I, et al. Metabolic syndrome increases risk for pulmonary embolism after hip and knee arthroplasty. Croat Med J. 2013;54(4):355–61.CrossRef
20.
Zurück zum Zitat Edelstein AI, Suleiman LI, Alvarez AP, Sacotte RM, Qin CD, Beal MD, et al. The interaction of obesity and metabolic syndrome in determining risk of complication following total joint arthroplasty. J Arthroplasty. 2016;31(9 Suppl):192–6.CrossRef Edelstein AI, Suleiman LI, Alvarez AP, Sacotte RM, Qin CD, Beal MD, et al. The interaction of obesity and metabolic syndrome in determining risk of complication following total joint arthroplasty. J Arthroplasty. 2016;31(9 Suppl):192–6.CrossRef
21.
Zurück zum Zitat Song K, Rong Z, Yao Y, Shen Y, Zheng M, Jiang Q. Metabolic syndrome and deep vein thrombosis after total knee and hip arthroplasty. J Arthroplasty. 2016;31(6):1322–5.CrossRef Song K, Rong Z, Yao Y, Shen Y, Zheng M, Jiang Q. Metabolic syndrome and deep vein thrombosis after total knee and hip arthroplasty. J Arthroplasty. 2016;31(6):1322–5.CrossRef
22.
Zurück zum Zitat Cichos KH, Churchill JL, Phillips SG, Watson SL, McGwin G Jr, Ghanem ES, et al. Metabolic syndrome and hip fracture: epidemiology and perioperative outcomes. Injury. 2018;49(11):2036–41.CrossRef Cichos KH, Churchill JL, Phillips SG, Watson SL, McGwin G Jr, Ghanem ES, et al. Metabolic syndrome and hip fracture: epidemiology and perioperative outcomes. Injury. 2018;49(11):2036–41.CrossRef
23.
Zurück zum Zitat Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12.CrossRef Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12.CrossRef
26.
Zurück zum Zitat Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.CrossRef Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.CrossRef
27.
Zurück zum Zitat Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.CrossRef Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.CrossRef
28.
Zurück zum Zitat Sloan M, Sheth N, Lee GC. Is obesity associated with increased risk of deep vein thrombosis or pulmonary embolism after hip and knee arthroplasty? A large database study. Clin Orthop Relat Res. 2019;477(3):523–32.CrossRef Sloan M, Sheth N, Lee GC. Is obesity associated with increased risk of deep vein thrombosis or pulmonary embolism after hip and knee arthroplasty? A large database study. Clin Orthop Relat Res. 2019;477(3):523–32.CrossRef
29.
Zurück zum Zitat Zmistowski B, Dizdarevic I, Jacovides CL, Radcliff KE, Mraovic B, Parvizi J. Patients with uncontrolled components of metabolic syndrome have increased risk of complications following total joint arthroplasty. J Arthroplasty. 2013;28(6):904–7.CrossRef Zmistowski B, Dizdarevic I, Jacovides CL, Radcliff KE, Mraovic B, Parvizi J. Patients with uncontrolled components of metabolic syndrome have increased risk of complications following total joint arthroplasty. J Arthroplasty. 2013;28(6):904–7.CrossRef
30.
Zurück zum Zitat Xie W, Zhai Z, Yang Y, Kuang T, Wang C. Free fatty acids inhibit TM-EPCR expression through JNK pathway: an implication for the development of the prothrombotic state in metabolic syndrome. J Thromb Thrombolysis. 2012;34(4):468–74.CrossRef Xie W, Zhai Z, Yang Y, Kuang T, Wang C. Free fatty acids inhibit TM-EPCR expression through JNK pathway: an implication for the development of the prothrombotic state in metabolic syndrome. J Thromb Thrombolysis. 2012;34(4):468–74.CrossRef
31.
Zurück zum Zitat Sanchez C, Poggi M, Morange PE, Defoort C, Martin JC, Tanguy S, et al. Diet modulates endogenous thrombin generation, a biological estimate of thrombosis risk, independently of the metabolic status. Arterioscler Thromb Vasc Biol. 2012;32(10):2394–404.CrossRef Sanchez C, Poggi M, Morange PE, Defoort C, Martin JC, Tanguy S, et al. Diet modulates endogenous thrombin generation, a biological estimate of thrombosis risk, independently of the metabolic status. Arterioscler Thromb Vasc Biol. 2012;32(10):2394–404.CrossRef
32.
Zurück zum Zitat e S, Yamato Y, Hasegawa T, Yoshida G, Kobayashi S, Yasuda T, et al. Association between a prognostic nutritional index less than 50 and the risk of medical complications after adult spinal deformity surgery. J Neurosurg Spine. 2020:1–6. https://doi.org/10.3171/2020.1.SPINE191410. Online ahead of print. e S, Yamato Y, Hasegawa T, Yoshida G, Kobayashi S, Yasuda T, et al. Association between a prognostic nutritional index less than 50 and the risk of medical complications after adult spinal deformity surgery. J Neurosurg Spine. 2020:1–6. https://​doi.​org/​10.​3171/​2020.​1.​SPINE191410. Online ahead of print.
33.
Zurück zum Zitat Iguchi T, Sugimachi K, Mano Y, Kono M, Kagawa M, Nakanoko T, et al. The preoperative prognostic nutritional index predicts the development of deep venous thrombosis after pancreatic surgery. Anticancer Res. 2020;40(4):2297–301.CrossRef Iguchi T, Sugimachi K, Mano Y, Kono M, Kagawa M, Nakanoko T, et al. The preoperative prognostic nutritional index predicts the development of deep venous thrombosis after pancreatic surgery. Anticancer Res. 2020;40(4):2297–301.CrossRef
34.
Zurück zum Zitat Landy DC, Bradley AT, King CA, Puri L. Stratifying venous thromboembolism risk in arthroplasty: do high-risk patients exist? J Arthroplasty. 2020;35(5):1390–6. Landy DC, Bradley AT, King CA, Puri L. Stratifying venous thromboembolism risk in arthroplasty: do high-risk patients exist? J Arthroplasty. 2020;35(5):1390–6.
Metadaten
Titel
Association between metabolic syndrome and venous thromboembolism after total joint arthroplasty: a meta-analysis of cohort studies
verfasst von
Yipei Yang
Ziyue Li
Haifeng Liang
Jing Tian
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Journal of Orthopaedic Surgery and Research / Ausgabe 1/2020
Elektronische ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-020-02097-4

Weitere Artikel der Ausgabe 1/2020

Journal of Orthopaedic Surgery and Research 1/2020 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Knie-TEP: Kein Vorteil durch antibiotikahaltigen Knochenzement

29.05.2024 Periprothetische Infektionen Nachrichten

Zur Zementierung einer Knie-TEP wird in Deutschland zu über 98% Knochenzement verwendet, der mit einem Antibiotikum beladen ist. Ob er wirklich besser ist als Zement ohne Antibiotikum, kann laut Registerdaten bezweifelt werden.

Häusliche Gewalt in der orthopädischen Notaufnahme oft nicht erkannt

28.05.2024 Häusliche Gewalt Nachrichten

In der Notaufnahme wird die Chance, Opfer von häuslicher Gewalt zu identifizieren, von Orthopäden und Orthopädinnen offenbar zu wenig genutzt. Darauf deuten die Ergebnisse einer Fragebogenstudie an der Sahlgrenska-Universität in Schweden hin.

Fehlerkultur in der Medizin – Offenheit zählt!

28.05.2024 Fehlerkultur Podcast

Darüber reden und aus Fehlern lernen, sollte das Motto in der Medizin lauten. Und zwar nicht nur im Sinne der Patientensicherheit. Eine negative Fehlerkultur kann auch die Behandelnden ernsthaft krank machen, warnt Prof. Dr. Reinhard Strametz. Ein Plädoyer und ein Leitfaden für den offenen Umgang mit kritischen Ereignissen in Medizin und Pflege.

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.