Skip to main content
Erschienen in: Journal of Nuclear Cardiology 2/2023

14.06.2022 | Theme Articles

Automated nonlinear registration of coronary PET to CT angiography using pseudo-CT generated from PET with generative adversarial networks

verfasst von: Ananya Singh, MS, Jacek Kwiecinski, MD, PhD, Sebastien Cadet, MS, Aditya Killekar, MS, Evangelos Tzolos, MD, Michelle C Williams, MBChB, PhD, Marc R. Dweck, MD, PhD, David E. Newby, MD, PhD, Damini Dey, PhD, Piotr J. Slomka, PhD

Erschienen in: Journal of Nuclear Cardiology | Ausgabe 2/2023

Einloggen, um Zugang zu erhalten

Abstract

Background

Coronary 18F-sodium-fluoride (18F-NaF) positron emission tomography (PET) showed promise in imaging coronary artery disease activity. Currently image processing remains subjective due to the need for manual registration of PET and computed tomography (CT) angiography data. We aimed to develop a novel fully automated method to register coronary 18F-NaF PET to CT angiography using pseudo-CT generated by generative adversarial networks (GAN).

Methods

A total of 169 patients, 139 in the training and 30 in the testing sets were considered for generation of pseudo-CT from non-attenuation corrected (NAC) PET using GAN. Non-rigid registration was used to register pseudo-CT to CT angiography and the resulting transformation was used to align PET with CT angiography. We compared translations, maximal standard uptake value (SUVmax) and target to background ratio (TBRmax) at the location of plaques, obtained after observer and automated alignment.

Results

Automatic end-to-end registration was performed for 30 patients with 88 coronary vessels and took 27.5 seconds per patient. Difference in displacement motion vectors between GAN-based and observer-based registration in the x-, y-, and z-directions was 0.8 ± 3.0, 0.7 ± 3.0, and 1.7 ± 3.9 mm, respectively. TBRmax had a coefficient of repeatability (CR) of 0.31, mean bias of 0.03 and narrow limits of agreement (LOA) (95% LOA: − 0.29 to 0.33). SUVmax had CR of 0.26, mean bias of 0 and narrow LOA (95% LOA: − 0.26 to 0.26).

Conclusion

Pseudo-CT generated by GAN are perfectly registered to PET can be used to facilitate quick and fully automated registration of PET and CT angiography.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 2014;383:705‐13.CrossRefPubMed Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 2014;383:705‐13.CrossRefPubMed
2.
Zurück zum Zitat Kwiecinski J, Slomka PJ, Dweck MR, Newby DE, Berman DS. Vulnerable plaque imaging using 18F-sodium fluoride positron emission tomography. Br J Radiol 2020;93:20190797.CrossRefPubMed Kwiecinski J, Slomka PJ, Dweck MR, Newby DE, Berman DS. Vulnerable plaque imaging using 18F-sodium fluoride positron emission tomography. Br J Radiol 2020;93:20190797.CrossRefPubMed
3.
Zurück zum Zitat Kwiecinski J, Tzolos E, Cadet S, Adamson PD, Moss A, Joshi NV, et al. 18F-sodium fluoride coronary uptake predicts myocardial infarctions in patients with known coronary artery disease. J Am Coll Cardiol 2020;75:3061-74.CrossRefPubMedCentralPubMed Kwiecinski J, Tzolos E, Cadet S, Adamson PD, Moss A, Joshi NV, et al. 18F-sodium fluoride coronary uptake predicts myocardial infarctions in patients with known coronary artery disease. J Am Coll Cardiol 2020;75:3061-74.CrossRefPubMedCentralPubMed
4.
Zurück zum Zitat Kwiecinski J, Tzolos E, Meah MN, Cadet S, Adamson PD, Grodecki K, et al. Machine learning with 18F-sodium fluoride PET and quantitative plaque analysis on CT angiography for the future risk of myocardial infarction. J Nucl Med 2022;63:158‐65.CrossRefPubMedCentralPubMed Kwiecinski J, Tzolos E, Meah MN, Cadet S, Adamson PD, Grodecki K, et al. Machine learning with 18F-sodium fluoride PET and quantitative plaque analysis on CT angiography for the future risk of myocardial infarction. J Nucl Med 2022;63:158‐65.CrossRefPubMedCentralPubMed
5.
Zurück zum Zitat Kwiecinski J, Adamson PD, Lassen ML, Doris MK, Moss AJ, Cadet S, et al. Feasibility of coronary 18F-sodium fluoride positron-emission tomography assessment with the utilization of previously acquired computed tomography angiography. Circulation 2018;11:e008325.PubMed Kwiecinski J, Adamson PD, Lassen ML, Doris MK, Moss AJ, Cadet S, et al. Feasibility of coronary 18F-sodium fluoride positron-emission tomography assessment with the utilization of previously acquired computed tomography angiography. Circulation 2018;11:e008325.PubMed
6.
Zurück zum Zitat Tzolos E, Kwiecinski J, Lassen ML, Cadet S, Adamson PD, Moss AJ, et al. Observer repeatability and interscan reproducibility of 18F-sodium fluoride coronary microcalcification activity. J Nucl Cardiol 2022;29:126-35.CrossRefPubMed Tzolos E, Kwiecinski J, Lassen ML, Cadet S, Adamson PD, Moss AJ, et al. Observer repeatability and interscan reproducibility of 18F-sodium fluoride coronary microcalcification activity. J Nucl Cardiol 2022;29:126-35.CrossRefPubMed
7.
Zurück zum Zitat Kwiecinski J, Cadet S, Daghem M, Lassen ML, Dey D, Dweck MR, et al. Whole-vessel coronary 18F-sodium fluoride PET for assessment of the global coronary microcalcification burden. Eur J Nucl Med Mol Imaging 2020;47:1736‐45.CrossRefPubMedCentralPubMed Kwiecinski J, Cadet S, Daghem M, Lassen ML, Dey D, Dweck MR, et al. Whole-vessel coronary 18F-sodium fluoride PET for assessment of the global coronary microcalcification burden. Eur J Nucl Med Mol Imaging 2020;47:1736‐45.CrossRefPubMedCentralPubMed
8.
Zurück zum Zitat Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. Adv Neural Inf Process Syst 2014;27:1‐9. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. Adv Neural Inf Process Syst 2014;27:1‐9.
9.
Zurück zum Zitat Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 1125-34. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 1125-34.
10.
11.
Zurück zum Zitat Hernandez M, Bossa MN, Olmos S. Registration of anatomical images using paths of diffeomorphisms parameterized with stationary vector field flows. Int J Comput Vision 2009;85:291‐306.CrossRef Hernandez M, Bossa MN, Olmos S. Registration of anatomical images using paths of diffeomorphisms parameterized with stationary vector field flows. Int J Comput Vision 2009;85:291‐306.CrossRef
12.
Zurück zum Zitat Chen Z, Zeng Z, Shen H, Zheng X, Dai P, Ouyang P. DN-GAN: Denoising generative adversarial networks for speckle noise reduction in optical coherence tomography images. Biomed Signal Process Control 2020;55:101632.CrossRef Chen Z, Zeng Z, Shen H, Zheng X, Dai P, Ouyang P. DN-GAN: Denoising generative adversarial networks for speckle noise reduction in optical coherence tomography images. Biomed Signal Process Control 2020;55:101632.CrossRef
13.
Zurück zum Zitat Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, et al. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging 2018;37:1348‐57.CrossRefPubMedCentralPubMed Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, et al. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging 2018;37:1348‐57.CrossRefPubMedCentralPubMed
15.
Zurück zum Zitat Moss AJ, Dweck MR, Doris MK, Andrews JP, Bing R, Forsythe RO, et al. Ticagrelor to reduce myocardial injury in patients with high-risk coronary artery plaque. Cardiovasc Imaging 2020;13:1549‐60. Moss AJ, Dweck MR, Doris MK, Andrews JP, Bing R, Forsythe RO, et al. Ticagrelor to reduce myocardial injury in patients with high-risk coronary artery plaque. Cardiovasc Imaging 2020;13:1549‐60.
16.
Zurück zum Zitat Massera D, Doris MK, Cadet S, Kwiecinski J, Pawade TA, Peeters FE, et al. Analytical quantification of aortic valve 18F-sodium fluoride PET uptake. J Nucl Cardiol 2020;27:962‐72.CrossRefPubMed Massera D, Doris MK, Cadet S, Kwiecinski J, Pawade TA, Peeters FE, et al. Analytical quantification of aortic valve 18F-sodium fluoride PET uptake. J Nucl Cardiol 2020;27:962‐72.CrossRefPubMed
17.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention; 2015. p. 234-41. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention; 2015. p. 234-41.
19.
Zurück zum Zitat Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. International conference on machine learning; 2015. p. 448-56. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. International conference on machine learning; 2015. p. 448-56.
21.
Zurück zum Zitat Shi L, Onofrey JA, Liu H, Liu Y-H, Liu C. Deep learning-based attenuation map generation for myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging 2020;47:2383‐95.CrossRefPubMed Shi L, Onofrey JA, Liu H, Liu Y-H, Liu C. Deep learning-based attenuation map generation for myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging 2020;47:2383‐95.CrossRefPubMed
22.
Zurück zum Zitat Cartlidge TR, Doris MK, Sellers SL, Pawade TA, White AC, Pessotto R, et al. Detection and prediction of bioprosthetic aortic valve degeneration. J Am Coll Cardiol 2019;73:1107‐19.CrossRefPubMedCentralPubMed Cartlidge TR, Doris MK, Sellers SL, Pawade TA, White AC, Pessotto R, et al. Detection and prediction of bioprosthetic aortic valve degeneration. J Am Coll Cardiol 2019;73:1107‐19.CrossRefPubMedCentralPubMed
23.
Zurück zum Zitat Kwiecinski J, Tzolos E, Cartlidge TR, Fletcher A, Doris MK, Bing R, et al. Native aortic valve disease progression and bioprosthetic valve degeneration in patients with transcatheter aortic valve implantation. Circulation 2021;144:1396-408.CrossRefPubMedCentralPubMed Kwiecinski J, Tzolos E, Cartlidge TR, Fletcher A, Doris MK, Bing R, et al. Native aortic valve disease progression and bioprosthetic valve degeneration in patients with transcatheter aortic valve implantation. Circulation 2021;144:1396-408.CrossRefPubMedCentralPubMed
24.
Zurück zum Zitat Fletcher AJ, Lembo M, Kwiecinski J, Syed MB, Nash J, Tzolos E, et al. Quantifying microcalcification activity in the thoracic aorta. J Nucl Cardiol 2022;19:126-35. Fletcher AJ, Lembo M, Kwiecinski J, Syed MB, Nash J, Tzolos E, et al. Quantifying microcalcification activity in the thoracic aorta. J Nucl Cardiol 2022;19:126-35.
25.
Zurück zum Zitat Andrews JP, MacNaught G, Moss AJ, Doris MK, Pawade T, Adamson PD, et al. Cardiovascular 18F-fluoride positron emission tomography-magnetic resonance imaging: A comparison study. J Nucl Cardiol 2021;28:1‐12.CrossRefPubMed Andrews JP, MacNaught G, Moss AJ, Doris MK, Pawade T, Adamson PD, et al. Cardiovascular 18F-fluoride positron emission tomography-magnetic resonance imaging: A comparison study. J Nucl Cardiol 2021;28:1‐12.CrossRefPubMed
26.
Zurück zum Zitat Kwiecinski J, Tzolos E, Fletcher AJ, Nash J, Meah MN, Cadet S et al. Bypass grafting and native coronary artery disease activity. JACC: Cardiovasc Imaging 2022;15:875-87.PubMed Kwiecinski J, Tzolos E, Fletcher AJ, Nash J, Meah MN, Cadet S et al. Bypass grafting and native coronary artery disease activity. JACC: Cardiovasc Imaging 2022;15:875-87.PubMed
28.
Zurück zum Zitat Tzolos E, Lassen ML, Pan T, Kwiecinski J, Cadet S, Dey D et al. Respiration-averaged CT versus standard CT attenuation map for correction of 18F-sodium fluoride uptake in coronary atherosclerotic lesions on hybrid PET/CT. J Nucl Cardiol 2022;29:430-9.CrossRefPubMed Tzolos E, Lassen ML, Pan T, Kwiecinski J, Cadet S, Dey D et al. Respiration-averaged CT versus standard CT attenuation map for correction of 18F-sodium fluoride uptake in coronary atherosclerotic lesions on hybrid PET/CT. J Nucl Cardiol 2022;29:430-9.CrossRefPubMed
29.
Zurück zum Zitat Bellinge JW, Schultz CJ. Optimizing arterial 18F-sodium fluoride positron emission tomography analysis. J Nucl Cardiol 2021;28:1887-90.CrossRefPubMed Bellinge JW, Schultz CJ. Optimizing arterial 18F-sodium fluoride positron emission tomography analysis. J Nucl Cardiol 2021;28:1887-90.CrossRefPubMed
30.
Zurück zum Zitat Bellinge JW, Francis RJ, Majeed K, Watts GF, Schultz CJ. In search of the vulnerable patient or the vulnerable plaque: 18F-sodium fluoride positron emission tomography for cardiovascular risk stratification. J Nucl Cardiol 2018;25:1774‐83.CrossRefPubMed Bellinge JW, Francis RJ, Majeed K, Watts GF, Schultz CJ. In search of the vulnerable patient or the vulnerable plaque: 18F-sodium fluoride positron emission tomography for cardiovascular risk stratification. J Nucl Cardiol 2018;25:1774‐83.CrossRefPubMed
31.
32.
Zurück zum Zitat Lassen ML, Kwiecinski J, Dey D, Cadet S, Germano G, Berman DS, et al. Triple-gated motion and blood pool clearance corrections improve reproducibility of coronary 18F-NaF PET. Eur J Nucl Med Mol Imaging 2019;46:2610‐20.CrossRefPubMedCentralPubMed Lassen ML, Kwiecinski J, Dey D, Cadet S, Germano G, Berman DS, et al. Triple-gated motion and blood pool clearance corrections improve reproducibility of coronary 18F-NaF PET. Eur J Nucl Med Mol Imaging 2019;46:2610‐20.CrossRefPubMedCentralPubMed
33.
Zurück zum Zitat Lassen ML, Kwiecinski J, Cadet S, Dey D, Wang C, Dweck MR, et al. Data-driven gross patient motion detection and compensation: Implications for coronary 18F-NaF PET imaging. J Nucl Med 2019;60:830‐6.CrossRefPubMedCentralPubMed Lassen ML, Kwiecinski J, Cadet S, Dey D, Wang C, Dweck MR, et al. Data-driven gross patient motion detection and compensation: Implications for coronary 18F-NaF PET imaging. J Nucl Med 2019;60:830‐6.CrossRefPubMedCentralPubMed
34.
Zurück zum Zitat Lassen ML, Beyer T, Berger A, Beitzke D, Rasul S, Büther F, et al. Data-driven, projection-based respiratory motion compensation of PET data for cardiac PET/CT and PET/MR imaging. J Nucl Cardiol 2020;27:2216‐30.CrossRefPubMed Lassen ML, Beyer T, Berger A, Beitzke D, Rasul S, Büther F, et al. Data-driven, projection-based respiratory motion compensation of PET data for cardiac PET/CT and PET/MR imaging. J Nucl Cardiol 2020;27:2216‐30.CrossRefPubMed
35.
Zurück zum Zitat Doris MK, Otaki Y, Krishnan SK, Kwiecinski J, Rubeaux M, Alessio A, et al. Optimization of reconstruction and quantification of motion-corrected coronary PET-CT. J Nucl Cardiol 2020;27:494‐504.CrossRefPubMed Doris MK, Otaki Y, Krishnan SK, Kwiecinski J, Rubeaux M, Alessio A, et al. Optimization of reconstruction and quantification of motion-corrected coronary PET-CT. J Nucl Cardiol 2020;27:494‐504.CrossRefPubMed
36.
Zurück zum Zitat Armanious K, Jiang C, Fischer M, Küstner T, Hepp T, Nikolaou K, et al. MedGAN: Medical image translation using GANs. Comput Med Imaging Graph 2020;79:101684.CrossRefPubMed Armanious K, Jiang C, Fischer M, Küstner T, Hepp T, Nikolaou K, et al. MedGAN: Medical image translation using GANs. Comput Med Imaging Graph 2020;79:101684.CrossRefPubMed
37.
Zurück zum Zitat Shan H, Zhang Y, Yang Q, Kruger U, Kalra MK, Sun L, et al. 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network. IEEE Trans Med Imaging 2018;37:1522‐34.CrossRefPubMedCentralPubMed Shan H, Zhang Y, Yang Q, Kruger U, Kalra MK, Sun L, et al. 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network. IEEE Trans Med Imaging 2018;37:1522‐34.CrossRefPubMedCentralPubMed
38.
Zurück zum Zitat Zhou L, Schaefferkoetter JD, Tham IW, Huang G, Yan J. Supervised learning with cyclegan for low-dose FDG PET image denoising. Med Image Anal 2020;65:101770.CrossRefPubMed Zhou L, Schaefferkoetter JD, Tham IW, Huang G, Yan J. Supervised learning with cyclegan for low-dose FDG PET image denoising. Med Image Anal 2020;65:101770.CrossRefPubMed
39.
Zurück zum Zitat Jafari MH, Girgis H, Abdi AH, Liao Z, Pesteie M, Rohling R et al. Semi-supervised learning for cardiac left ventricle segmentation using conditional deep generative models as prior. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019); 2019. p. 649-52. Jafari MH, Girgis H, Abdi AH, Liao Z, Pesteie M, Rohling R et al. Semi-supervised learning for cardiac left ventricle segmentation using conditional deep generative models as prior. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019); 2019. p. 649-52.
40.
Zurück zum Zitat Guo Z, Li X, Huang H, Guo N, Li Q. Deep learning-based image segmentation on multimodal medical imaging. IEEE Trans Radiat Plasma Med Sci 2019;3:162‐9.CrossRefPubMedCentralPubMed Guo Z, Li X, Huang H, Guo N, Li Q. Deep learning-based image segmentation on multimodal medical imaging. IEEE Trans Radiat Plasma Med Sci 2019;3:162‐9.CrossRefPubMedCentralPubMed
41.
Zurück zum Zitat Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, et al. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage 2018;174:550‐62.CrossRefPubMed Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, et al. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage 2018;174:550‐62.CrossRefPubMed
42.
Zurück zum Zitat Sood RR, Shao W, Kunder C, Teslovich NC, Wang JB, Soerensen SJ, et al. 3D registration of pre-surgical prostate MRI and histopathology images via super-resolution volume reconstruction. Med Image Anal 2021;69:101957.CrossRefPubMedCentralPubMed Sood RR, Shao W, Kunder C, Teslovich NC, Wang JB, Soerensen SJ, et al. 3D registration of pre-surgical prostate MRI and histopathology images via super-resolution volume reconstruction. Med Image Anal 2021;69:101957.CrossRefPubMedCentralPubMed
44.
Zurück zum Zitat Hu Y, Gibson E, Ghavami N, Bonmati E, Moore CM, Emberton M et al. Adversarial deformation regularization for training image registration neural networks. International Conference on Medical Image Computing and Computer-Assisted Intervention; 2018. p. 774-82. Hu Y, Gibson E, Ghavami N, Bonmati E, Moore CM, Emberton M et al. Adversarial deformation regularization for training image registration neural networks. International Conference on Medical Image Computing and Computer-Assisted Intervention; 2018. p. 774-82.
45.
Zurück zum Zitat Dong X, Wang T, Lei Y, Higgins K, Liu T, Curran WJ, et al. Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging. Phys Med Biol 2019;64:215016.CrossRefPubMedCentralPubMed Dong X, Wang T, Lei Y, Higgins K, Liu T, Curran WJ, et al. Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging. Phys Med Biol 2019;64:215016.CrossRefPubMedCentralPubMed
46.
Zurück zum Zitat Nakazato R, Dey D, Alexánderson E, Meave A, Jiménez M, Romero E, et al. Automatic alignment of myocardial perfusion PET and 64-slice coronary CT angiography on hybrid PET/CT. J Nucl Cardiol 2012;19:482‐91.CrossRefPubMedCentralPubMed Nakazato R, Dey D, Alexánderson E, Meave A, Jiménez M, Romero E, et al. Automatic alignment of myocardial perfusion PET and 64-slice coronary CT angiography on hybrid PET/CT. J Nucl Cardiol 2012;19:482‐91.CrossRefPubMedCentralPubMed
47.
Zurück zum Zitat Yu H, Zhou X, Jiang H, Kang H, Wang Z, Hara T et al. Learning 3D non-rigid deformation based on an unsupervised deep learning for PET/CT image registration. Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging; 2019. p. 439-44. Yu H, Zhou X, Jiang H, Kang H, Wang Z, Hara T et al. Learning 3D non-rigid deformation based on an unsupervised deep learning for PET/CT image registration. Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging; 2019. p. 439-44.
Metadaten
Titel
Automated nonlinear registration of coronary PET to CT angiography using pseudo-CT generated from PET with generative adversarial networks
verfasst von
Ananya Singh, MS
Jacek Kwiecinski, MD, PhD
Sebastien Cadet, MS
Aditya Killekar, MS
Evangelos Tzolos, MD
Michelle C Williams, MBChB, PhD
Marc R. Dweck, MD, PhD
David E. Newby, MD, PhD
Damini Dey, PhD
Piotr J. Slomka, PhD
Publikationsdatum
14.06.2022
Verlag
Springer International Publishing
Erschienen in
Journal of Nuclear Cardiology / Ausgabe 2/2023
Print ISSN: 1071-3581
Elektronische ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-022-03010-8

Weitere Artikel der Ausgabe 2/2023

Journal of Nuclear Cardiology 2/2023 Zur Ausgabe

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.