Skip to main content
Erschienen in: Critical Care 6/2014

Open Access 01.12.2014 | Review

Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review

verfasst von: Teiji Sawa, Masaru Shimizu, Kiyoshi Moriyama, Jeanine P Wiener-Kronish

Erschienen in: Critical Care | Ausgabe 6/2014

Abstract

Pseudomonas aeruginosa uses a complex type III secretion system to inject the toxins ExoS, ExoT, ExoU, and ExoY into the cytosol of target eukaryotic cells. This system is regulated by the exoenzyme S regulon and includes the transcriptional activator ExsA. Of the four toxins, ExoU is characterized as the major virulence factor responsible for alveolar epithelial injury in patients with P. aeruginosa pneumonia. Virulent strains of P. aeruginosa possess the exoU gene, whereas non-virulent strains lack this particular gene. The mechanism of virulence for the exoU + genotype relies on the presence of a pathogenic gene cluster (PAPI-2) encoding exoU and its chaperone, spcU. The ExoU toxin has a patatin-like phospholipase domain in its N-terminal, exhibits phospholipase A2 activity, and requires a eukaryotic cell factor for activation. The C-terminal of ExoU has a ubiquitinylation mechanism of activation. This probably induces a structural change in enzymatic active sites required for phospholipase A2 activity. In P. aeruginosa clinical isolates, the exoU + genotype correlates with a fluoroquinolone resistance phenotype. Additionally, poor clinical outcomes have been observed in patients with pneumonia caused by exoU + -fluoroquinolone-resistant isolates. Therefore, the potential exists to improve clinical outcomes in patients with P. aeruginosa pneumonia by identifying virulent and antimicrobial drug-resistant strains through exoU genotyping or ExoU protein phenotyping or both.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s13054-014-0668-9) contains supplementary material, which is available to authorized users.

Competing interests

JPWK and TS have a patent for immunization with PcrV from the Regent of the University of California (Berkeley, CA, USA).

Authors’ contributions

TS wrote the manuscript, figure legends, and tables. All authors have read and approved the final manuscript.
Abkürzungen
AACOCF3
Arachidonyl trifluoromethyl ketone
BEL
Bromoenol lactone
CF
Cystic fibrosis
cPLA2
Cytosolic phospholipase A2
iPLA2
Calcium-independent phospholipase A2
lysoPLA
Lysophospholipase
MAFP
Methyl arachidonyl fluorophosphate
MDR
Multidrug-resistant
PAPI
Pseudomonas aeruginosa pathogenicity island
PLA2
Phospholipase A2
SOD1
Superoxide dismutase 1
TTS
Type III secretory
TTSS
Type III secretion system
VAP
Ventilator-associated pneumonia

Introduction

Recently, multidrug-resistant (MDR) Pseudomonas aeruginosa has been identified as a major cause of nosocomial infections [1],[2]. P. aeruginosa is the most frequent Gram-negative pathogen to cause mortality of patients with ventilator-associated pneumonia (VAP) in intensive care units [3]-[5]. Better understanding of P. aeruginosa pathogenesis, and subsequent mortality, has been acquired by recent advances in knowledge regarding virulence mechanisms that lead to acute lung injury, bacteremia, and sepsis [6]. In common with other pathogenic Gram-negative bacteria, P. aeruginosa possesses a virulence mechanism known as the type III secretion system (TTSS). The TTSS allows the injection of toxins into the cytosol of target eukaryocytes [7],[8]. The type III secretory (TTS) toxin, ExoU, has been characterized as a major virulence factor in acute lung injury [9],[10]. The genomic organization of the ExoU gene, enzymatic activity of the ExoU protein, and mechanism of cell death induced by ExoU translocation have all been investigated. Among the various phenotypes of P. aeruginosa isolates, the ExoU-positive phenotype is a major risk factor for poor clinical outcomes. A correlation between the antimicrobial characteristics of the bacterium and an exoU-positive genotype has also been reported in recent clinical studies [11],[12].
This review summarizes progress with respect to basic research conducted on the TTS toxin, ExoU, to date. We have covered its genomic organization and biochemistry and its ability to cause acute lung injury in people. Additionally, we will discuss the findings of recent studies on the association between ExoU and poor clinical outcome in patients.

ExoU as a major virulence factor

Isolates of P. aeruginosa show cytotoxicity in cultured epithelial cells and cause a high degree of acute lung injury in animal models of pneumonia [13]-[15]. Clinical isolates of P. aeruginosa display various genotypic and phenotypic variations that can affect the severity of an infection and its clinical outcome [9]. P. aeruginosa produces various exoproducts, among which exoenzyme S and its co-regulated proteins are candidates for cytotoxicity and acute lung injury in patients with P. aeruginosa pneumonia (Table 1) [16]-[18]. In the 1990s, based on genomic homology with its counterparts in other Gram-negative bacteria, P. aeruginosa exoenzyme S was identified as the effector protein that was injected into host cells via the TTSS (Figure 1) [19]. TTSSs, which are used by most pathogenic Gram-negative bacteria, including Yersinia, Salmonella, Shigella, Escherichia coli, and P. aeruginosa, function as molecular syringes, directly delivering toxins into the cytosol of eukaryotic cells [20]. The translocated toxins modulate eukaryotic cell signaling, a process that eventually causes disease [21],[22].
Table 1
Toxic protein exoproducts of Pseudomonas aeruginosa
Exoproduct
Gene symbol
Pseudomonas genome database locus tag
Secretory type
Activity
Effect on host
Alkaline protease
aprA
PA1249
I
Proteolysis
Blocks complement activation
Elastase (LasA and LasB)
lasA and lasB
PA1871 and PA3724
II
Elastolytic activity
Tissue destruction
Exotoxin A
toxA
PA1148
II
ADP-ribosyltransferase
Cytotoxin
Phospholipase C
plcH and plcN
PA0844 and PA3319
II
Phospholipase C
Heat-labile hemolysis
ExoS (exoenzyme S, 49-kDa)
exoS
PA3841
III
ADP-ribosyltransferase, GAP
Anti-phagocytosis
ExoT (exoenzyme S, 54-kDa
exoT
PA0044
III
GAP activity
Blocks wound healing
ExoU
exoU
-
III
Phospholipase A2
Cytotoxin, anti-phagocytosis
ExoY
exoY
PA2191
III
Adenylate cyclase
Edema formation
GAP, GTPase activating protein activity.
PA103 lacks the exoenzyme S gene (exoS) encoding the 49-kDa form of the toxin but possesses the exoenzyme T gene (exoT), which encodes the 53-kDa form. An isogenic mutant missing exoT was found to be cytotoxic to cultured epithelial cells and caused acute lung injury; therefore, it was concluded that neither ExoT nor ExoS was a major virulence factor for lung injury [18]. PA103 was found to secrete a unique unknown 74-kDa protein, the production of which was decreased when a transposon mutation in exsA was present. The gene encoding this protein was cloned, and a mutant lacking this protein was created in PA103. The isogenic mutant lacking the 74-kDa protein failed to cause acute lung injury in animal models [9]. This protein, regulated by ExsA, a transcriptional activator of P. aeruginosa TTSS, was designated ExoU [9],[23]. Along with other TTS toxins, such as ExoS and ExoT, ExoU is secreted through the TTSS and injected directly into the cytosol of targeted eukaryocytes. Clinical isolates with cytotoxic phenotypes in vitro were found to possess exoU, whereas non-cytotoxic isolates lacked exoU [24]. Additionally, cytotoxic clinical isolates secreting ExoU caused severe and acute epithelial injury in animal models of P. aeruginosa pneumonia (Figure 2) [24]. It was postulated that the ability of P. aeruginosa to cause acute lung epithelial injury and sepsis is strongly linked to TTS secretion of ExoU [10].

Genomic organization of ExoU

P. aeruginosa strain PAO1 was the first strain whose genome was completely sequenced in 2001 by the Pseudomonas Genome Project. A pathogenic gene cluster, the exoenzyme S regulon, encodes genes underlying the regulation, secretion, and translocation of the TTSS. In the exoenzyme S regulon, five operons (exsD–pscL, exsCBA, pscG–popD, popN–pcrR, and pscN–pscU) encode TTSS and translocation machinery. The exsCBA operon encodes the transcriptional activator protein ExsA, which regulates expression of exoenzyme S and co-regulated proteins. The PAO1 strain lacks exoU, whereas approximately 20% of clinical isolates possess exoU (Figure 3) [25]. The exoU gene was initially cloned from the PA103 strain, along with its cognate chaperone gene spcU [9]. The genomic organization of the ExoU-secreting clinical isolate PA14 was analyzed, and two insertional genomic islands, termed pathogenicity islands PAPI-1 and PAPI-2 (Pseudomonas aeruginosa pathogenicity island), were discovered (Figure 3) [26]. The 10.7-kb PAPI-2 region, which is probably derived via horizontal gene transfer, lies within the tRNA-Lys (PA0976.1) region (Figure 3); it encodes 14 open reading frames, including exoU, spcU, four transposases, one integrase, one acetyltransferase, and six hypothetical proteins. The exoU gene itself is 2,074 base pairs and encodes the 682 amino acid protein, ExoU [27] (Figure 3). Four nucleotides at the 3′ end, including the stop codon in exoU, overlap the start codon of the 324-base pair spcU gene, which encodes SpcU (137 amino acids). The promoter region of exoU has a binding motif (TXAAAAXA) for the transcriptional activator, ExsA [28],[29].

Enzymatic action of ExoU

The N-terminal of ExoU starts at the secretory leader (MHIQS), the sequence of which is the same as the starter sequence for ExoS and ExoT. When ExoU was identified as a major virulence factor causing acute lung injury in 1997, little was known about its enzymatic mechanisms that were responsible for acute cell death. Analysis of the conserved domain of ExoU revealed a patatin-like domain, containing a glycine-rich nucleotide binding loop motif and a lipase motif with catalytically active serine and aspartate within its N-terminal primary sequence [31]. Patatin, a storage protein in potatoes, exhibits lipase activity and shares a catalytic dyad structure with mammalian phospholipase A2 (PLA2) (Figures 3 and 4) [32]-[35]. The catalytic domains of ExoU align with those of patatin, human calcium-independent PLA2 (iPLA2) and cytosolic PLA2 (cPLA2) [36]. The predicted active sites for ExoU PLA2 activity are serine 142 (S142) and aspartate 344 (D344). Site-directional mutagenesis of the predicted catalytic residues (ExoUS142A or ExoUD344A) eliminated the cytotoxicity of PA103 [36],[37]. Inhibitors of iPLA2 and cPLA2, including bromoenol lactone (BEL), methyl arachidonyl fluorophosphate (MAFP), and arachidonyl trifluoromethyl ketone (AACOCF3), reduced the cytotoxicity of PA103 in vitro. In the presence of a eukaryotic cell extract, recombinant ExoU displayed PLA2 and lysophospholipase (lysoPLA) activities (Figure 5); these activities were inhibited by cPLA2 or iPLA2 inhibitors [31],[38]. The site-directional PA103 mutants lacking PLA2 activity were tested by using an animal model of pneumonia. In PA103, either of the ExoUS142A or ExoUD344A mutations abolished virulence associated with acute lung injury and death. It was concluded that acute lung injury from cytotoxic P. aeruginosa is caused by the cytotoxic activity of the patatin-like phospholipase domain of ExoU.
ExoU displays serine acylhydrolase activity via a Ser/Asp catalytic dyad and can be classified as a group IV PLA2 member. A major characteristic of serine acylhydrolases, such as PLA2, PLA1, and lysoPLA, is their ability to perform multiple lipase reactions [40]. Recently, more patatin-like PLA2 proteins have been detected in various bacterial species [41]. It seems likely that bacteria use PLA2 as a defense mechanism against predatory eukaryocytes such as phagocytes and environmental amoeba. Its presence allows them to attack a target cell to obtain nutrition, thereby increasing their population [40]. ExoU can kill eukaryotic predators, such as the amoeba Acanthamoeba castellanii [42],[43]. Intracellular expression of ExoU is cytotoxic to yeast, suggesting that fungi could be one of its potential targets [44]. In humans, P. aeruginosa targets phagocytic cells in the lungs and injects them with ExoU [45]-[47]. In an animal model of pneumonia, ExoU is produced during the early phase of infection; delaying exoU expression by as little as 3 hours enhanced bacterial clearance and survival of infected mice [48]. ExoU-mediated impairment of phagocytes probably allows P. aeruginosa to persist within the lungs, causing localized immunosuppression and facilitating superinfection with less pathogenic bacteria. This would explain not only why ExoU-secreting P. aeruginosa is associated with more severe pulmonary infections but also the tendency of hospital-acquired pneumonia to be polymicrobial [47].

ExoU cytotoxicity and its various effects

Non-cytotoxic P. aeruginosa strains transformed with pUCP19exoUspcU, a plasmid that carries exoU and spcU, became cytotoxic to cultured epithelial cells in vitro and lethal in a mouse model of pneumonia [49]. Isogenic mutants, generated to secrete ExoU, ExoS, or ExoT, were evaluated for their relative contributions to pathogenesis in a mouse model of acute pneumonia [50]. In this study, measurements of mortality, bacterial persistence in the lungs, and dissemination of the bacteria indicated that ExoU secretion had the greatest impact on virulence but that secretion of ExoS had a moderate effect and ExoT a relatively minor effect.
ExoU translocation induces cell death by destroying cell membranes via PLA2 activity. ExoU might also contribute to the induction of an eicosanoid-mediated inflammatory response in host organisms, as airway epithelial cells exposed to P. aeruginosa overproduce prostaglandin E2 in an ExoU-dependent manner [51],[52]. A deleterious effect on phospholipid metabolism, in concert with caspase activation, was also reported to occur in an ExoU-dependent manner [53]. Another study reported that arachidonic acid-induced oxidative stress might cause cell damage during the course of an ExoU-producing P. aeruginosa infection. This is because endothelial cell death in cytotoxic PA103 infections was significantly attenuated by alpha-tocopherol [54]. ExoU could also contribute to the pathogenesis of lung injury as it induces a tissue factor-dependent procoagulant activity in airway epithelial cells [55], vascular hyperpermeability, platelet activation, and thrombus formation during P. aeruginosa pneumonia and sepsis [56].

Activation mechanism of ExoU

TTS toxins use a unique mechanism for activating their enzymatic activities. These toxins are initially produced in the bacterial cytosol as inactive forms and, immediately after being injected into the cytosol of a target eukaryotic cell by the bacterial secretion apparatus, are activated by specific eukaryotic cell cofactors. As an example, ExoS ADP-ribosyltransferase activity is activated by the eukaryotic protein factor FAS (factor activating exoenzyme S), which is a member of the 14-3-3 protein family [57],[58]. In contrast, P. aeruginosa adenylate cyclase ExoY requires an unknown eukaryotic cell factor for its activation [59]. The PLA2 activity of ExoU cleaves plasma membrane phospholipids and causes the rapid lysis of targeted eukaryotic cells. Similar to ExoS and ExoY, ExoU requires eukaryotic cell cofactors for its activation, whereas in vitro PLA2 assays with recombinant ExoU require the addition of eukaryotic cell lysates. The patatin-like PLA2 domain is located at the N-terminal region of ExoU; the C-terminal region, which includes a sequence corresponding to a conserved DUF885 domain, was reported to be important for the activation process and membrane localization of the protein [60]-[62]. In 2006, Sato and colleagues [63] reported that Cu2+, Zn2+-superoxide dismutase (SOD1) was a cofactor that activated the PLA2 activity of ExoU. By this time, however, it had also been reported that ExoU localizes to the plasma membrane, where it undergoes modification in the cell by the addition of two ubiquitin molecules at lysine 178; five C-terminal residues (679 to 683) control membrane localization and ubiquitination [64]. Site-directed spin-labeling electron paramagnetic resonance spectroscopy revealed that the addition of SOD1 induced conformational changes in ExoU [65]. PLA2 activity of ExoU was demonstrated by using ubiquitinated yeast SOD1 and other ubiquitinated mammalian proteins [66]. Therefore, it seems that ubiquitinated SOD1 works as a ubiquitin donor and that ubiquitination of the ExoU C-terminal activates the PLA2 activity of ExoU.
The three-dimensional crystallographic structure of ExoU combined with its cognate chaperone SpcU was recently elucidated by two research groups [67],[68] (Figure 6). In one of these studies, the C-terminal membrane-binding domain of ExoU displayed specificity for phosphatidylinositol 4,5-bisphosphate (PI4,5P2); ubiquitination of ExoU resulted in its co-localization with endosomal markers [67]. The ubiquitin-binding domain was mapped to a C-terminal four-helix bundle in ExoU [69], with PI4,5P2 synergistically enhancing the PLA2 activity of ExoU via a ubiquitin-related mechanism [70] (Figure 6). The Rickettsia prowazekii RP534 protein, a homologue of ExoU, possesses PLA2 and lysoPLA activities and PLA1 activity in the absence of any eukaryotic cofactors [71]. A structural comparison between ExoU and RP534 protein would help clarify the ubiquitin-associated mechanism of ExoU activation. Research into the mechanisms of ExoU activation has provided new insights into how bacteria manipulate eukaryotic cell signaling to facilitate their growth and pathogenesis.

Clinical epidemiology of Pseudomonas aeruginosatype III secretory-associated genotypes

Early studies on P. aeruginosa TTSS revealed an association between a cytotoxic or invasive phenotype and genotype of a strain. The invasive PAO1 strain and the cytotoxic PA103 strain harbor the exoS + exoT + exoU and exoS exoT + exoU + genotypes, respectively [9],[18]. This genetic variation in TTS toxin genes implies the presence of similar genotypic and phenotypic variations among clinical and environmental isolates [73]. Consequently, isolates from the respiratory tract or blood cultures of 108 patients were analyzed, and the relative risk of mortality was reported to be sixfold greater when expression of ExoS, ExoT, ExoU, or PcrV occurred (Table 2). The prevalence of the TTS-positive phenotype was significantly higher in acutely infected patients than in chronically infected cystic fibrosis (CF) patients [24]. When Schulert and colleagues [74] analyzed the virulence profiles of 35 P. aeruginosa isolates from patients with hospital-acquired pneumonia by using a cytolytic cell-death assay, an apoptosis assay, and a mouse model of pneumonia, they found that increased virulence was associated with the secretion of ExoU but not ExoS or ExoY secretion. These studies suggest that P. aeruginosa TTSS is present in nearly all clinical and environmental isolates. ExoU secretion could be used as a marker for highly virulent strains and could have some association with poor clinical outcome. It appears that isolates from acutely infected patients are genotypically different from those from chronically infected CF patients [73]. Other researchers have reported the presence of different P. aeruginosa genotypes in isolates from CF patients. The exoS + exoU genotype is associated with chronic infection in CF patients, whereas the exoS exoU + genotype is associated with bacterial strains isolated from blood [75]-[79].
Table 2
Associations between the Pseudomonas aeruginosa type III secretion system and clinical outcomes
Reference
Year
Country
Target population
Clinical association
Roy-Burman et al. [24]
2001
USA
108 isolates from respiratory tract or blood
TTSS-positive phenotype was a predictor of poor clinical outcome.
Hauser et al. [80]
2002
USA
35 patients with VAP
In VAP, type III secretory isolates were associated with worse clinical outcomes.
Schulert et al. [74]
2003
USA
35 isolates from patients with hospital-acquired pneumonia
ExoU is a marker for highly virulent strains.
Wareham and Curtis [75]
2007
UK
TTSS genotypes and phenotypes of 163 clinical isolates
The exoS /exoU + genotype was associated with strains isolated from blood.
Garey et al. [81]
2008
USA
Hospitalized patients with bacteremia
Mortality did not differ among patients infected with exoS or exoU isolates.
Wong-Beringer et al. [12]
2008
USA
45 isolates susceptible to fluoroquinolones
exoU + strains exhibited increased cytotoxicity compared with ExoS-secreting strains.
Bradbury et al. [76]
2010
Australia
184 clinical, nosocomial, and environmental isolates
Isolates collected from the environment of intensive therapy units were more likely to possess exoU.
Agnello and Wong-Beringer [82]
2012
USA
270 respiratory isolates
Strains with fluoroquinolone resistance correlate with TTSS effector genotype and the more virulent exoU + subpopulation.
El-Solh et al. [83]
2012
USA
85 cases of bloodstream infection
Expression of TTSS toxins in isolates from bacteremic patients confers poor clinical outcomes.
Jabalameli et al. [84]
2012
Iran
96 isolates collected from wound infections of burn patients
exoU gene is disseminated among isolates from burn patients.
Sullivan et al. [11]
2014
USA
218 adult patients with positive respiratory cultures
Fluoroquinolone-resistant phenotype in exoU strains contributes to pneumonia.
TTSS, type III secretion system; VAP, ventilator-associated pneumonia.

Clinical epidemiology associated with ExoU and antibiotic resistance

Another important topic in P. aeruginosa biology that has recently emerged is the association of antibiotic resistance with TTSS virulence genotypes (Table 2). Mitov and colleagues [85] analyzed the antimicrobial resistance profiles and genotypes of 202 isolates from CF patients (n = 42) and non-CF in-patients (n = 160). The authors found that the prevalences of exoS and exoU were 62.4 and 30.2%, respectively, and that exoU was more prevalent among MDR than in non-MDR strains (40.2% versus 17.7%). Garey and colleagues [81] reported that 97.5% of bloodstream isolates harbored exoS or exoU genes and that exoS was the most prevalent (70.5%; n = 86). The prevalence of exoU was 25.4% (n = 31), and these isolates were significantly more likely to be resistant to multiple antibiotics, including cephems, carbapenems, fluoroquinolones, and gentamicin. Consistent with this, an analysis of 45 clinical isolates found that exoU + isolates were more likely to be fluoroquinolone-resistant than exoS + isolates (92% versus 61%, P <0.05). These isolates possessed a mutation in the gyrA gene and exhibited an efflux pump overexpression phenotype [12]. Agnello and Wong-Beringer [82] examined the relationship between the TTSS effector genotype and fluoroquinolone resistance mechanisms in 270 respiratory isolates and found that a higher proportion of exoU + strains was fluoroquinolone-resistant compared with exoS + strains (63% versus 49%) despite their lower prevalence (38% exoU + versus 56% exoS + ) [82]. Of epidemiological importance, Tran and colleagues [86] showed that 20 isolates (eight unique pulsed-field gel electrophoresis clusters) recovered from imported frozen raw shrimp sold in the US harbored TTS toxin genes and were resistant to quinolone with mutations in gyrA. These findings indicate co-evolution of resistance and virulence traits favoring a more virulent genotype in a quinolone-rich clinical environment [80].
There have been several studies in which associations between TTSS-associated virulence and poor clinical outcome for P. aeruginosa-infected patients have been observed. An analysis of TTS genotypes and phenotypes of isolates cultured from 35 mechanically ventilated patients with bronchoscopically confirmed P. aeruginosa-VAP showed a correlation between TTS phenotype, especially the ExoU phenotype, and severity of pneumonia [80]. More recently, El-Solh and colleagues [83] performed a retrospective analysis of 85 cases of P. aeruginosa bacteremia. Bacteremic patients with TTSS-positive isolates developed septic shock with high probability of death more frequently than patients with TTSS-negative isolates. The authors found that none of the TTSS-positive patients who survived the first 30 days of infection had a P. aeruginosa isolate that exhibited the ExoU phenotype; a higher frequency of antibiotic resistance was detected in TTSS-positive isolates. Jabalameli and colleagues [84] analyzed TTSS genotypes and antimicrobial resistance in 96 isolates collected from wound infections of burn patients. More than 90% of the isolates were MDR, and 64.5% of them carried exoU whereas 29% carried exoS. Their findings suggest that these genes, particularly exoU, are commonly disseminated among P. aeruginosa strains isolated from burn patients. Sullivan and colleagues [11] recently reported their analysis of antimicrobial resistance and TTSS virulence in P. aeruginosa isolates from hospitalized adult patients with respiratory syndromes. The authors studied 218 consecutive adult patients whose respiratory cultures were positive for P. aeruginosa, and reported that fluoroquinolone-resistant and MDR strains were more likely to cause pneumonia than bronchitis or colonization. The combination of fluoroquinolone resistance and the gene encoding the TTSS ExoU effector in P. aeruginosa was the strongest predictor of pneumonia development. Further investigations suggest that the fluoroquinolone-resistant phenotype and the exoU + genotype of P. aeruginosa might cause poor clinical outcomes in patients with P. aeruginosa pneumonia [87]. Although there is no clear genetic explanation and a less than convincing association between ExoU-associated virulence and antibiotic resistance, there is no doubt that bacterial strains possessing both virulent and MDR characteristics are more dangerous, especially for immunocompromised patients. Therefore, improved genotyping or phenotyping methods (or both) for analyzing TTS toxins of clinical isolates will enhance our understanding of this area.

Potential therapeutic strategies against ExoU-derived cytotoxicity

Several prophylactic or therapeutic experimental strategies against the cytotoxic effects of TTS ExoU have been reported over the last decade. The P. aeruginosa V-antigen PcrV, a homolog of the Yersinia V-antigen LcrV, contributes to TTS toxin translocation [88]. In prophylactic strategies, active immunization against PcrV ensures the survival of challenged mice and decreases lung inflammation and injury [89]. DNA vaccination with pIRES-toxAm-pcrV has been proposed as a potential immunotherapy [90]. In passive immunization, the rabbit polyclonal anti-PcrV antibody and murine monoclonal anti-PcrV antibody mAb166 inhibit TTS toxin translocation [91]-[95]. For clinical use, the mAb166 was humanized [96], and the IgG antigen-binding (Fab′) fragment, KB001, is currently in use in phase II clinical trials for treating VAP in France and chronic pneumonia in CF patients in the US [97],[98].
In vitro experiments have shown that specific inhibitors against iPLA2, such as BEL, AACOCF3, and MAFP, decrease the cytotoxicity of ExoU. Several researchers have reported that small molecules, such as pseudolipasin A and arylsulfonamides, specifically inhibit the phospholipase activity of ExoU [99],[100]. More details regarding the activation mechanisms of ExoU have been recently reported; however, there is more potential in using small chemicals for the prevention of acute lung injury induced by P. aeruginosa.

Conclusions

P. aeruginosa ExoU, a toxin injected into the cytosol of target eukaryotic cells such as phagocytes and epithelial cells, is a major virulence factor in the cause of alveolar lung injury in patients with P. aeruginosa pneumonia. Virulent strains of P. aeruginosa possess the PAPI-2 pathogenic gene cluster region, which includes exoU. The PLA2 activity exhibited by ExoU requires a ubiquitination-associated activation mechanism to operate in a eukaryotic cell factor-dependent manner. A combination of the exoU + genotype and fluoroquinolone-resistant phenotype in isolates was shown to correlate with poor clinical outcome. Cytotoxic and antimicrobial-resistant P. aeruginosa is a serious concern, especially for immunocompromised patients. Therefore, rapid diagnostic determination of isolate genotype and phenotype is important. Surveillance to determine the prevalence of cytotoxic and antibiotic-resistant isolates is needed if we are to reduce the risk of lethal P. aeruginosa outbreaks. Opportunities exist for improving the clinical outcome of patients infected with P. aeruginosa by identifying virulent and antimicrobial-resistant isolates that cause acute lung injury, sepsis, and mortality. Exploration of P. aeruginosa virulence apparatuses as potential antimicrobial targets is vital if we are to avoid the spread of dangerous super-resistant P. aeruginosa strains.

Authors’ information

TS is a Professor of Anesthesiology. MS is a student in the Graduate School of Medicine at the Kyoto Prefectural University of Medicine in Japan. KM is an Associate Professor in the Anesthesia Department at Korin University in Japan. JWK is the Anesthetist-in-Chief (Henry Isaiah Dorr Professor of Anesthesia) at Harvard Medical School (Boston, MA, USA).

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (KAKENHI #24390403) from the Ministry of Education, Culture, Sports, Science and Technology (Japan) to TS.

Competing interests

JPWK and TS have a patent for immunization with PcrV from the Regent of the University of California (Berkeley, CA, USA).

Authors’ contributions

TS wrote the manuscript, figure legends, and tables. All authors have read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Quartin AA, Scerpella EG, Puttagunta S, Kett DH: A comparison of microbiology and demographics among patients with healthcare-associated, hospital-acquired, and ventilator-associated pneumonia: a retrospective analysis of 1184 patients from a large, international study. BMC Infect Dis. 2013, 13: 561-10.1186/1471-2334-13-561.CrossRef Quartin AA, Scerpella EG, Puttagunta S, Kett DH: A comparison of microbiology and demographics among patients with healthcare-associated, hospital-acquired, and ventilator-associated pneumonia: a retrospective analysis of 1184 patients from a large, international study. BMC Infect Dis. 2013, 13: 561-10.1186/1471-2334-13-561.CrossRef
2.
Zurück zum Zitat Grgurich PE, Hudcova J, Lei Y, Sarwar A, Craven DE: Management and prevention of ventilator-associated pneumonia caused by multidrug-resistant pathogens. Expert Rev Respir Med. 2012, 6: 533-555. 10.1586/ers.12.45.CrossRef Grgurich PE, Hudcova J, Lei Y, Sarwar A, Craven DE: Management and prevention of ventilator-associated pneumonia caused by multidrug-resistant pathogens. Expert Rev Respir Med. 2012, 6: 533-555. 10.1586/ers.12.45.CrossRef
3.
Zurück zum Zitat Barbier F, Andremont A, Wolff M, Bouadma L: Hospital-acquired pneumonia and ventilator-associated pneumonia: recent advances in epidemiology and management. Curr Opinion Pulm Med. 2013, 19: 216-228. 10.1097/MCP.0b013e32835f27be.CrossRef Barbier F, Andremont A, Wolff M, Bouadma L: Hospital-acquired pneumonia and ventilator-associated pneumonia: recent advances in epidemiology and management. Curr Opinion Pulm Med. 2013, 19: 216-228. 10.1097/MCP.0b013e32835f27be.CrossRef
4.
Zurück zum Zitat Bassetti M, Taramasso L, Giacobbe DR, Pelosi P: Management of ventilator-associated pneumonia: epidemiology, diagnosis and antimicrobial therapy. Expert Rev Anti-infective Ther. 2012, 10: 585-596. 10.1586/eri.12.36.CrossRef Bassetti M, Taramasso L, Giacobbe DR, Pelosi P: Management of ventilator-associated pneumonia: epidemiology, diagnosis and antimicrobial therapy. Expert Rev Anti-infective Ther. 2012, 10: 585-596. 10.1586/eri.12.36.CrossRef
5.
Zurück zum Zitat Sandiumenge A, Rello J: Ventilator-associated pneumonia caused by ESKAPE organisms: cause, clinical features, and management. Curr Opinion Pulm Med. 2012, 18: 187-193. 10.1097/MCP.0b013e328351f974.CrossRef Sandiumenge A, Rello J: Ventilator-associated pneumonia caused by ESKAPE organisms: cause, clinical features, and management. Curr Opinion Pulm Med. 2012, 18: 187-193. 10.1097/MCP.0b013e328351f974.CrossRef
6.
Zurück zum Zitat Sawa T: The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: from bacterial pathogenesis to host response. J Intensive Care. 2014, 2: 10-10.1186/2052-0492-2-10.CrossRef Sawa T: The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: from bacterial pathogenesis to host response. J Intensive Care. 2014, 2: 10-10.1186/2052-0492-2-10.CrossRef
7.
Zurück zum Zitat Engel J, Balachandran P: Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opinion Microbiol. 2009, 12: 61-66. 10.1016/j.mib.2008.12.007.CrossRef Engel J, Balachandran P: Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opinion Microbiol. 2009, 12: 61-66. 10.1016/j.mib.2008.12.007.CrossRef
8.
Zurück zum Zitat Hauser AR: The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nature Rev Microbiol. 2009, 7: 654-665. 10.1038/nrmicro2199.CrossRef Hauser AR: The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nature Rev Microbiol. 2009, 7: 654-665. 10.1038/nrmicro2199.CrossRef
9.
Zurück zum Zitat Finck-Barbancon V, Goranson J, Zhu L, Sawa T, Wiener-Kronish JP, Fleiszig SM, Wu C, Mende-Mueller L, Frank DW: ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol. 1997, 25: 547-557. 10.1046/j.1365-2958.1997.4891851.x.CrossRef Finck-Barbancon V, Goranson J, Zhu L, Sawa T, Wiener-Kronish JP, Fleiszig SM, Wu C, Mende-Mueller L, Frank DW: ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol. 1997, 25: 547-557. 10.1046/j.1365-2958.1997.4891851.x.CrossRef
10.
Zurück zum Zitat Kurahashi K, Kajikawa O, Sawa T, Ohara M, Gropper MA, Frank DW, Martin TR, Wiener-Kronish JP: Pathogenesis of septic shock in Pseudomonas aeruginosa pneumonia. J Clin Invest. 1999, 104: 743-750. 10.1172/JCI7124.CrossRef Kurahashi K, Kajikawa O, Sawa T, Ohara M, Gropper MA, Frank DW, Martin TR, Wiener-Kronish JP: Pathogenesis of septic shock in Pseudomonas aeruginosa pneumonia. J Clin Invest. 1999, 104: 743-750. 10.1172/JCI7124.CrossRef
11.
Zurück zum Zitat Sullivan E, Bensman J, Lou M, Agnello M, Shriner K, Wong-Beringer A: Risk of developing pneumonia is enhanced by the combined traits of fluoroquinolone resistance and type III secretion virulence in respiratory isolates of Pseudomonas aeruginosa . Crit Care Med. 2014, 42: 48-56. 10.1097/CCM.0b013e318298a86f.CrossRef Sullivan E, Bensman J, Lou M, Agnello M, Shriner K, Wong-Beringer A: Risk of developing pneumonia is enhanced by the combined traits of fluoroquinolone resistance and type III secretion virulence in respiratory isolates of Pseudomonas aeruginosa . Crit Care Med. 2014, 42: 48-56. 10.1097/CCM.0b013e318298a86f.CrossRef
12.
Zurück zum Zitat Wong-Beringer A, Wiener-Kronish J, Lynch S, Flanagan J: Comparison of type III secretion system virulence among fluoroquinolone-susceptible and -resistant clinical isolates of Pseudomonas aeruginosa . Clin Microbiol Infect. 2008, 14: 330-336. 10.1111/j.1469-0691.2007.01939.x.CrossRef Wong-Beringer A, Wiener-Kronish J, Lynch S, Flanagan J: Comparison of type III secretion system virulence among fluoroquinolone-susceptible and -resistant clinical isolates of Pseudomonas aeruginosa . Clin Microbiol Infect. 2008, 14: 330-336. 10.1111/j.1469-0691.2007.01939.x.CrossRef
13.
Zurück zum Zitat Wiener-Kronish JP, Sakuma T, Kudoh I, Pittet JF, Frank D, Dobbs L, Vasil ML, Matthay MA: Alveolar epithelial injury and pleural empyema in acute P. aeruginosa pneumonia in anesthetized rabbits. J Appl Physiol. 1993, 75: 1661-1669. Wiener-Kronish JP, Sakuma T, Kudoh I, Pittet JF, Frank D, Dobbs L, Vasil ML, Matthay MA: Alveolar epithelial injury and pleural empyema in acute P. aeruginosa pneumonia in anesthetized rabbits. J Appl Physiol. 1993, 75: 1661-1669.
14.
Zurück zum Zitat Kudoh I, Wiener-Kronish JP, Hashimoto S, Pittet JF, Frank D: Exoproduct secretions of Pseudomonas aeruginosa strains influence severity of alveolar epithelial injury. Am J Physiol. 1994, 267: L551-L556. Kudoh I, Wiener-Kronish JP, Hashimoto S, Pittet JF, Frank D: Exoproduct secretions of Pseudomonas aeruginosa strains influence severity of alveolar epithelial injury. Am J Physiol. 1994, 267: L551-L556.
15.
Zurück zum Zitat Wiener-Kronish JP, Broaddus VC, Albertine KH, Gropper MA, Matthay MA, Staub NC: Relationship of pleural effusions to increased permeability pulmonary edema in anesthetized sheep. J Clin Invest. 1988, 82: 1422-1429. 10.1172/JCI113747.CrossRef Wiener-Kronish JP, Broaddus VC, Albertine KH, Gropper MA, Matthay MA, Staub NC: Relationship of pleural effusions to increased permeability pulmonary edema in anesthetized sheep. J Clin Invest. 1988, 82: 1422-1429. 10.1172/JCI113747.CrossRef
16.
Zurück zum Zitat Nicas TI, Iglewski BH: Contribution of exoenzyme S to the virulence of Pseudomonas aeruginosa . Antibiot Chemother. 1985, 36: 40-48.CrossRef Nicas TI, Iglewski BH: Contribution of exoenzyme S to the virulence of Pseudomonas aeruginosa . Antibiot Chemother. 1985, 36: 40-48.CrossRef
17.
Zurück zum Zitat Nicas TI, Iglewski BH: The contribution of exoproducts to virulence of Pseudomonas aeruginosa . Can J Microbiol. 1985, 31: 387-392. 10.1139/m85-074.CrossRef Nicas TI, Iglewski BH: The contribution of exoproducts to virulence of Pseudomonas aeruginosa . Can J Microbiol. 1985, 31: 387-392. 10.1139/m85-074.CrossRef
18.
Zurück zum Zitat Fleiszig SM, Wiener-Kronish JP, Miyazaki H, Vallas V, Mostov KE, Kanada D, Sawa T, Yen TS, Frank DW: Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infect Immun. 1997, 65: 579-586. Fleiszig SM, Wiener-Kronish JP, Miyazaki H, Vallas V, Mostov KE, Kanada D, Sawa T, Yen TS, Frank DW: Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infect Immun. 1997, 65: 579-586.
19.
Zurück zum Zitat Yahr TL, Goranson J, Frank DW: Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol Microbiol. 1996, 22: 991-1003. 10.1046/j.1365-2958.1996.01554.x.CrossRef Yahr TL, Goranson J, Frank DW: Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol Microbiol. 1996, 22: 991-1003. 10.1046/j.1365-2958.1996.01554.x.CrossRef
20.
Zurück zum Zitat Hueck CJ: Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev. 1998, 62: 379-433. Hueck CJ: Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev. 1998, 62: 379-433.
21.
Zurück zum Zitat Galan JE, Collmer A: Type III secretion machines: bacterial devices for protein delivery into host cells. Science. 1999, 284: 1322-1328. 10.1126/science.284.5418.1322.CrossRef Galan JE, Collmer A: Type III secretion machines: bacterial devices for protein delivery into host cells. Science. 1999, 284: 1322-1328. 10.1126/science.284.5418.1322.CrossRef
22.
Zurück zum Zitat Lee CA: Type III secretion systems: machines to deliver bacterial proteins into eukaryotic cells?. Trends Microbiol. 1997, 5: 148-156. 10.1016/S0966-842X(97)01029-9.CrossRef Lee CA: Type III secretion systems: machines to deliver bacterial proteins into eukaryotic cells?. Trends Microbiol. 1997, 5: 148-156. 10.1016/S0966-842X(97)01029-9.CrossRef
23.
Zurück zum Zitat Frank DW: The exoenzyme S regulon of Pseudomonas aeruginosa . Mol Microbiol. 1997, 26: 621-629. 10.1046/j.1365-2958.1997.6251991.x.CrossRef Frank DW: The exoenzyme S regulon of Pseudomonas aeruginosa . Mol Microbiol. 1997, 26: 621-629. 10.1046/j.1365-2958.1997.6251991.x.CrossRef
24.
Zurück zum Zitat Roy-Burman A, Savel RH, Racine S, Swanson BL, Revadigar NS, Fujimoto J, Sawa T, Frank DW, Wiener-Kronish JP: Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis. 2001, 183: 1767-1774. 10.1086/320737.CrossRef Roy-Burman A, Savel RH, Racine S, Swanson BL, Revadigar NS, Fujimoto J, Sawa T, Frank DW, Wiener-Kronish JP: Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis. 2001, 183: 1767-1774. 10.1086/320737.CrossRef
25.
Zurück zum Zitat Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV: Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000, 406: 959-964. 10.1038/35023079.CrossRef Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV: Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000, 406: 959-964. 10.1038/35023079.CrossRef
26.
Zurück zum Zitat He J, Baldini RL, Deziel E, Saucier M, Zhang Q, Liberati NT, Lee D, Urbach J, Goodman HM, Rahme LG: The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Nat Acad Sci U S A. 2004, 101: 2530-2535. 10.1073/pnas.0304622101.CrossRef He J, Baldini RL, Deziel E, Saucier M, Zhang Q, Liberati NT, Lee D, Urbach J, Goodman HM, Rahme LG: The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Nat Acad Sci U S A. 2004, 101: 2530-2535. 10.1073/pnas.0304622101.CrossRef
27.
Zurück zum Zitat Groisman EA, Ochman H: Pathogenicity islands: bacterial evolution in quantum leaps. Cell. 1996, 87: 791-794. 10.1016/S0092-8674(00)81985-6.CrossRef Groisman EA, Ochman H: Pathogenicity islands: bacterial evolution in quantum leaps. Cell. 1996, 87: 791-794. 10.1016/S0092-8674(00)81985-6.CrossRef
28.
Zurück zum Zitat Hovey AK, Frank DW: Analyses of the DNA-binding and transcriptional activation properties of ExsA, the transcriptional activator of the Pseudomonas aeruginosa exoenzyme S regulon. J Bacteriol. 1995, 177: 4427-4436. Hovey AK, Frank DW: Analyses of the DNA-binding and transcriptional activation properties of ExsA, the transcriptional activator of the Pseudomonas aeruginosa exoenzyme S regulon. J Bacteriol. 1995, 177: 4427-4436.
29.
Zurück zum Zitat Goranson J, Frank DW: Genetic analysis of exoenzyme S expression by Pseudomonas aeruginosa . FEMS Microbiol Lett. 1996, 135: 149-155. 10.1111/j.1574-6968.1996.tb07981.x.CrossRef Goranson J, Frank DW: Genetic analysis of exoenzyme S expression by Pseudomonas aeruginosa . FEMS Microbiol Lett. 1996, 135: 149-155. 10.1111/j.1574-6968.1996.tb07981.x.CrossRef
30.
Zurück zum Zitat Kulasekara BR, Kulasekara HD, Wolfgang MC, Stevens L, Frank DW, Lory S: Acquisition and evolution of the exoU locus in Pseudomonas aeruginosa . J Bacteriol. 2006, 188: 4037-4050. 10.1128/JB.02000-05.CrossRef Kulasekara BR, Kulasekara HD, Wolfgang MC, Stevens L, Frank DW, Lory S: Acquisition and evolution of the exoU locus in Pseudomonas aeruginosa . J Bacteriol. 2006, 188: 4037-4050. 10.1128/JB.02000-05.CrossRef
31.
Zurück zum Zitat Sato H, Feix JB, Hillard CJ, Frank DW: Characterization of phospholipase activity of the Pseudomonas aeruginosa type III cytotoxin, ExoU. J Bacteriol. 2005, 187: 1192-1195. 10.1128/JB.187.3.1192-1195.2005.CrossRef Sato H, Feix JB, Hillard CJ, Frank DW: Characterization of phospholipase activity of the Pseudomonas aeruginosa type III cytotoxin, ExoU. J Bacteriol. 2005, 187: 1192-1195. 10.1128/JB.187.3.1192-1195.2005.CrossRef
32.
Zurück zum Zitat Racusen D: Lipid acyl hydrolase of patatin. Can J Bot. 1984, 62: 1640-10.1139/b84-220.CrossRef Racusen D: Lipid acyl hydrolase of patatin. Can J Bot. 1984, 62: 1640-10.1139/b84-220.CrossRef
33.
Zurück zum Zitat Andrews DL, Beames B, Summers MD, Park WD: Characterization of the lipid acyl hydrolase activity of the major potato (Solanum tuberosum) tuber protein, patatin, by cloning and abundant expression in a baculovirus vector. Biochem J. 1988, 252: 199-206.CrossRef Andrews DL, Beames B, Summers MD, Park WD: Characterization of the lipid acyl hydrolase activity of the major potato (Solanum tuberosum) tuber protein, patatin, by cloning and abundant expression in a baculovirus vector. Biochem J. 1988, 252: 199-206.CrossRef
34.
Zurück zum Zitat Senda K, Yoshioka H, Doke N, Kawakita K: A cytosolic phospholipase A 2from potato tissues appears to be patatin. Plant Cell Physiol 1996, 37:347–353., Senda K, Yoshioka H, Doke N, Kawakita K: A cytosolic phospholipase A 2from potato tissues appears to be patatin. Plant Cell Physiol 1996, 37:347–353.,
35.
Zurück zum Zitat Hirschberg HJ, Simons JW, Dekker N, Egmond MR: Cloning, expression, purification and characterization of patatin, a novel phospholipase A. Eur J Biochem. 2001, 268: 5037-5044. 10.1046/j.0014-2956.2001.02411.x.CrossRef Hirschberg HJ, Simons JW, Dekker N, Egmond MR: Cloning, expression, purification and characterization of patatin, a novel phospholipase A. Eur J Biochem. 2001, 268: 5037-5044. 10.1046/j.0014-2956.2001.02411.x.CrossRef
36.
Zurück zum Zitat Sato H, Frank DW, Hillard CJ, Feix JB, Pankhaniya RR, Moriyama K, Finck-Barbancon V, Buchaklian A, Lei M, Long RM, Wiener-Kronish J, Sawa T: The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J. 2003, 22: 2959-2969. 10.1093/emboj/cdg290.CrossRef Sato H, Frank DW, Hillard CJ, Feix JB, Pankhaniya RR, Moriyama K, Finck-Barbancon V, Buchaklian A, Lei M, Long RM, Wiener-Kronish J, Sawa T: The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J. 2003, 22: 2959-2969. 10.1093/emboj/cdg290.CrossRef
37.
Zurück zum Zitat Phillips RM, Six DA, Dennis EA, Ghosh P: In vivo phospholipase activity of the Pseudomonas aeruginosa cytotoxin ExoU and protection of mammalian cells with phospholipase A 2inhibitors. J Biol Chem 2003, 278:41326–41332., Phillips RM, Six DA, Dennis EA, Ghosh P: In vivo phospholipase activity of the Pseudomonas aeruginosa cytotoxin ExoU and protection of mammalian cells with phospholipase A 2inhibitors. J Biol Chem 2003, 278:41326–41332.,
38.
Zurück zum Zitat Tamura M, Ajayi T, Allmond LR, Moriyama K, Wiener-Kronish JP, Sawa T: Lysophospholipase A activity of Pseudomonas aeruginosa type III secretory toxin ExoU. Biochem Biophys Res Comm. 2004, 316: 323-331. 10.1016/j.bbrc.2004.02.050.CrossRef Tamura M, Ajayi T, Allmond LR, Moriyama K, Wiener-Kronish JP, Sawa T: Lysophospholipase A activity of Pseudomonas aeruginosa type III secretory toxin ExoU. Biochem Biophys Res Comm. 2004, 316: 323-331. 10.1016/j.bbrc.2004.02.050.CrossRef
40.
Zurück zum Zitat Ghosh M, Tucker DE, Burchett SA, Leslie CC: Properties of the Group IV phospholipase A 2 family. Prog Lipid Res 2006, 45:487–510., Ghosh M, Tucker DE, Burchett SA, Leslie CC: Properties of the Group IV phospholipase A 2 family. Prog Lipid Res 2006, 45:487–510.,
41.
Zurück zum Zitat Banerji S, Flieger A: Patatin-like proteins: a new family of lipolytic enzymes present in bacteria?. Microbiol. 2004, 150: 522-525. 10.1099/mic.0.26957-0.CrossRef Banerji S, Flieger A: Patatin-like proteins: a new family of lipolytic enzymes present in bacteria?. Microbiol. 2004, 150: 522-525. 10.1099/mic.0.26957-0.CrossRef
42.
Zurück zum Zitat Abd H, Wretlind B, Saeed A, Idsund E, Hultenby K, Sandstrom G: Pseudomonas aeruginosa utilises its type III secretion system to kill the free-living amoeba Acanthamoeba castellanii . J Eukaryotic Microbiol. 2008, 55: 235-243. 10.1111/j.1550-7408.2008.00311.x.CrossRef Abd H, Wretlind B, Saeed A, Idsund E, Hultenby K, Sandstrom G: Pseudomonas aeruginosa utilises its type III secretion system to kill the free-living amoeba Acanthamoeba castellanii . J Eukaryotic Microbiol. 2008, 55: 235-243. 10.1111/j.1550-7408.2008.00311.x.CrossRef
43.
Zurück zum Zitat Matz C, Moreno AM, Alhede M, Manefield M, Hauser AR, Givskov M, Kjelleberg S: Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae. ISME J. 2008, 2: 843-852. 10.1038/ismej.2008.47.CrossRef Matz C, Moreno AM, Alhede M, Manefield M, Hauser AR, Givskov M, Kjelleberg S: Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae. ISME J. 2008, 2: 843-852. 10.1038/ismej.2008.47.CrossRef
44.
Zurück zum Zitat Rabin SD, Hauser AR: Pseudomonas aeruginosa ExoU, a toxin transported by the type III secretion system, kills Saccharomyces cerevisiae . Infect Immun. 2003, 71: 4144-4150. 10.1128/IAI.71.7.4144-4150.2003.CrossRef Rabin SD, Hauser AR: Pseudomonas aeruginosa ExoU, a toxin transported by the type III secretion system, kills Saccharomyces cerevisiae . Infect Immun. 2003, 71: 4144-4150. 10.1128/IAI.71.7.4144-4150.2003.CrossRef
45.
Zurück zum Zitat Hauser AR, Engel JN: Pseudomonas aeruginosa induces type-III-secretion-mediated apoptosis of macrophages and epithelial cells. Infect Immun. 1999, 67: 5530-5537. Hauser AR, Engel JN: Pseudomonas aeruginosa induces type-III-secretion-mediated apoptosis of macrophages and epithelial cells. Infect Immun. 1999, 67: 5530-5537.
46.
Zurück zum Zitat Diaz MH, Shaver CM, King JD, Musunuri S, Kazzaz JA, Hauser AR: Pseudomonas aeruginosa induces localized immunosuppression during pneumonia. Infect Immun. 2008, 76: 4414-4421. 10.1128/IAI.00012-08.CrossRef Diaz MH, Shaver CM, King JD, Musunuri S, Kazzaz JA, Hauser AR: Pseudomonas aeruginosa induces localized immunosuppression during pneumonia. Infect Immun. 2008, 76: 4414-4421. 10.1128/IAI.00012-08.CrossRef
47.
Zurück zum Zitat Diaz MH, Hauser AR: Pseudomonas aeruginosa cytotoxin ExoU is injected into phagocytic cells during acute pneumonia. Infect Immun. 2010, 78: 1447-1456. 10.1128/IAI.01134-09.CrossRef Diaz MH, Hauser AR: Pseudomonas aeruginosa cytotoxin ExoU is injected into phagocytic cells during acute pneumonia. Infect Immun. 2010, 78: 1447-1456. 10.1128/IAI.01134-09.CrossRef
48.
Zurück zum Zitat Howell HA, Logan LK, Hauser AR: Type III secretion of ExoU is critical during early Pseudomonas aeruginosa pneumonia. MBio. 2013, 4: e00032-00013. 10.1128/mBio.00032-13.CrossRef Howell HA, Logan LK, Hauser AR: Type III secretion of ExoU is critical during early Pseudomonas aeruginosa pneumonia. MBio. 2013, 4: e00032-00013. 10.1128/mBio.00032-13.CrossRef
49.
Zurück zum Zitat Allewelt M, Coleman FT, Grout M, Priebe GP, Pier GB: Acquisition of expression of the Pseudomonas aeruginosa ExoU cytotoxin leads to increased bacterial virulence in a murine model of acute pneumonia and systemic spread. Infect Immun. 2000, 68: 3998-4004. 10.1128/IAI.68.7.3998-4004.2000.CrossRef Allewelt M, Coleman FT, Grout M, Priebe GP, Pier GB: Acquisition of expression of the Pseudomonas aeruginosa ExoU cytotoxin leads to increased bacterial virulence in a murine model of acute pneumonia and systemic spread. Infect Immun. 2000, 68: 3998-4004. 10.1128/IAI.68.7.3998-4004.2000.CrossRef
50.
Zurück zum Zitat Shaver CM, Hauser AR: Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun. 2004, 72: 6969-6977. 10.1128/IAI.72.12.6969-6977.2004.CrossRef Shaver CM, Hauser AR: Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun. 2004, 72: 6969-6977. 10.1128/IAI.72.12.6969-6977.2004.CrossRef
51.
Zurück zum Zitat Saliba AM, Nascimento DO, Silva MC, Assis MC, Gayer CR, Raymond B, Coelho MG, Marques EA, Touqui L, Albano RM, Lopes UG, Paiva DD, Bozza PT, Plotkowskiet MC: Eicosanoid-mediated proinflammatory activity of Pseudomonas aeruginosa ExoU. Cellular Microbiol. 2005, 7: 1811-1822. 10.1111/j.1462-5822.2005.00635.x.CrossRef Saliba AM, Nascimento DO, Silva MC, Assis MC, Gayer CR, Raymond B, Coelho MG, Marques EA, Touqui L, Albano RM, Lopes UG, Paiva DD, Bozza PT, Plotkowskiet MC: Eicosanoid-mediated proinflammatory activity of Pseudomonas aeruginosa ExoU. Cellular Microbiol. 2005, 7: 1811-1822. 10.1111/j.1462-5822.2005.00635.x.CrossRef
52.
Zurück zum Zitat Plotkowski MC, Brandao BA, de Assis MC, Feliciano LF, Raymond B, Freitas C, Saliba AM, Zahm JM, Touqui L, Bozza PT: Lipid body mobilization in the ExoU-induced release of inflammatory mediators by airway epithelial cells. Microb Pathog. 2008, 45: 30-37. 10.1016/j.micpath.2008.01.008.CrossRef Plotkowski MC, Brandao BA, de Assis MC, Feliciano LF, Raymond B, Freitas C, Saliba AM, Zahm JM, Touqui L, Bozza PT: Lipid body mobilization in the ExoU-induced release of inflammatory mediators by airway epithelial cells. Microb Pathog. 2008, 45: 30-37. 10.1016/j.micpath.2008.01.008.CrossRef
53.
Zurück zum Zitat Henderson FC, Miakotina OL, Mallampalli RK: Proapoptotic effects of P. aeruginosa involve inhibition of surfactant phosphatidylcholine synthesis. J Lipid Res. 2006, 47: 2314-2324. 10.1194/jlr.M600284-JLR200.CrossRef Henderson FC, Miakotina OL, Mallampalli RK: Proapoptotic effects of P. aeruginosa involve inhibition of surfactant phosphatidylcholine synthesis. J Lipid Res. 2006, 47: 2314-2324. 10.1194/jlr.M600284-JLR200.CrossRef
54.
Zurück zum Zitat Saliba AM, de Assis MC, Nishi R, Raymond B, Marques Ede A, Lopes UG, Touqui L, Plotkowski MC: Implications of oxidative stress in the cytotoxicity of Pseudomonas aeruginosa ExoU. Microbes Infect. 2006, 8: 450-459. 10.1016/j.micinf.2005.07.011.CrossRef Saliba AM, de Assis MC, Nishi R, Raymond B, Marques Ede A, Lopes UG, Touqui L, Plotkowski MC: Implications of oxidative stress in the cytotoxicity of Pseudomonas aeruginosa ExoU. Microbes Infect. 2006, 8: 450-459. 10.1016/j.micinf.2005.07.011.CrossRef
55.
Zurück zum Zitat Plotkowski MC, Feliciano LF, Machado GB, Cunha LG, Freitas C, Saliba AM, de Assis MC: ExoU-induced procoagulant activity in Pseudomonas aeruginosa-infected airway cells. Eur Respir J. 2008, 32: 1591-1598. 10.1183/09031936.00086708.CrossRef Plotkowski MC, Feliciano LF, Machado GB, Cunha LG, Freitas C, Saliba AM, de Assis MC: ExoU-induced procoagulant activity in Pseudomonas aeruginosa-infected airway cells. Eur Respir J. 2008, 32: 1591-1598. 10.1183/09031936.00086708.CrossRef
56.
Zurück zum Zitat Machado GB, de Assis MC, Leao R, Saliba AM, Silva MC, Suassuna JH, de Oliveira AV, Plotkowski MC: ExoU-induced vascular hyperpermeability and platelet activation in the course of experimental Pseudomonas aeruginosa pneumosepsis. Shock. 2010, 33: 315-321. 10.1097/SHK.0b013e3181b2b0f4.CrossRef Machado GB, de Assis MC, Leao R, Saliba AM, Silva MC, Suassuna JH, de Oliveira AV, Plotkowski MC: ExoU-induced vascular hyperpermeability and platelet activation in the course of experimental Pseudomonas aeruginosa pneumosepsis. Shock. 2010, 33: 315-321. 10.1097/SHK.0b013e3181b2b0f4.CrossRef
57.
Zurück zum Zitat Fu H, Coburn J, Collier RJ: The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proc Nat Acad Sci U S A. 1993, 90: 2320-2324. 10.1073/pnas.90.6.2320.CrossRef Fu H, Coburn J, Collier RJ: The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proc Nat Acad Sci U S A. 1993, 90: 2320-2324. 10.1073/pnas.90.6.2320.CrossRef
58.
Zurück zum Zitat Coburn J, Kane AV, Feig L, Gill DM: Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity. J Biol Chem. 1991, 266: 6438-6446. Coburn J, Kane AV, Feig L, Gill DM: Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity. J Biol Chem. 1991, 266: 6438-6446.
59.
Zurück zum Zitat Yahr TL, Vallis AJ, Hancock MK, Barbieri JT, Frank DW: ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc Nat Acad Sci U S A. 1998, 95: 13899-13904. 10.1073/pnas.95.23.13899.CrossRef Yahr TL, Vallis AJ, Hancock MK, Barbieri JT, Frank DW: ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc Nat Acad Sci U S A. 1998, 95: 13899-13904. 10.1073/pnas.95.23.13899.CrossRef
60.
Zurück zum Zitat Rabin SD, Hauser AR: Functional regions of the Pseudomonas aeruginosa cytotoxin ExoU. Infect Immun. 2005, 73: 573-582. 10.1128/IAI.73.1.573-582.2005.CrossRef Rabin SD, Hauser AR: Functional regions of the Pseudomonas aeruginosa cytotoxin ExoU. Infect Immun. 2005, 73: 573-582. 10.1128/IAI.73.1.573-582.2005.CrossRef
61.
Zurück zum Zitat Rabin SD, Veesenmeyer JL, Bieging KT, Hauser AR: A C-terminal domain targets the Pseudomonas aeruginosa cytotoxin ExoU to the plasma membrane of host cells. Infect Immun. 2006, 74: 2552-2561. 10.1128/IAI.74.5.2552-2561.2006.CrossRef Rabin SD, Veesenmeyer JL, Bieging KT, Hauser AR: A C-terminal domain targets the Pseudomonas aeruginosa cytotoxin ExoU to the plasma membrane of host cells. Infect Immun. 2006, 74: 2552-2561. 10.1128/IAI.74.5.2552-2561.2006.CrossRef
62.
Zurück zum Zitat Veesenmeyer JL, Howell H, Halavaty AS, Ahrens S, Anderson WF, Hauser AR: Role of the membrane localization domain of the Pseudomonas aeruginosa effector protein ExoU in cytotoxicity. Infect Immun. 2010, 78: 3346-3357. 10.1128/IAI.00223-10.CrossRef Veesenmeyer JL, Howell H, Halavaty AS, Ahrens S, Anderson WF, Hauser AR: Role of the membrane localization domain of the Pseudomonas aeruginosa effector protein ExoU in cytotoxicity. Infect Immun. 2010, 78: 3346-3357. 10.1128/IAI.00223-10.CrossRef
63.
Zurück zum Zitat Sato H, Feix JB, Frank DW: Identification of superoxide dismutase as a cofactor for the pseudomonas type III toxin, ExoU. Biochemistry. 2006, 45: 10368-10375. 10.1021/bi060788j.CrossRef Sato H, Feix JB, Frank DW: Identification of superoxide dismutase as a cofactor for the pseudomonas type III toxin, ExoU. Biochemistry. 2006, 45: 10368-10375. 10.1021/bi060788j.CrossRef
64.
Zurück zum Zitat Stirling FR, Cuzick A, Kelly SM, Oxley D, Evans TJ: Eukaryotic localization, activation and ubiquitinylation of a bacterial type III secreted toxin. Cell Microbiol. 2006, 8: 1294-1309. 10.1111/j.1462-5822.2006.00710.x.CrossRef Stirling FR, Cuzick A, Kelly SM, Oxley D, Evans TJ: Eukaryotic localization, activation and ubiquitinylation of a bacterial type III secreted toxin. Cell Microbiol. 2006, 8: 1294-1309. 10.1111/j.1462-5822.2006.00710.x.CrossRef
65.
Zurück zum Zitat Benson MA, Komas SM, Schmalzer KM, Casey MS, Frank DW, Feix JB: Induced conformational changes in the activation of the Pseudomonas aeruginosa type III toxin, ExoU. Biophys J. 2011, 100: 1335-1343. 10.1016/j.bpj.2011.01.056.CrossRef Benson MA, Komas SM, Schmalzer KM, Casey MS, Frank DW, Feix JB: Induced conformational changes in the activation of the Pseudomonas aeruginosa type III toxin, ExoU. Biophys J. 2011, 100: 1335-1343. 10.1016/j.bpj.2011.01.056.CrossRef
66.
Zurück zum Zitat Anderson DM, Schmalzer KM, Sato H, Casey M, Terhune SS, Haas AL, Feix JB, Frank DW: Ubiquitin and ubiquitin-modified proteins activate the Pseudomonas aeruginosa T3SS cytotoxin, ExoU. Mol Microbiol. 2011, 82: 1454-1467. 10.1111/j.1365-2958.2011.07904.x.CrossRef Anderson DM, Schmalzer KM, Sato H, Casey M, Terhune SS, Haas AL, Feix JB, Frank DW: Ubiquitin and ubiquitin-modified proteins activate the Pseudomonas aeruginosa T3SS cytotoxin, ExoU. Mol Microbiol. 2011, 82: 1454-1467. 10.1111/j.1365-2958.2011.07904.x.CrossRef
67.
Zurück zum Zitat Gendrin C, Contreras-Martel C, Bouillot S, Elsen S, Lemaire D, Skoufias DA, Huber P, Attree I, Dessen A: Structural basis of cytotoxicity mediated by the type III secretion toxin ExoU from Pseudomonas aeruginosa . PLoS Pathogens. 2012, 8: e1002637-10.1371/journal.ppat.1002637.CrossRef Gendrin C, Contreras-Martel C, Bouillot S, Elsen S, Lemaire D, Skoufias DA, Huber P, Attree I, Dessen A: Structural basis of cytotoxicity mediated by the type III secretion toxin ExoU from Pseudomonas aeruginosa . PLoS Pathogens. 2012, 8: e1002637-10.1371/journal.ppat.1002637.CrossRef
68.
Zurück zum Zitat Halavaty AS, Borek D, Tyson GH, Veesenmeyer JL, Shuvalova L, Minasov G, Otwinowski Z, Hauser AR, Anderson WF: Structure of the type III secretion effector protein ExoU in complex with its chaperone SpcU. PloS One. 2012, 7: e49388-10.1371/journal.pone.0049388.CrossRef Halavaty AS, Borek D, Tyson GH, Veesenmeyer JL, Shuvalova L, Minasov G, Otwinowski Z, Hauser AR, Anderson WF: Structure of the type III secretion effector protein ExoU in complex with its chaperone SpcU. PloS One. 2012, 7: e49388-10.1371/journal.pone.0049388.CrossRef
69.
Zurück zum Zitat Anderson DM, Feix JB, Monroe AL, Peterson FC, Volkman BF, Haas AL, Frank DW: Identification of the major ubiquitin-binding domain of the Pseudomonas aeruginosa ExoU A 2 phospholipase. J Biol Chem 2013, 288:26741–26752., Anderson DM, Feix JB, Monroe AL, Peterson FC, Volkman BF, Haas AL, Frank DW: Identification of the major ubiquitin-binding domain of the Pseudomonas aeruginosa ExoU A 2 phospholipase. J Biol Chem 2013, 288:26741–26752.,
70.
Zurück zum Zitat Tyson GH, Hauser AR: Phosphatidylinositol 4,5-bisphosphate is a novel coactivator of the Pseudomonas aeruginosa cytotoxin ExoU. Infect Immun. 2013, 81: 2873-2881. 10.1128/IAI.00414-13.CrossRef Tyson GH, Hauser AR: Phosphatidylinositol 4,5-bisphosphate is a novel coactivator of the Pseudomonas aeruginosa cytotoxin ExoU. Infect Immun. 2013, 81: 2873-2881. 10.1128/IAI.00414-13.CrossRef
71.
Zurück zum Zitat Housley NA, Winkler HH, Audia JP: The Rickettsia prowazekii ExoU homologue possesses phospholipase A 1 (PLA 1 ), PLA 2 , and lyso-PLA 2 activities and can function in the absence of any eukaryotic cofactors in vitro. J Bacteriol 2011, 193:4634–4642., Housley NA, Winkler HH, Audia JP: The Rickettsia prowazekii ExoU homologue possesses phospholipase A 1 (PLA 1 ), PLA 2 , and lyso-PLA 2 activities and can function in the absence of any eukaryotic cofactors in vitro. J Bacteriol 2011, 193:4634–4642.,
73.
Zurück zum Zitat Feltman H, Schulert G, Khan S, Jain M, Peterson L, Hauser AR: Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa . Microbiol. 2001, 147: 2659-2669.CrossRef Feltman H, Schulert G, Khan S, Jain M, Peterson L, Hauser AR: Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa . Microbiol. 2001, 147: 2659-2669.CrossRef
74.
Zurück zum Zitat Schulert GS, Feltman H, Rabin SD, Martin CG, Battle SE, Rello J, Hauser AR: Secretion of the toxin ExoU is a marker for highly virulent Pseudomonas aeruginosa isolates obtained from patients with hospital-acquired pneumonia. J Infect Dis. 2003, 188: 1695-1706. 10.1086/379372.CrossRef Schulert GS, Feltman H, Rabin SD, Martin CG, Battle SE, Rello J, Hauser AR: Secretion of the toxin ExoU is a marker for highly virulent Pseudomonas aeruginosa isolates obtained from patients with hospital-acquired pneumonia. J Infect Dis. 2003, 188: 1695-1706. 10.1086/379372.CrossRef
75.
Zurück zum Zitat Wareham DW, Curtis MA: A genotypic and phenotypic comparison of type III secretion profiles of Pseudomonas aeruginosa cystic fibrosis and bacteremia isolates. Int J Medl Microbiol. 2007, 297: 227-234. 10.1016/j.ijmm.2007.02.004.CrossRef Wareham DW, Curtis MA: A genotypic and phenotypic comparison of type III secretion profiles of Pseudomonas aeruginosa cystic fibrosis and bacteremia isolates. Int J Medl Microbiol. 2007, 297: 227-234. 10.1016/j.ijmm.2007.02.004.CrossRef
76.
Zurück zum Zitat Bradbury RS, Roddam LF, Merritt A, Reid DW, Champion AC: Virulence gene distribution in clinical, nosocomial and environmental isolates of Pseudomonas aeruginosa . J Med Microbiol. 2010, 59: 881-890. 10.1099/jmm.0.018283-0.CrossRef Bradbury RS, Roddam LF, Merritt A, Reid DW, Champion AC: Virulence gene distribution in clinical, nosocomial and environmental isolates of Pseudomonas aeruginosa . J Med Microbiol. 2010, 59: 881-890. 10.1099/jmm.0.018283-0.CrossRef
77.
Zurück zum Zitat Tingpej P, Smith L, Rose B, Zhu H, Conibear T, Al Nassafi K, Manos J, Elkins M, Bye P, Willcox M, Bell S, Wainwright C, Harbour C: Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains isolated from lungs of adults with cystic fibrosis. J Clin Microbiol. 2007, 45: 1697-1704. 10.1128/JCM.02364-06.CrossRef Tingpej P, Smith L, Rose B, Zhu H, Conibear T, Al Nassafi K, Manos J, Elkins M, Bye P, Willcox M, Bell S, Wainwright C, Harbour C: Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains isolated from lungs of adults with cystic fibrosis. J Clin Microbiol. 2007, 45: 1697-1704. 10.1128/JCM.02364-06.CrossRef
78.
Zurück zum Zitat Jain M, Ramirez D, Seshadri R, Cullina JF, Powers CA, Schulert GS, Bar-Meir M, Sullivan CL, McColley SA, Hauser AR: Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis. J Clin Microbiol. 2004, 42: 5229-5237. 10.1128/JCM.42.11.5229-5237.2004.CrossRef Jain M, Ramirez D, Seshadri R, Cullina JF, Powers CA, Schulert GS, Bar-Meir M, Sullivan CL, McColley SA, Hauser AR: Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis. J Clin Microbiol. 2004, 42: 5229-5237. 10.1128/JCM.42.11.5229-5237.2004.CrossRef
79.
Zurück zum Zitat Hu H, Harmer C, Anuj S, Wainwright CE, Manos J, Cheney J, Harbour C, Zablotska I, Turnbull L, Whitchurch CB, Grimwood K, Rose B: Type 3 secretion system effector genotype and secretion phenotype of longitudinally collected Pseudomonas aeruginosa isolates from young children diagnosed with cystic fibrosis following newborn screening. Clin Microbiol Infect. 2013, 19: 266-272. 10.1111/j.1469-0691.2012.03770.x.CrossRef Hu H, Harmer C, Anuj S, Wainwright CE, Manos J, Cheney J, Harbour C, Zablotska I, Turnbull L, Whitchurch CB, Grimwood K, Rose B: Type 3 secretion system effector genotype and secretion phenotype of longitudinally collected Pseudomonas aeruginosa isolates from young children diagnosed with cystic fibrosis following newborn screening. Clin Microbiol Infect. 2013, 19: 266-272. 10.1111/j.1469-0691.2012.03770.x.CrossRef
80.
Zurück zum Zitat Hauser AR, Cobb E, Bodi M, Mariscal D, Valles J, Engel JN, Rello J: Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa . Crit Care Med. 2002, 30: 521-528. 10.1097/00003246-200203000-00005.CrossRef Hauser AR, Cobb E, Bodi M, Mariscal D, Valles J, Engel JN, Rello J: Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa . Crit Care Med. 2002, 30: 521-528. 10.1097/00003246-200203000-00005.CrossRef
81.
Zurück zum Zitat Garey KW, Vo QP, Larocco MT, Gentry LO, Tam VH: Prevalence of type III secretion protein exoenzymes and antimicrobial susceptibility patterns from bloodstream isolates of patients with Pseudomonas aeruginosa bacteremia. J Chemother. 2008, 20: 714-720. 10.1179/joc.2008.20.6.714.CrossRef Garey KW, Vo QP, Larocco MT, Gentry LO, Tam VH: Prevalence of type III secretion protein exoenzymes and antimicrobial susceptibility patterns from bloodstream isolates of patients with Pseudomonas aeruginosa bacteremia. J Chemother. 2008, 20: 714-720. 10.1179/joc.2008.20.6.714.CrossRef
82.
Zurück zum Zitat Agnello M, Wong-Beringer A: Differentiation in quinolone resistance by virulence genotype in Pseudomonas aeruginosa . PloS One. 2012, 7: e42973-10.1371/journal.pone.0042973.CrossRef Agnello M, Wong-Beringer A: Differentiation in quinolone resistance by virulence genotype in Pseudomonas aeruginosa . PloS One. 2012, 7: e42973-10.1371/journal.pone.0042973.CrossRef
83.
Zurück zum Zitat El-Solh AA, Hattemer A, Hauser AR, Alhajhusain A, Vora H: Clinical outcomes of type III Pseudomonas aeruginosa bacteremia. Crit Care Med. 2012, 40: 1157-1163. 10.1097/CCM.0b013e3182377906.CrossRef El-Solh AA, Hattemer A, Hauser AR, Alhajhusain A, Vora H: Clinical outcomes of type III Pseudomonas aeruginosa bacteremia. Crit Care Med. 2012, 40: 1157-1163. 10.1097/CCM.0b013e3182377906.CrossRef
84.
Zurück zum Zitat Jabalameli F, Mirsalehian A, Khoramian B, Aligholi M, Khoramrooz SS, Asadollahi P, Taherikalani M, Emaneini M: Evaluation of biofilm production and characterization of genes encoding type III secretion system among Pseudomonas aeruginosa isolated from burn patients. Burns. 2012, 38: 1192-1197. 10.1016/j.burns.2012.07.030.CrossRef Jabalameli F, Mirsalehian A, Khoramian B, Aligholi M, Khoramrooz SS, Asadollahi P, Taherikalani M, Emaneini M: Evaluation of biofilm production and characterization of genes encoding type III secretion system among Pseudomonas aeruginosa isolated from burn patients. Burns. 2012, 38: 1192-1197. 10.1016/j.burns.2012.07.030.CrossRef
85.
Zurück zum Zitat Mitov I, Strateva T, Markova B: Prevalence of virulence genes among Bulgarian nosocomial and cystic fibrosis isolates of Pseudomonas aeruginosa . Brazilian J Microbiol. 2010, 41: 588-595. 10.1590/S1517-83822010000300008.CrossRef Mitov I, Strateva T, Markova B: Prevalence of virulence genes among Bulgarian nosocomial and cystic fibrosis isolates of Pseudomonas aeruginosa . Brazilian J Microbiol. 2010, 41: 588-595. 10.1590/S1517-83822010000300008.CrossRef
86.
Zurück zum Zitat Tran QT, Nawaz MS, Deck J, Foley S, Nguyen K, Cerniglia CE: Detection of type III secretion system virulence and mutations in gyrA and parC genes among quinolone-resistant strains of Pseudomonas aeruginosa isolated from imported shrimp. Foodborne Pathogens Dis. 2011, 8: 451-453. 10.1089/fpd.2010.0687.CrossRef Tran QT, Nawaz MS, Deck J, Foley S, Nguyen K, Cerniglia CE: Detection of type III secretion system virulence and mutations in gyrA and parC genes among quinolone-resistant strains of Pseudomonas aeruginosa isolated from imported shrimp. Foodborne Pathogens Dis. 2011, 8: 451-453. 10.1089/fpd.2010.0687.CrossRef
87.
Zurück zum Zitat Cho HH, Kwon KC, Kim S, Koo SH: Correlation between virulence genotype and fluoroquinolone resistance in carbapenem-resistant Pseudomonas aeruginosa . Ann Lab Med. 2014, 34: 286-292. 10.3343/alm.2014.34.4.286.CrossRef Cho HH, Kwon KC, Kim S, Koo SH: Correlation between virulence genotype and fluoroquinolone resistance in carbapenem-resistant Pseudomonas aeruginosa . Ann Lab Med. 2014, 34: 286-292. 10.3343/alm.2014.34.4.286.CrossRef
88.
Zurück zum Zitat Sawa T, Katoh H, Yasumoto H: V-antigen homologs in pathogenic gram-negative bacteria. Microbiol Immunol. 2014, 58: 267-285. 10.1111/1348-0421.12147.CrossRef Sawa T, Katoh H, Yasumoto H: V-antigen homologs in pathogenic gram-negative bacteria. Microbiol Immunol. 2014, 58: 267-285. 10.1111/1348-0421.12147.CrossRef
89.
Zurück zum Zitat Sawa T, Yahr TL, Ohara M, Kurahashi K, Gropper MA, Wiener-Kronish JP, Frank DW: Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nat Med. 1999, 5: 392-398. 10.1038/7391.CrossRef Sawa T, Yahr TL, Ohara M, Kurahashi K, Gropper MA, Wiener-Kronish JP, Frank DW: Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nat Med. 1999, 5: 392-398. 10.1038/7391.CrossRef
90.
Zurück zum Zitat Jiang M, Yao J, Feng G: Protective effect of DNA vaccine encoding pseudomonas exotoxin A and PcrV against acute pulmonary P. aeruginosa infection. PLoS One. 2014, 9: e96609-10.1371/journal.pone.0096609.CrossRef Jiang M, Yao J, Feng G: Protective effect of DNA vaccine encoding pseudomonas exotoxin A and PcrV against acute pulmonary P. aeruginosa infection. PLoS One. 2014, 9: e96609-10.1371/journal.pone.0096609.CrossRef
91.
Zurück zum Zitat Shime N, Sawa T, Fujimoto J, Faure K, Allmond LR, Karaca T, Swanson BL, Spack EG, Wiener-Kronish JP: Therapeutic administration of anti-PcrV F(ab')(2) in sepsis associated with Pseudomonas aeruginosa . J Immunol. 2001, 167: 5880-5886. 10.4049/jimmunol.167.10.5880.CrossRef Shime N, Sawa T, Fujimoto J, Faure K, Allmond LR, Karaca T, Swanson BL, Spack EG, Wiener-Kronish JP: Therapeutic administration of anti-PcrV F(ab')(2) in sepsis associated with Pseudomonas aeruginosa . J Immunol. 2001, 167: 5880-5886. 10.4049/jimmunol.167.10.5880.CrossRef
92.
Zurück zum Zitat Imamura Y, Yanagihara K, Fukuda Y, Kaneko Y, Seki M, Izumikawa K, Miyazaki Y, Hirakata Y, Sawa T, Wiener-Kronish JP, Kohno S: Effect of anti-PcrV antibody in a murine chronic airway Pseudomonas aeruginosa infection model. Eur Respir J. 2007, 29: 965-968. 10.1183/09031936.00147406.CrossRef Imamura Y, Yanagihara K, Fukuda Y, Kaneko Y, Seki M, Izumikawa K, Miyazaki Y, Hirakata Y, Sawa T, Wiener-Kronish JP, Kohno S: Effect of anti-PcrV antibody in a murine chronic airway Pseudomonas aeruginosa infection model. Eur Respir J. 2007, 29: 965-968. 10.1183/09031936.00147406.CrossRef
93.
Zurück zum Zitat Frank DW, Vallis A, Wiener-Kronish JP, Roy-Burman A, Spack EG, Mullaney BP, Megdoud M, Marks JD, Fritz R, Sawa T: Generation and characterization of a protective monoclonal antibody to Pseudomonas aeruginosa PcrV. J Infect Dis. 2002, 186: 64-73. 10.1086/341069.CrossRef Frank DW, Vallis A, Wiener-Kronish JP, Roy-Burman A, Spack EG, Mullaney BP, Megdoud M, Marks JD, Fritz R, Sawa T: Generation and characterization of a protective monoclonal antibody to Pseudomonas aeruginosa PcrV. J Infect Dis. 2002, 186: 64-73. 10.1086/341069.CrossRef
94.
Zurück zum Zitat Faure K, Fujimoto J, Shimabukuro DW, Ajayi T, Shime N, Moriyama K, Spack EG, Wiener-Kronish JP, Sawa T: Effects of monoclonal anti-PcrV antibody on Pseudomonas aeruginosa-induced acute lung injury in a rat model. J Immune Based Ther Vaccines. 2003, 1: 2-10.1186/1476-8518-1-2.CrossRef Faure K, Fujimoto J, Shimabukuro DW, Ajayi T, Shime N, Moriyama K, Spack EG, Wiener-Kronish JP, Sawa T: Effects of monoclonal anti-PcrV antibody on Pseudomonas aeruginosa-induced acute lung injury in a rat model. J Immune Based Ther Vaccines. 2003, 1: 2-10.1186/1476-8518-1-2.CrossRef
95.
Zurück zum Zitat Song Y, Baer M, Srinivasan R, Lima J, Yarranton G, Bebbington C, Lynch SV: PcrV antibody-antibiotic combination improves survival in Pseudomonas aeruginosa-infected mice. Eur J Clin Microbiol Infect Dis. 2012, 31: 1837-1845. 10.1007/s10096-011-1509-2.CrossRef Song Y, Baer M, Srinivasan R, Lima J, Yarranton G, Bebbington C, Lynch SV: PcrV antibody-antibiotic combination improves survival in Pseudomonas aeruginosa-infected mice. Eur J Clin Microbiol Infect Dis. 2012, 31: 1837-1845. 10.1007/s10096-011-1509-2.CrossRef
96.
Zurück zum Zitat Baer M, Sawa T, Flynn P, Luehrsen K, Martinez D, Wiener-Kronish JP, Yarranton G, Bebbington C: An engineered human antibody Fab fragment specific for Pseudomonas aeruginosa PcrV antigen has potent anti-bacterial activity. Infect Immun. 2008, 77: 1083-1090. 10.1128/IAI.00815-08.CrossRef Baer M, Sawa T, Flynn P, Luehrsen K, Martinez D, Wiener-Kronish JP, Yarranton G, Bebbington C: An engineered human antibody Fab fragment specific for Pseudomonas aeruginosa PcrV antigen has potent anti-bacterial activity. Infect Immun. 2008, 77: 1083-1090. 10.1128/IAI.00815-08.CrossRef
97.
Zurück zum Zitat François B, Luyt CE, Dugard A, Wolff M, Diehl JL, Jaber S, Forel JM, Garot D, Kipnis E, Mebazaa A, Misset B, Andremont A, Ploy MC, Jacobs A, Yarranton G, Pearce T, Fagon JY, Chastre J: Safety and pharmacokinetics of an anti-PcrV PEGylated monoclonal antibody fragment in mechanically ventilated patients colonized with Pseudomonas aeruginosa: a randomized, double-blind, placebo-controlled trial. Crit Care Med. 2012, 40: 2320-2326. 10.1097/CCM.0b013e31825334f6.CrossRef François B, Luyt CE, Dugard A, Wolff M, Diehl JL, Jaber S, Forel JM, Garot D, Kipnis E, Mebazaa A, Misset B, Andremont A, Ploy MC, Jacobs A, Yarranton G, Pearce T, Fagon JY, Chastre J: Safety and pharmacokinetics of an anti-PcrV PEGylated monoclonal antibody fragment in mechanically ventilated patients colonized with Pseudomonas aeruginosa: a randomized, double-blind, placebo-controlled trial. Crit Care Med. 2012, 40: 2320-2326. 10.1097/CCM.0b013e31825334f6.CrossRef
98.
Zurück zum Zitat Milla CE, Chmiel JF, Accurso FJ, Vandevanter DR, Konstan MW, Yarranton G, Geller DE: Anti-PcrV antibody in cystic fibrosis: a novel approach targeting Pseudomonas aeruginosa airway infection. Pediatr Pulmonol. 2014, 49: 650-658. 10.1002/ppul.22890.CrossRef Milla CE, Chmiel JF, Accurso FJ, Vandevanter DR, Konstan MW, Yarranton G, Geller DE: Anti-PcrV antibody in cystic fibrosis: a novel approach targeting Pseudomonas aeruginosa airway infection. Pediatr Pulmonol. 2014, 49: 650-658. 10.1002/ppul.22890.CrossRef
99.
Zurück zum Zitat Lee VT, Pukatzki S, Sato H, Kikawada E, Kazimirova AA, Huang J, Li X, Arm JP, Frank DW, Lory S: Pseudolipasin A is a specific inhibitor for phospholipase A2 activity of Pseudomonas aeruginosa cytotoxin ExoU. Infect Immun. 2007, 75: 1089-1098. 10.1128/IAI.01184-06.CrossRef Lee VT, Pukatzki S, Sato H, Kikawada E, Kazimirova AA, Huang J, Li X, Arm JP, Frank DW, Lory S: Pseudolipasin A is a specific inhibitor for phospholipase A2 activity of Pseudomonas aeruginosa cytotoxin ExoU. Infect Immun. 2007, 75: 1089-1098. 10.1128/IAI.01184-06.CrossRef
100.
Zurück zum Zitat Kim D, Baek J, Song J, Byeon H, Min H, Min KH: Identification of arylsulfonamides as ExoU inhibitors. Bioorg Med Chem Lett. 2014, S0960-894X: 00692-1- Kim D, Baek J, Song J, Byeon H, Min H, Min KH: Identification of arylsulfonamides as ExoU inhibitors. Bioorg Med Chem Lett. 2014, S0960-894X: 00692-1-
Metadaten
Titel
Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review
verfasst von
Teiji Sawa
Masaru Shimizu
Kiyoshi Moriyama
Jeanine P Wiener-Kronish
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 6/2014
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-014-0668-9

Weitere Artikel der Ausgabe 6/2014

Critical Care 6/2014 Zur Ausgabe

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.