Skip to main content
Erschienen in: BMC Gastroenterology 1/2022

Open Access 01.12.2022 | Research

Association of neutrophil to lymphocyte ratio with preterm necrotizing enterocolitis: a retrospective case-control study

verfasst von: Yuju Mu, Hua Wang

Erschienen in: BMC Gastroenterology | Ausgabe 1/2022

Abstract

Background

There have been few studies on the relationship between the neutrophil to lymphocyte ratio (NLR) and necrotizing enterocolitis (NEC). We conducted a retrospective case-control study to investigate this relationship in preterm neonates.

Methods

A total of 199 preterm neonates diagnosed with NEC between January 2018 and January 2020 were included in this study. For each preterm infant with NEC that was admitted to the neonatal intensive care unit (NICU), controls were preterm neonates (matched for gestation and year of birth) who were not diagnosed with NEC. Exclusion criteria were post-maturity, small or large for gestational age (week of pregnancy), congenital major anomalies, and cyanotic congenital heart disease. Univariate and multivariate logistic regression analyses were used to identify the association between NLR and preterm NEC.

Results

This study included 93 preterm neonates with NEC and 106 matched controls. There were no significant differences in gestational age (GA), birth weight (BW), age, sex, vaginal delivery (VD), chorioamnionitis (CA), and gestational diabetes mellitus (GDM) between the groups. Compared with the control group, the lower and higher NLR levels in the NEC group were statistically different. Following univariate analysis, NLR was a risk factor for NEC (odds ratio [OR], 1.40; 95% confidence interval [CI], 1.00–1.90; P = 0.042), and according to multivariate analysis, risk factors for NEC were NLR ≥ 3.20 and NLR < 1.60, within 1 week before NEC diagnosis. Thus, NLR values of ≥ 1.60 and < 3.20 were determined as the predictive cut-off values for protecting preterm infants from NEC (Model I: OR, 0.20; 95% CI, 0.10–0.40; P < 0.001) and (Model II: OR, 0.10; 95% CI, 0.00–0.40; P < 0.001].

Conclusions

NLR ≥ 1.60 and NLR < 3.20 were associated with a decreased risk of NEC in preterm infants.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AGA
Appropriate for gestational age
BW
Birth weight
CA
Chorioamnionitis
CI
Confidence interval
CRP
C-reactive protein
GA
Gestational age
GIT
Gastrointestinal tract
GDM
Gestational diabetes mellitus
GAM
Generalized additive model
NLR
Neutrophil to lymphocyte ratio
NEC
Necrotizing enterocolitis
NICU
Neonatal intensive care unit
OR
Odds ratio
PLT
Platelet
PE
Preeclampsia
SGA
Small for gestational age
VD
Vaginal delivery
VLBW
Very low birth weight
WBC
White blood cell

Background

Necrotizing enterocolitis (NEC) is the most common and potentially devastating multifactorial life-threatening condition affecting the gastrointestinal tract (GIT) in premature infants; it is a leading cause of morbidity and mortality in infants born between 23 and 28 weeks of gestation. It has been reported that NEC prevalence is 5–7% in very low birth weight (VLBW) infants [1], 20–30% of whom eventually die [2]. Moreover, NEC survivors have a high risk of severe long-term complications, such as short bowel syndrome, growth delay, and neurodevelopmental sequelae, which are associated with a low quality of future individual life and increasing long-term social health care costs [3]. It is a multifactorial disease in which the exact pathogenesis remains elusive. Hypoperfusion of the intestines, immaturity of the intestinal barrier system, selection and colonization of harmful bacteria in the gut, bacterial translocation, infection, and inflammatory response all contribute to the disease.
The Bell’s staging criteria for NEC were first devised in 1978 and modified by Walsh and Kliegman in 1986 [4]; almost all neonatologists and medical journals use the modified version. Mild or suspected NEC (Bell’s Stage I) comprises mild systemic symptoms and mild nonspecific intestinal symptoms [57]. Since these nonspecific symptoms are often observed in infants with extremely low birth weights in the neonatal intensive care unit (NICU), it is very difficult to distinguish between NEC and feeding intolerance, as well as other gastrointestinal diseases and sepsis. Moderate or definitive NEC (Bell’s Stage II) further includes radiological findings and moderate systemic signs [57]. Nonetheless, due to the inter-observer variability, radiological findings cannot accurately predict NEC diagnosis [8]. While the early clinical signs of NEC are usually very discrete and nonspecific, the use of Bell’s criteria based solely on clinical and radiographic features has significant limitations [9]. Considering these limitations for early NEC diagnosis, research has focused on the discovery of biomarkers capable of prediction, early diagnosis, and discrimination of NEC from other intestinal diseases.
The severity of NEC differs, ranging from mild involvement that could be managed solely by fasting for bowel rest or using antibiotics, to severe intestinal necrosis requiring surgical treatment. Since intestinal inflammation of NEC cannot generally be controlled by either conservative or surgical treatment satisfactorily, efforts should be focused on the importance of preventing NEC and improving NEC diagnostic capabilities. Finding a diagnostic method with high specificity and sensitivity to identify preterm NEC earlier is an immediate priority.
Therefore, we tried to find specific biomarkers associated with these conditions to improve the NEC diagnostic capabilities. In this context, a biomarker could be defined as any measurable parameter that provides meaningful information regarding the diagnosis of NEC [10]. During the neonatal period, noninvasive and easy-to-use biomarkers that can accurately determine NEC are limited. In the present clinical practice, biomarkers currently include acute phase proteins, inflammatory mediators, and immunoreactive molecules. Nonetheless, the early prediction and diagnosis of NEC, or the ability to discriminate different stages of NEC correctly from other gastrointestinal diseases, remains unresolved [3]. To our knowledge, there was no single biomarker or cluster of biomarkers that meet the neonatologists’ satisfaction.
In some recent studies, researchers focused on noninvasive approaches [11]. Complete blood count-derived parameters and their relation to certain diseases have recently received attention from researchers [12]. Neutrophils are an essential factor in the innate immune response during inflammation. Increased neutrophil levels elicit an appropriate inflammatory response in patients with mild-to-moderately severe disease. One study investigated the incidence of neutropenia (neutrophil counts of ≤ 1000 cells/mL) in small for gestational age (SGA) neonates and found that newborn infants have a four-fold increased risk of developing NEC [13]. Regardless, neutrophils may express excessive inflammatory cytokines that contribute to excessive inflammation and tissue damage. Lymphocytes are also involved in the immune response against bacterial and viral infections [14]. During an inflammatory response, the number of neutrophils increases or decreases, while lymphocytes decrease in number. The neutrophil to lymphocyte ratio (NLR) reflects changes in neutrophil and lymphocyte levels, indicating the presence of inflammation. It has been shown that NLR is superior to white blood cell (WBC) in the prediction of adverse outcomes in a variety of inflammatory and surgical conditions. By using NLR, it is possible to have an idea about two different immune pathways; the first one is neutrophil which is accountable for continuing inflammation and the second one is lymphocytes that shows regulatory pathways [15]. Therefore, the combination of neutrophil and lymphocyte concentrations indicated as NLR may be more valuable as a marker of inflammation than neutrophilia, neutropenia, or lymphocytopenia alone for predicting bacterial infections. Studies suggest NLR is associated with occult inflammation in certain conditions, and it has also been shown to be useful in predicting adverse outcomes in patients with pancreatitis, appendicitisand other critical conditions [16]. The clinical use of NLR has been shown in bacterial pneumonia, and it was reported that NLR was significantly.
elevated in COVID-19 patients [17]. Moreover, the NLR has been used as a reliable marker for inflammation and as a prognostic index for a variety of medical conditions, including ischemic stroke, cerebral hemorrhage, major adverse cardiac events, and solid tumors [18]. A study found that the maternal NLR can independently predict the risk of NEC in very preterm infants [19].
Since there is a strong association between inflammation and NEC, and between inflammation and NLR, we aimed to investigate the relationship between NLR and NEC in preterm neonates. We hypothesized that NLR was associated with an increased risk of NEC based on analyses of existing clinical data.

Methods

Study population

The study population consisted of preterm infants who developed NEC over 2 years from January 2018 to January 2020 at the NICU of the West China Second University Hospital, Sichuan University. Preterm infants diagnosed with NEC who showed perforations (4 infants), had an admission age of ≥ 24 h (4 infants), had a hospital stay of < 7 days (9 infants), and those with congenital malformations (3 infants) were excluded. The case group included 93 preterm infants who met the criteria for NEC; the control group included 106 preterm infants matched for gestational age and year of birth (Fig. 1).

Study design

We performed a retrospective case-control study. For this analysis, NEC diagnoses were made based on the presence of clinical, radiological, and/or histopathological evidence that fulfilled the Bell’s modified criteria. The clinical data, including data pertaining to the demographical characteristics and comorbidities of the mother, was collected from the patients’ electronic medical records.The NLR was determined using the mean neutrophil and lymphocyte counts from all blood tests within 1 week before the patient’s NEC diagnosis. Initial laboratory investigations included the WBC count, platelet (PLT) count, and C-reactive protein (CRP) levels.

Statistical analysis

For descriptive analyses, categorical variables and continuous variables were described as percentages and mean (standard deviation), respectively. The distribution of each covariate of the exposed and non-exposed groups was compared using the t-test (normal distribution) or the Kruskal–Wallis rank sum test (non-normal distribution) for continuous variables and the chi-square test for categorical data (Table 1). Next, univariate logistic regression (Table 2) and multivariate logistic regression models (Table 3) were used to examine whether the NLR was associated with NEC in preterm neonates. Statistical results were displayed as an odds ratio (OR), with their corresponding 95% confidence interval (CI). All analyses were performed using R (http://​www.​R-project.​org) and Empowerstats software (www.​empowerstats.​com, X & Y Solutions, Inc.)
Table 1
Baseline characteristics of the study participants (N = 199)
NEC
Case group (n = 93)
Control group (n = 106)
Standardize diff
P-value
Gestational age, weeks (Mean ± SD)
32.74 ± 2.52
32.46 ± 2.75
0.10 (− 0.17–0.38)
0.466
Birth weight, g (Mean ± SD)
1733.83 ± 504.75
1793.36 ± 581.09
0.11 (− 0.17–0.39)
0.444
Age, hours (Median[Q1-Q3])
0.42 (0.35–0.87)
0.48 (0.36–0.94)
0.00 (− 0.28–0.28)
0.993
SEX (n, %)
  
0.18 (− 0.10–0.46)
0.209
Male
43 (46.24%)
59 (55.14%)
  
Female
50 (53.76%)
47 (44.86%)
  
NLR (Mean ± SD)
2.10 ± 1.40
1.70 ± 0.50
0.40(0.10–0.70)
0.008
CRP, mg/L, (Median[Q1-Q3])
4.89 (1.26–18.00)
3.30 (2.33–6.13)
0.48 (0.20–0.76)
 < 0.001
VD (n, %)
  
0.08 (− 0.20–0.36)
0.577
No
71 (76.34%)
78 (72.90%)
  
Yes
22 (23.66%)
28 (27.10%)
  
CA (n, %)
  
0.02 (− 0.26–0.29)
0.907
No
54 (58.06%)
63 (58.88%)
  
Yes
39 (41.94%)
43 (41.12%)
  
PE (n, %)
  
0.38 (0.10–0.66)
0.008
No
40 (43.01%)
66 (61.68%)
  
Yes
53 (56.99%)
40 (38.32%)
  
GDM (n, %)
  
0.27 (− 0.01–0.55)
0.061
No
46 (49.46%)
67 (62.62%)
  
Yes
47 (50.54%)
39 (37.38%)
  
For explanation of abbreviations, see the main text
Table 2
Univariate analysis for necrotizing enterocolitis
 
Statistics
OR (95% CI)
P-value
NLR
1.90 ± 1.10
1.40 (1.00–1.90)
0.042
NLR tripartite group
 Low
66 (33.16%)
1.00
 
 Middle
66 (33.16%)
0.00 (0.00–0.10)
 < 0.001
 High
67 (33.68%)
0.90 (0.40–2.00)
0.756
NLR threshold value group
 < 1.60
97 (48.70%)
1.00
 
 ≥ 1.60, < 3.20
71 (35.70%)
1.60 (0.52–4.93)
0.413
 ≥ 3.20
31 (15.60%)
9.00 (1.65–49.14)
0.011
Gestational age, weeks (Mean ± SD)
32.59 ± 2.64
1.04 (0.94–1.16)
0.464
Birth weight, g (Mean ± SD)
1765.68 ± 546.38
1.00 (1.00–1.00)
0.442
CRP (n, %)
8.86 ± 13.72
1.05 (1.02–1.08)
0.002
CA (n, %)
 No
117 (58.79%)
1.00
 
 Yes
82 (41.21%)
1.03 (0.59–1.82)
0.907
PE (n, %)
 No
106 (53.27%)
1.00
 
 Yes
93 (46.73%)
2.13 (1.21–3.76)
0.009
GDM (n, %)
 No
113 (56.78%)
1.00
 
 Yes
86 (43.21%)
1.71 (0.97–3.01)
0.062
For explanation of abbreviations, see the main text
Table 3
Relationship between the neutrophil to lymphocyte ratio and necrotizing enterocolitis according to different models
Variable
Crude Modela
Model Ib
Model IIc
OR (95% CI)
P-value
OR (95% CI)
P-value
OR (95% CI)
P-value
NLR
1.40 (1.10–1.90)
0.010
1.70 (1.20–2.40)
0.003
1.60 (1.10–2.40)
0.013
NLR value group
 < 1.60
1.00
 
1.00
 
1.00
 
 ≥ 1.60, < 3.20
0.30 (0.10–0.50)
 < 0.001
0.20 (0.10–0.40),
 < 0.001
0.10 (0.00–0.40)
 < 0.001
 ≥ 3.20
1.00
 
1.00
 
1.00
 
For explanation of abbreviations, see the main text
aCrude Model not adjusted
bModel I adjusted for GA, BW, VD
cModel II adjusted for GA, BW, sex, VD, CA, PE, GDM, and CRP

Results

Baseline characteristics

This study was conducted with 199 preterm neonates that were appropriate for gestational age (AGA). Of these, 93 were diagnosed with preterm NEC, and 106 were preterm infants matched for gestational age and year of birth. The general characteristics of the study population are summarized in Table 1. Overall, infants who were diagnosed with NEC had a higher NLR value (2.10 ± 1.40 vs. 1.70 ± 0.50; p = 0.008) and CRP value (4.89 [1.26–18.00] vs. 3.30 [2.33–6.13] mg/L; p < 0.001). In addition, preeclampsia (PE) was more common in the NEC group (53/93 vs. 40/106; p = 0.008). Apart from these three factors, there was no noticeable difference between the two groups regarding gestational age (GA) (32.74 ± 2.52 vs. 32.46 ± 2.75 weeks; p = 0.466), birth weight (BW) (1733.83 ± 504.75 vs. 1793.36 ± 581.09 g; p = 0.444), age (0.42 [0.35–0.87] vs. 0.48 [0.36–0.94] hours; p = 0.993], sex (male: female, 43:50 vs. 59:47; p = 0.209), VD (22/93 vs. 28/106; p = 0.577), CA (39/93 vs. 43/106; p = 0.907), and gestational diabetes mellitus (GDM) (47/93 vs. 39/106; p = 0.061).

Association of NLR levels with NEC

To investigate the association of NLR levels with NEC, subjects were divided into three groups according to NLR tertiles. Univariate analysis showed that the NLR was significantly correlated with preterm NEC (odds ratio [OR], 1.40; 95% confidence interval [CI], 1.00–1.90; P = 0.042). In addition, the CRP value (OR, 1.05; 95% CI, 1.02–1.08; P = 0.002) and PE (OR, 2.13; 95% CI, 1.21–3.76; P = 0.009) might also be associated with preterm NEC (Table 2).
After multivariable risk adjustment for potential confounding factors (Table 3), including GA, BW, sex, and VD in Model I and GA, BW, sex, VD, CA, PE, GDM, and CRP in Model II, the NLR was still positively associated with NEC in preterm neonates. In addition, an NLR of ≥ 1.60 and an NLR of < 3.20 within 1 week before NEC diagnosis could significantly decrease the risk of preterm NEC (Model I: OR, 0.20; 95% CI, 0.10–0.40, P < 0.001) and (Model II: OR, 0.10; 95% CI, 0.00–0.40; P < 0.001). Therefore, NLR values of ≥ 1.60 and < 3.20 were determined as the predictive cutoff values for the preterm NEC group. A threshold, nonlinear association between NLR and NEC was observed in a generalized additive model (GAM) (Fig. 2).

Discussion

The incidence of NEC is extremely high in preterm infants [20], and is associated with an increase in mortality. Most of the survivors often experience a variety of serious short and long-term complications, such as intestinal stenosis, short bowel syndrome, and neurological sequelae [21, 22]. Although the literature is limited, the direct hospital cost of NEC has been estimated to be appropximatety between 1.4 to over 10 times higher in VLBW infants with NEC than in VLBW infants without NEC. The increased cost stems from longer hospital stays and additional medical interventions (e.g., surgery, central line placement, and increased total parenteral nutrition time), as well as the increased risk of morbidities associated with NEC. Therefore, NEC has a significant negative impact on healthcare utilization and costs. Therefore, a method to reduce the NEC occurence rate will not only prevent the associated mortality and morbidity and improve the neonatal prognosis, but also reduce healthcare and social costs.
The uncertainty in the course of NEC is due to the absence of a definitive etiology and pathogenesis; moreover, it manifests in a variety of ways. The signs and symptoms of NEC may be concealed and nonspecific, making it difficult to diagnose preterm neonates with NEC, earlier. Due to a deficiency in available diagnostic skills and tools, and the accelerated progression of the disease, some infants, particularly those who are premature, do not receive timely treatment. In practice, the diagnosis and treatment of NEC involve duplicate blood testing and abdominal X-rays, the use of broad-spectrum antibiotics, and fasting or decreased enteral feeding. Consequently, many infants may develop secondary anemia, further disturbing the gut microbiome and resulting in retarded growth and development. Therefore, it is crucial to develop strategies to identify infants who are less susceptible to NEC to avoid excessive treatment. Furthermore, to decrease the healthcare utilization and costs associated with NEC, identifying preterm infants with NEC accurately and rapidly is extremely important. For the sake of reducing the burden of NEC in preterm neonates, the prediction and early diagnosis of this catastrophic disease are of utmost necessity.
The current clinical practice to diagnose NEC depends on nonspecific systemic symptoms including inflammation, local abdominal signs, and specific radiographs to determine the presence of gastrointestinal inflammation. It is important to note that all of these symptoms are nonspecific for NEC, thus, confusing it with the differential diagnosis of other conditions, such as neonatal sepsis, other gastrointestinal diseases, and feeding intolerance. When NEC is suspected, the modified Bell’s staging criteria should be applied, which allows rapid clinical decision-making. The features of the Bell’s staging criteria represent clinical, laboratory, and radiologic signs, most of which are nonspecific and may be less sensitive [23], and there are numerous shortcomings in the current use of Bell’s staging criteria [6, 20]. The criteria should not be used as a prognosticating diagnostic tool, but only if NEC has already occurred. The ideal diagnostic biomarker should be both highly sensitive, so as not to miss potential cases, and specific to avoid over-treating infants who are not likely to progress to NEC. Moreover, it should be reliable and have accurate predictive value. Other useful features include affordability, reproducibility, and availability [24]. Some researchers have investigated biomarkers as possible tools to predict NEC, such as interleukin-6 [25], intestinal fatty acid-binding protein [26], and serum amyloid A [27]. Regardless, the majority of these are not available for routine laboratory tests performed at most medical institutions because of medical costs and the complex methodology required. On the contrary, complete blood counts are simple, easy, and convenient to determine. So blood NLR is a simple sign of clinical inflammation.
The increase in a patient’s neutrophil count and decrease in lymphocyte count is a response to microbial infection. The increase in the number of neutrophils is due to a reduction in neutrophil apoptosis and rapid mobilization of neutrophils from a marginated pool within the bone marrow [2830]. Neutrophils are important in removing pathogens, but neutrophil infiltration and activation also result in major tissue injury associated with acute and chronic inflammatory disorders [31]. Although neutrophils play a vital role in host defense, they can also cause severe morbidity and mortality. The lymphocyte count decreases due to the migration of activated lymphocytes to inflamed tissues and increased apoptosis of lymphocytes [29, 32]. It indicates immunosuppression and plays a role in the septic patients’ mortality [33, 34]. Zahorec previously introduced the NLR as a simple, rapid, and cost-effective method to determine inflammation in critically ill patients [35]. In addition, a previous study showed that this ratio could be utilized as a predictor of disease severity in adult patients [36]. Recent studies found that NLR had a higher sensitivity and specificity for diagnosing infectious diseases [37, 38]. For example, Sen et al. showed that using the NLR preoperatively could be a promising predictor of bacteremia and postoperative sepsis in patients requiring percutaneous nephrolithotomy [39]. In China, studies have highlighted similar results, where Yang et al. found that the NLR was significantly higher in the death group than in the control group within 205 adult bloodstream infection patients [40]. In summary, NLR could be utilized to indicate the status of the inflammatory response and the level of physical stress in a timely and accurate manner [40]. In addition, NLR could be used as a predictive marker for patients with infections.
NEC is a disease induced by multiple factors, we only hope that we can find some indicators which could avoid overtreatment for preterm NEC to help clinicians make the right decision. Thus, the influence of some confounding factors, such as gestational age, nutrition and nursing factors were excluded by statistical analysis using R (http://​www.​R-project.​org). In our study, a statistically significant positive correlation was found between the NLR and preterm NEC when NLR values were ≥ 1.60 and < 3.20. In the univariate analysis, NLR was significantly correlated with preterm NEC (OR, 1.40; 95% CI, 1.00–1.90; P = 0.042). Moreover, CRP and PE may also be associated with preterm NEC. After adjusting for these potential confounders in the multivariate logistic regression analysis, we still found a significant correlation between NLR and preterm NEC. NLR values of ≥ 1.60 and < 3.20 were determined as the predictive cutoff values for the preterm NEC group (OR, 0.20; 95% CI, 0.10–0.40; P < 0.001), which is associated with a decreased risk of NEC in preterm infants. In addition, NLR (< 1.60 or ≥ 3.20) may be used as a diagnostic tool for preterm NEC. NLR is is a rapid, inexpensive, and useful indicator that could be estimated via the complete blood count. Cost-effective and easy to-assess nature of this test may contribute to its utility in clinical practice. This ratio may be applied in clinical practice and can be used during routine diagnostic processes for preterm NEC in NICUs.
This study has some limitations. The inherent bias due to the retrospective design of the study should be mentioned. Moreover, the sample number of this study was small and only from a single center, which may also restrict the accuracy and generalizability of the results.

Conclusions

In conclusion, the NLR, an easy, simple, inexpensive, and rapid tool, could be used, in advance, to predict preterm NEC along with other biomarkers. Timely NEC prediction would not only allow for high-risk neonates to receive preventive treatments such as early exposure to the mother’s colostrum, careful nutritional consideration, use of probiotics, and increased skin-to-skin care [41], but also decrease unnecessary antibiotic therapy or even surgical interventions.
Overall, our findings emphasize the necessity to improve medical measures to decrease the incidence of preterm neonates NEC. Future prospective studies with a larger population of preterm infants are required to validate the results of this study. In addition, in the forthcoming studies, we plan to develop a predictive model of the NLR for NEC diagnosis through machine learning, and then prospectively substantiate the model’s accuracy using a larger number of preterm infants.

Acknowledgements

The authors thank Sichuan University West China Second University Hospital for their assistance with data collection.

Declarations

The study was approved by the Medical Ethics Committee of the West China Second University Hospital, Sichuan University (2020 application 096), and due to the retrospective nature of the data analysis, the requirement for informed consent from the patient’s parents was waivered.
Not applicable.

Competing interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Methods

All methods were performed in accordance with the relevant guidelines and regulations.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Neu J. Preterm infant nutrition, gut bacteria, and necrotizing enterocolitis. Curr Opin Clin Nutr Metab Care. 2015;18:285–8.CrossRef Neu J. Preterm infant nutrition, gut bacteria, and necrotizing enterocolitis. Curr Opin Clin Nutr Metab Care. 2015;18:285–8.CrossRef
2.
Zurück zum Zitat Pang Y, Du X, Xu X, Wang M, Li Z. Impairment of regulatory T cells in patients with neonatal necrotizing enterocolitis. Int Immunopharmacol. 2018;63:19–25.CrossRef Pang Y, Du X, Xu X, Wang M, Li Z. Impairment of regulatory T cells in patients with neonatal necrotizing enterocolitis. Int Immunopharmacol. 2018;63:19–25.CrossRef
3.
Zurück zum Zitat Agakidou E, Agakidis C, Gika H, Sarafidis K. Emerging biomarkers for prediction and early diagnosis of necrotizing enterocolitis in the era of metabolomics and proteomics. Front Pediatr. 2020;8: 602255.CrossRef Agakidou E, Agakidis C, Gika H, Sarafidis K. Emerging biomarkers for prediction and early diagnosis of necrotizing enterocolitis in the era of metabolomics and proteomics. Front Pediatr. 2020;8: 602255.CrossRef
4.
Zurück zum Zitat Walsh MC, Kliegman RM, Fanaroff AA. Necrotizing enterocolitis: a practitioner’s perspective. Pediatr Rev. 1988;9:219–26.CrossRef Walsh MC, Kliegman RM, Fanaroff AA. Necrotizing enterocolitis: a practitioner’s perspective. Pediatr Rev. 1988;9:219–26.CrossRef
6.
Zurück zum Zitat Neu J, Walker WA. Necrotizing enterocolitis. N Engl J Med. 2011;364:255–64.CrossRef Neu J, Walker WA. Necrotizing enterocolitis. N Engl J Med. 2011;364:255–64.CrossRef
7.
Zurück zum Zitat Niño DF, Sodhi CP, Hackam DJ. Necrotizing enterocolitis: new insights into pathogenesis and mechanisms. Nat Rev Gastroenterol Hepatol. 2016;13:590–600.CrossRef Niño DF, Sodhi CP, Hackam DJ. Necrotizing enterocolitis: new insights into pathogenesis and mechanisms. Nat Rev Gastroenterol Hepatol. 2016;13:590–600.CrossRef
8.
Zurück zum Zitat Nantais-Smith L, Kadrofske M. Noninvasive biomarkers of necrotizing enterocolitis. J Perinat Neonatal Nurs. 2015;29:69–80.CrossRef Nantais-Smith L, Kadrofske M. Noninvasive biomarkers of necrotizing enterocolitis. J Perinat Neonatal Nurs. 2015;29:69–80.CrossRef
9.
Zurück zum Zitat Neu J. Necrotizing enterocolitis: the future. Neonatology. 2020;117:240–4.CrossRef Neu J. Necrotizing enterocolitis: the future. Neonatology. 2020;117:240–4.CrossRef
10.
Zurück zum Zitat Bhandari V. Effective biomarkers for diagnosis of neonatal sepsis. J Pediatric Infect Dis Soc. 2014;3:234–45.CrossRef Bhandari V. Effective biomarkers for diagnosis of neonatal sepsis. J Pediatric Infect Dis Soc. 2014;3:234–45.CrossRef
11.
Zurück zum Zitat Iyengar A, Paulus JK, Gerlanc DJ, Maron JL. Detection and potential utility of C-reactive protein in saliva of neonates. Front Pediatr. 2014;2:131.CrossRef Iyengar A, Paulus JK, Gerlanc DJ, Maron JL. Detection and potential utility of C-reactive protein in saliva of neonates. Front Pediatr. 2014;2:131.CrossRef
12.
Zurück zum Zitat Aktas G, Sit M, Dikbas O, Erkol H, Altinordu R, Erkus E, et al. Elevated neutrophil-to-lymphocyte ratio in the diagnosis of Hashimoto’s thyroiditis. Rev Assoc Med Bras. 1992;2017(63):1065–8. Aktas G, Sit M, Dikbas O, Erkol H, Altinordu R, Erkus E, et al. Elevated neutrophil-to-lymphocyte ratio in the diagnosis of Hashimoto’s thyroiditis. Rev Assoc Med Bras. 1992;2017(63):1065–8.
13.
Zurück zum Zitat Christensen RD, Yoder BA, Baer VL, Snow GL, Butler A. Early-onset neutropenia in small-for-gestational-age infants. Pediatrics. 2015;136:e1259–67.CrossRef Christensen RD, Yoder BA, Baer VL, Snow GL, Butler A. Early-onset neutropenia in small-for-gestational-age infants. Pediatrics. 2015;136:e1259–67.CrossRef
14.
Zurück zum Zitat Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. The pathogenesis of sepsis. Annu Rev Pathol. 2011;6:19–48.CrossRef Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. The pathogenesis of sepsis. Annu Rev Pathol. 2011;6:19–48.CrossRef
15.
Zurück zum Zitat Posul E, Yilmaz B, Aktas G, Kurt M. Does neutrophil-to-lymphocyte ratio predict active ulcerative colitis? Wien Klin Wochenschr. 2015;127:262–5.CrossRef Posul E, Yilmaz B, Aktas G, Kurt M. Does neutrophil-to-lymphocyte ratio predict active ulcerative colitis? Wien Klin Wochenschr. 2015;127:262–5.CrossRef
16.
Zurück zum Zitat Begic-Kapetanovic S, Avdagic N, Zaciragic A, Hasic S, Babic N, Hadzimuratovic A. Could the neutrophil-to-lymphocyte ratio serve as a marker in the diagnosis and prediction of acute appendicitis complications in children? Arch Med Sci. 2021;17:1672–8.PubMed Begic-Kapetanovic S, Avdagic N, Zaciragic A, Hasic S, Babic N, Hadzimuratovic A. Could the neutrophil-to-lymphocyte ratio serve as a marker in the diagnosis and prediction of acute appendicitis complications in children? Arch Med Sci. 2021;17:1672–8.PubMed
17.
Zurück zum Zitat Nalbant A, Kaya T, Varim C, Yaylaci S, Tamer A, Cinemre H. Can the neutrophil/lymphocyte ratio (NLR) have a role in the diagnosis of coronavirus 2019 disease (COVID-19)? Rev Assoc Med Bras. 1992;2020(66):746–51. Nalbant A, Kaya T, Varim C, Yaylaci S, Tamer A, Cinemre H. Can the neutrophil/lymphocyte ratio (NLR) have a role in the diagnosis of coronavirus 2019 disease (COVID-19)? Rev Assoc Med Bras. 1992;2020(66):746–51.
18.
Zurück zum Zitat Li T, Dong G, Zhang M, Xu Z, Hu Y, Xie B, et al. Association of neutrophil-lymphocyte ratio and the presence of neonatal sepsis. J Immunol Res. 2020;2020:7650713.PubMedPubMedCentral Li T, Dong G, Zhang M, Xu Z, Hu Y, Xie B, et al. Association of neutrophil-lymphocyte ratio and the presence of neonatal sepsis. J Immunol Res. 2020;2020:7650713.PubMedPubMedCentral
19.
Zurück zum Zitat Lee JY, Park KH, Kim A, Yang HR, Jung EY, Cho SH. Maternal and placental risk factors for developing necrotizing enterocolitis in very preterm infants. Pediatr Neonatol. 2017;58:57–62.CrossRef Lee JY, Park KH, Kim A, Yang HR, Jung EY, Cho SH. Maternal and placental risk factors for developing necrotizing enterocolitis in very preterm infants. Pediatr Neonatol. 2017;58:57–62.CrossRef
20.
Zurück zum Zitat Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010;126:443–56.CrossRef Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010;126:443–56.CrossRef
21.
Zurück zum Zitat Neu J, Pammi M. Pathogenesis of NEC: impact of an altered intestinal microbiome. Semin Perinatol. 2017;41:29–35.CrossRef Neu J, Pammi M. Pathogenesis of NEC: impact of an altered intestinal microbiome. Semin Perinatol. 2017;41:29–35.CrossRef
22.
Zurück zum Zitat Wadhawan R, Oh W, Hintz SR, Blakely ML, Das A, Bell EF, et al. Neurodevelopmental outcomes of extremely low birth weight infants with spontaneous intestinal perforation or surgical necrotizing enterocolitis. J Perinatol. 2014;34:64–70.CrossRef Wadhawan R, Oh W, Hintz SR, Blakely ML, Das A, Bell EF, et al. Neurodevelopmental outcomes of extremely low birth weight infants with spontaneous intestinal perforation or surgical necrotizing enterocolitis. J Perinatol. 2014;34:64–70.CrossRef
23.
Zurück zum Zitat Kim JH, Sampath V, Canvasser J. Challenges in diagnosing necrotizing enterocolitis. Pediatr Res. 2020;88(Suppl 1):16–20.CrossRef Kim JH, Sampath V, Canvasser J. Challenges in diagnosing necrotizing enterocolitis. Pediatr Res. 2020;88(Suppl 1):16–20.CrossRef
24.
Zurück zum Zitat Hendricks-Munoz K, Xu J, Mally P. Biomarkers for neonatal sepsis: recent developments. Res Rep Neonatol. 2014;4:157–68. Hendricks-Munoz K, Xu J, Mally P. Biomarkers for neonatal sepsis: recent developments. Res Rep Neonatol. 2014;4:157–68.
25.
Zurück zum Zitat Wisgrill L, Weinhandl A, Unterasinger L, Amann G, Oehler R, Metzelder ML, et al. Interleukin-6 serum levels predict surgical intervention in infants with necrotizing enterocolitis. J Pediatr Surg. 2019;54:449–54.CrossRef Wisgrill L, Weinhandl A, Unterasinger L, Amann G, Oehler R, Metzelder ML, et al. Interleukin-6 serum levels predict surgical intervention in infants with necrotizing enterocolitis. J Pediatr Surg. 2019;54:449–54.CrossRef
26.
Zurück zum Zitat Schurink M, Kooi EM, Hulzebos CV, Kox RG, Groen H, Heineman E, et al. Intestinal fatty acid-binding protein as a diagnostic marker for complicated and uncomplicated necrotizing enterocolitis: a prospective cohort study. PLoS ONE. 2015;10: e0121336.CrossRef Schurink M, Kooi EM, Hulzebos CV, Kox RG, Groen H, Heineman E, et al. Intestinal fatty acid-binding protein as a diagnostic marker for complicated and uncomplicated necrotizing enterocolitis: a prospective cohort study. PLoS ONE. 2015;10: e0121336.CrossRef
27.
Zurück zum Zitat Reisinger KW, Kramer BW, Van der Zee DC, Brouwers HA, Buurman WA, van Heurn E, et al. Non-invasive serum amyloid A (SAA) measurement and plasma platelets for accurate prediction of surgical intervention in severe necrotizing enterocolitis (NEC). PLoS ONE. 2014;9: e90834.CrossRef Reisinger KW, Kramer BW, Van der Zee DC, Brouwers HA, Buurman WA, van Heurn E, et al. Non-invasive serum amyloid A (SAA) measurement and plasma platelets for accurate prediction of surgical intervention in severe necrotizing enterocolitis (NEC). PLoS ONE. 2014;9: e90834.CrossRef
28.
Zurück zum Zitat Annane D, Bellissant E, Cavaillon JM. Septic shock. Lancet. 2005;365:63–78.CrossRef Annane D, Bellissant E, Cavaillon JM. Septic shock. Lancet. 2005;365:63–78.CrossRef
29.
Zurück zum Zitat Adib-Conquy M, Cavaillon JM. Compensatory anti-inflammatory response syndrome. Thromb Haemost. 2009;101:36–47.CrossRef Adib-Conquy M, Cavaillon JM. Compensatory anti-inflammatory response syndrome. Thromb Haemost. 2009;101:36–47.CrossRef
30.
Zurück zum Zitat Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil kinetics in health and disease. Trends Immunol. 2010;31:318–24.CrossRef Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil kinetics in health and disease. Trends Immunol. 2010;31:318–24.CrossRef
31.
Zurück zum Zitat van der Linden M, Meyaard L. Fine-tuning neutrophil activation: strategies and consequences. Immunol Lett. 2016;178:3–9.CrossRef van der Linden M, Meyaard L. Fine-tuning neutrophil activation: strategies and consequences. Immunol Lett. 2016;178:3–9.CrossRef
32.
Zurück zum Zitat Luan YY, Dong N, Xie M, Xiao XZ, Yao YM. The significance and regulatory mechanisms of innate immune cells in the development of sepsis. J Interferon Cytokine Res. 2014;34:2–15.CrossRef Luan YY, Dong N, Xie M, Xiao XZ, Yao YM. The significance and regulatory mechanisms of innate immune cells in the development of sepsis. J Interferon Cytokine Res. 2014;34:2–15.CrossRef
33.
Zurück zum Zitat Hwang SY, Shin TG, Jo IJ, Jeon K, Suh GY, Lee TR, et al. Neutrophil-to-lymphocyte ratio as a prognostic marker in critically ill septic patients. Am J Emerg Med. 2017;35:234–9.CrossRef Hwang SY, Shin TG, Jo IJ, Jeon K, Suh GY, Lee TR, et al. Neutrophil-to-lymphocyte ratio as a prognostic marker in critically ill septic patients. Am J Emerg Med. 2017;35:234–9.CrossRef
34.
Zurück zum Zitat Laukemann S, Kasper N, Kulkarni P, Steiner D, Rast AC, Kutz A, et al. Can We Reduce negative blood cultures with clinical scores and blood markers? Results from an observational cohort study. Medicine. 2015;94: e2264.CrossRef Laukemann S, Kasper N, Kulkarni P, Steiner D, Rast AC, Kutz A, et al. Can We Reduce negative blood cultures with clinical scores and blood markers? Results from an observational cohort study. Medicine. 2015;94: e2264.CrossRef
35.
Zurück zum Zitat Zahorec R. Ratio of neutrophil to lymphocyte counts—rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl Lek Listy. 2001;102:5–14.PubMed Zahorec R. Ratio of neutrophil to lymphocyte counts—rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl Lek Listy. 2001;102:5–14.PubMed
36.
Zurück zum Zitat Liu X, Shen Y, Wang H, Ge Q, Fei A, Pan S. Prognostic significance of neutrophil-to-lymphocyte ratio in patients with sepsis: a prospective observational study. Mediators Inflamm. 2016;2016:8191254.PubMedPubMedCentral Liu X, Shen Y, Wang H, Ge Q, Fei A, Pan S. Prognostic significance of neutrophil-to-lymphocyte ratio in patients with sepsis: a prospective observational study. Mediators Inflamm. 2016;2016:8191254.PubMedPubMedCentral
37.
Zurück zum Zitat Tanrıverdi H, Örnek T, Erboy F, Altınsoy B, Uygur F, Atalay F, et al. Comparison of diagnostic values of procalcitonin, C-reactive protein and blood neutrophil/lymphocyte ratio levels in predicting bacterial infection in hospitalized patients with acute exacerbations of COPD. Wien klin Wochenschr. 2015;127:756–63.CrossRef Tanrıverdi H, Örnek T, Erboy F, Altınsoy B, Uygur F, Atalay F, et al. Comparison of diagnostic values of procalcitonin, C-reactive protein and blood neutrophil/lymphocyte ratio levels in predicting bacterial infection in hospitalized patients with acute exacerbations of COPD. Wien klin Wochenschr. 2015;127:756–63.CrossRef
38.
Zurück zum Zitat Farah R, Ibrahim R, Nassar M, Najib D, Zivony Y, Eshel E. The neutrophil/lymphocyte ratio is a better addition to C-reactive protein than CD64 index as a marker for infection in COPD. Panminerva Med. 2017;59:203–9.CrossRef Farah R, Ibrahim R, Nassar M, Najib D, Zivony Y, Eshel E. The neutrophil/lymphocyte ratio is a better addition to C-reactive protein than CD64 index as a marker for infection in COPD. Panminerva Med. 2017;59:203–9.CrossRef
39.
Zurück zum Zitat Sen V, Bozkurt IH, Aydogdu O, Yonguc T, Yarimoglu S, Sen P, et al. Significance of preoperative neutrophil-lymphocyte count ratio on predicting postoperative sepsis after percutaneous nephrolithotomy. Kaohsiung J Med Sci. 2016;32:507–13.CrossRef Sen V, Bozkurt IH, Aydogdu O, Yonguc T, Yarimoglu S, Sen P, et al. Significance of preoperative neutrophil-lymphocyte count ratio on predicting postoperative sepsis after percutaneous nephrolithotomy. Kaohsiung J Med Sci. 2016;32:507–13.CrossRef
40.
Zurück zum Zitat Yang M, Li L, Su N, Lin J, Wang J. Dynamic monitoring of the neutrophil/lymphocyte ratio could predict the prognosis of patients with bloodstream infection. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2015;27:471–6.PubMed Yang M, Li L, Su N, Lin J, Wang J. Dynamic monitoring of the neutrophil/lymphocyte ratio could predict the prognosis of patients with bloodstream infection. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2015;27:471–6.PubMed
41.
Zurück zum Zitat Meister AL, Doheny KK, Travagli RA. Necrotizing enterocolitis: it’s not all in the gut. Exp Biol Med (Maywood). 2020;245:85–95.CrossRef Meister AL, Doheny KK, Travagli RA. Necrotizing enterocolitis: it’s not all in the gut. Exp Biol Med (Maywood). 2020;245:85–95.CrossRef
Metadaten
Titel
Association of neutrophil to lymphocyte ratio with preterm necrotizing enterocolitis: a retrospective case-control study
verfasst von
Yuju Mu
Hua Wang
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Gastroenterology / Ausgabe 1/2022
Elektronische ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-022-02329-3

Weitere Artikel der Ausgabe 1/2022

BMC Gastroenterology 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.